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A Monotonicity Result for Volumes
of Holomorphic Images

John P. D’Angelo

Introduction

This paper studies the Euclidean 2k-dimensional volumes of parameterized holo-
morphic images of certain pseudoconvex domains in complex Euclidean space Ck.

Its motivation arises from studying a more specific situation—namely, the clas-
sification problem for proper holomorphic mappings between balls in complex
Euclidean spaces (usually of different dimensions). We provide two versions of a
monotonicity result. The first applies for mappings from balls and eggs; its proof
involves the computation of explicit integrals. The second applies for mappings
from more general domains, but it requires some regularity assumptions on the
mappings at the boundary.

By way of introduction, first suppose that k = 1, that f is holomorphic on the
unit disk B1, and that f ′ is square integrable. Then the area of the parameter-
ized image of the unit disk is π‖f ′‖2

L2 . In particular, when f(z) = zm, the area
(with multiplicity taken into account) ismπ. Furthermore, one can easily see that
‖(zf )′‖2

L2 ≥ ‖f ′‖2
L2 with strict inequality unless f = 0, so the area is increased

when f is replaced by zf.
In this paper we generalize these results to the more complicated situation in

higher dimensions and show how they fit into the classification problem. The main
results are Theorem 3, its consequence Corollary 2, and Theorem 4. Theorem 3
states that parameterized volumes of images of balls and eggs increase under a
tensor product operation; Corollary 2 provides a sharp upper bound for the pa-
rameterized volume of a proper polynomial mapping between balls in terms of its
degree and the domain dimension. Theorem 4 provides a monotonicity result for
more general domains, assuming that the mapping is continuously differentiable
at the boundary so that Stokes’s theorem can be applied.

Section I considers the 1-dimensional case. The tensor product z → z⊗m pro-
vides a natural generalization to higher dimensions of the map z → zm in one
dimension. We let Hm denote a concrete form of the mapping z → z⊗m; see (6)
in Section II. We show there how the mappings Hm combine with a tensor prod-
uct on a subspace operation to play a crucial role in the classification of proper
polynomial mappings between balls.
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Given domains in complex Euclidean spaces of possibly different dimensions,
a natural question in complex analysis is to classify the proper holomorphic map-
pings between them. This question is particularly compelling when the domains
are the unit balls Bn ⊂ Cn and BN ⊂ CN ; in this case the question has many in-
teresting aspects (see e.g. [D3; D6; DL; Fa1; Fa2; F2; H; Ru1; W]). When a proper
holomorphic mapping f has a smooth extension to the sphere, we can regard it as
a solution to the Cauchy–Riemann equation ∂̄f = 0 together with the nonlinear
boundary condition ‖f(z)‖2 = 1 on the unit sphere.

In Section III we show how to find the 2k-dimensional parameterized volume
of a holomorphic image of the unit ball Bk. In Theorem 1 we show that the 2k-
dimensional parameterized volume of the image of a homogeneous proper map-
ping between balls of degreem ismkπk/k!. In Example 2 we provide exact answers
for the volumes determined by many interesting proper mappings from B2.

In Section IV we pause to compute a real-variables analogue of the formula in
the homogeneous case; a curve in the unit sphere plays an interesting role.

We prove Theorem 3 in Section V. We prove that the 2k-dimensional volume
increases under tensor products, providing the appropriate analogue of the easy
result in dimension 1. As a consequence we obtain an extremal property for the
mappings Hm; they maximize the parameterized volume over proper polynomial
mappings of degreem. The proof of Theorem 3 uses an inequality on determinants.

In Section VI we determine the effect of the juxtaposition operation on volume.
We also compute the volumes for certain 1-parameter families of proper mappings
in order to exhibit the dependence on the parameter.

We prove Theorem 4 in Section VII. Let� be the (pseudoconvex) domain given
by {z : ‖P(z)‖2 < 1}, where P is a holomorphic mapping taking values in CM;
we assume that � is bounded. Consider a holomorphic mapping f : � → CN

that is continuously differentiable on b�. We prove a monotonicity result for vol-
umes involving the tensor product of f with P. It is likely that such results hold
more generally, but the main focus in this paper remains the unit ball.

We close this introduction by mentioning that the mappings Hm warrant study
for several reasons. They are invariant under natural unitary representations of fi-
nite cyclic groups and thus exhibit numerous combinatorial and number-theoretic
properties. Perhaps most important, these mappings provide the analogue in higher
dimensions of the most celebrated proper mapping in mathematics: namely, z →
zm in one complex dimension.

I. Observations in One Dimension

Suppose that f : B1 → C is holomorphic. Then f has a power series expansion∑∞
n=0 bnz

n in B1. The parameterized area of the image of f is (by definition)

Af =
∫
B1

|f ′(z)|2 dV2 = ‖f ′‖2
L2 . (1)

The following result relates Af to Azf : multiplication by z increases the area.
The conclusion requires integration; the pointwise inequality |(zf(z))′| > |f ′(z)|
fails in general.
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Proposition 1. Let f(z) = ∑∞
n=0 bnz

n be a holomorphic function with both f
and f ′ in L2(B1). Then

‖f ‖2
L2 = π

∞∑
n=0

|bn|2
n+ 1

, (2)

‖f ′‖2
L2 = π

∞∑
n=0

(n+ 1)|bn+1|2, (3)

‖(zf )′‖2
L2 = ‖f ′‖2

L2 + π
∞∑
n=0

|bn|2. (4)

Hence Azf ≥ Af , and equality occurs only when f vanishes identically.

Proof. The proof of (2) is an easy calculation in polar coordinates, and (3) fol-
lows from (2). To prove (4), first observe that (zf )′(z) = ∑∞

n=0(n+ 1)bnzn. By
(2) we have

‖(zf )′‖2
L2 = π

∞∑
n=0

(n+ 1)|bn|2 = π
∞∑
n=0

n|bn|2 + π
∞∑
n=0

|bn|2

= π
∞∑
n=0

(n+ 1)|bn+1|2 + π
∞∑
n=0

|bn|2 = ‖f ′‖2
L2 + π

∞∑
n=0

|bn|2.

We have obtained (4).

Remark. Suppose that f ′ ∈ L2(B1). It follows from (3) that
∑∞

n=0 |bn|2 con-
verges and hence f can be extended to the circle. The second expression on the
right-hand side of (4) is easily seen to be the integral

1

2

∫
|z|=1

|f |2 dθ.

We can express Proposition 1 in another manner as follows. Let D denote differ-
entiation, and let M denote multiplication by z. Consider the operator given by
(DM)∗DM −D∗D on an appropriate subspace of the holomorphic functions in
L2. By (4) it is positive definite and hence of the form T ∗T for an operator T (es-
sentially the Szegö projection) with trivial kernel:

‖DMf ‖2 − ‖Df ‖2 = ‖Tf ‖2 = π
∞∑
n=0

|bn|2 = 1

2

∫
|z|=1

|f(z)|2 dθ. (5)

When considering areas and volumes in this paper, we take multiplicity into ac-
count. For example, the set-theoretic image of the unit disc under the map z →
zm is the unit disk, but the image is covered m times. For clarity we use the term
parameterized volume (or area) to emphasize that we are computing an integral
where multiplicity is considered.
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Corollary 1. The parameterized area of the image of the disk under the map
z → zm is mπ.

Proof. It is easy to see that the integral of |mzm−1|2 is πm. Alternatively, the result
is trivial when m = 1 and follows by induction on m using (4), since the infinite
sum consists of the single term unity.

II. Proper Holomorphic Mappings between
Balls and Tensor Products

In order to take advantage of the CR geometry of the unit sphere, we assume for
most of this section that the domain dimension is at least 2. We begin by men-
tioning some rigidity results and then consider the opposite extreme, where the
codimension is allowed to be arbitrarily large. See the survey [F2] and [D3; D5]
for additional references.

The simplest rigidity result [A; Pi] is that a proper holomorphic self-mapping
of Bn for n ≥ 2 is necessarily an automorphism. This result holds without any
regularity assumption on the mapping at the boundary. It is known that proper
holomorphic mappings between balls, if they are assumed to be sufficiently dif-
ferentiable at the boundary, are necessarily rational. By contrast, in each positive
codimension there are proper holomorphic mappings that extend continuously to
the boundary but are not rational. It is an open problem how smooth (at the bound-
ary) a proper map between balls needs to be before it must be rational.

A proper holomorphic rational mapping from Bn to BN for N ≤ 2n − 2 must
also be a linear fractional transformation [Fa2], and (with this restriction on the
dimensions) the smoothness requirement to guarantee rationality is less than in
the general case (see [H; HJ]). The author has conjectured sharp quantitative gen-
eralizations of these results: For n ≥ 2, a rational proper mapping between Bn
and BN is of degree at most C(n,N), where C(2,N) = 2N − 3 and C(n,N) =
N−1
n−1 forN ≥ 3. There are explicit polynomial proper mappings that achieve these
suggested bounds and hence, if the conjecture is true, then the number C(n,N)
is sharp. The polynomials yielding the conjectured sharp bounds are not homo-
geneous. It is possible that information on volumes of parameterizations can be
related to this conjecture, but we do not pursue the topic here. On the other hand,
Corollary 2 provides an extremal result for volumes.

At the opposite extreme from rigidity we consider the collection of proper holo-
morphic rational mappings from Bn to BN for all possible N. We write (p, g) =
p ⊕ g for the direct sum of maps p and g. Virtually anything is possible in this
situation; for example, we have the following result (see [D5] or [D6]). Let
p/q : Cn → CK be a (holomorphic) rational function that maps the closed unit
ball Bn into the open unit ball BK. Then there is an integer k and a polynomial
mapping g : Cn → Ck such that p/q⊕g/q is a proper holomorphic rational map-
ping from Bn to BK+k. Now take q = 1. Then, given a polynomial mapping p of
arbitrary degree d that maps the closed unit ball Bn to the open unit ball BK , we
can find a polynomial mapping g : Cn → Ck such that p⊕ g is a proper mapping
from Bn to BN , where N = K + k.
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The author has classified all proper polynomial mappings between balls by
combining a kind of tensor division with the determination of all homogeneous
polynomial examples. We briefly recall these results, which motivate some of the
computations performed in this paper. First we express a version of the mapping
z → z⊗m in coordinates.

Let N = N(n,m) denote the dimension of the space of homogeneous polyno-
mials of degree m in n variables, and let {eα} form an orthonormal basis of CN.

We define Hm by

Hm(z) =
∑

|α|=m

√(
m

α

)
zαeα. (6)

Then Hm : Bn → BN is a proper mapping, because ‖Hm(z)‖2 = ‖z‖2m = 1 on
‖z‖2 = 1 and ‖Hm(z)‖2 < 1 on the open ball.

Theorem [D3; Ru2]. Let p : Cn → CK be homogeneous of degreem. Suppose
that the components ofp are linearly independent and that ‖p(z)‖2 = 1on ‖z‖2 =
1. Then K = N(n,m) and there is a unitary mapping U such that p = UHm.
Next we define the tensor product and division operations with respect to a sub-
space. Given functions p and g with the same domain but different targets, we
want to multiply them on this subspace. Let A be a subspace of CN with orthog-
onal complement A⊥, and let π denote the orthogonal projection onto A. Given a
function p with values in CN, we naturally write

p = (1 − π)(p)⊕ π(p).
Let g be a function with the same domain as p and with values in some C k. We
define a mapping EA(p, g) by

EA(p, g) = (1 − π)(p)⊕ (π(p)⊗ g). (7)

In case p and g are proper mappings to balls, it follows that EA(p, g) also is.
To see this fact we observe that

‖EA(p, g)‖2 = ‖(1 − π)(p)‖2 + ‖π(p)⊗ g‖2

= ‖(1 − π)(p)‖2 + ‖π(p)‖2‖g‖2

= ‖(1 − π)(p)‖2 + ‖π(p)‖2 + ‖π(p)‖2(‖g‖2 − 1)

= ‖p‖2 + ‖π(p)‖2(‖g‖2 − 1). (8)

If we let ‖p‖ and ‖g‖ tend to unity, then we see from (8) that ‖EA(p, g)‖ does
also. Hence, if p and g are proper mappings to balls, then EA(p, g) also is. No-
tice that the target dimension of EA(p, g) is (N − a) + ak, where a = dim(A)
(hence N − a = dim(A⊥)) and k is the dimension of the target of g.

When g is the identity mapping z, the operation p → EA(p, g) is known as
orthogonal homogenization. The inverse operation sending EA(p, g) → p is an
analogue of tensor division; we sometimes call it undoing. When g is the identity
mapping, undoing is orthogonal dehomogenization.
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Suppose that the subspace A is 1-dimensional—say, the span of the vector eN .
The tensor product EA(f , z) is then easy to understand; it is analogous to multi-
plication by z in one dimension:

EA(f , z) = (f1, . . . , fN−1, z1fN , . . . , znfN). (9)

Undoing replaces the right-hand side of (9) with f.
We next state, in slightly changed language, a result proved by the author (see

[D2; D3]) on the classification problem for polynomial mappings.

Theorem 0. Let p : Cn → CK be a polynomial mapping of degree m, and sup-
pose that p : Bn → BK is proper. Then there exist an integer N ′, subspaces
A0, . . . ,Am of CN ′

, tensor productsE0, . . . ,Em, and a linear mapping L : CN ′ →
CN(n,m) such that

Hm = L
m∏
j=0

Ej(p). (10)

Each tensor productEj is of the formEAj(f , z) for the corresponding subspaceAj .

Sketch of Proof. The main idea uses a Fourier series argument resulting from re-
placing z by eiθz. The identity ‖p(eiθz)‖2 = 1 holds for z on the sphere and for
all θ. When p isn’t already homogeneous, this identity forces the lowest-order
part of p to be orthogonal to the highest-order part of p on the sphere and hence
everywhere. We then tensor on the subspace determined by the lowest-order part;
doing so results in a new proper polynomial mapping of the same degree but for
which the order has increased. The procedure is repeated until we obtain some-
thing homogeneous.

The choice of the subspaces is not unique, but the proof provides a canonical way
of choosing them. If we wish, by allowing more than m tensor products in (10)
we may choose all the Aj to be 1-dimensional. Moreover, we can ignore the L in
(10) and obtain a homogeneous proper polynomial mapping from Bn to BN ′ .

We may also introduce linear mappings into the factorization. Consider a sim-
ple monomial example, where we apply various linear mappings along the way to
shorten the procedure. Given the proper mapping p : B2 → B4, we have

(z,w)→ (z, zw, zw2,w3) = p(z,w). (11)

We now indicate how to obtain H3 from (11) as in (10), leaving it to the reader to
see how the linear mappings work:

(z, zw, zw2,w3)→ ((z2, zw), zw, zw2,w3)→ (
z2,

√
2zw, zw2,w3

)
→ (

(z2z, z2w),
(√

2zwz,
√

2zww
)
, zw2,w3

)
→ (

z3,
√

3z2w,
√

3zw2,w3
) = H3(z,w).

The mapping (11) also can be realized simply via tensor products, which does
not require any undoing. In general, however, undoing is required. The simplest
example is given by
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(z,w)→ (
z3,

√
3zw,w3

); (12)

it arises from a single undoing of H3, but it cannot be realized by tensor products
alone.

The homogeneous proper mappings Hm between balls thus play a crucial role
in the general classification. They also exhibit many other interesting properties;
for example, Hm is invariant under the diagonal representation of a cyclic group
of order m given by z → ωz, where ω is a primitive mth root of unity. See [D4;
DL] for more information on invariant holomorphic mappings, and see [D7] for a
primality test resulting from such considerations.

We next discuss a second way to build a new proper mapping from two given
ones. More precisely, suppose that f : Bn → Bk and g : Bn → Bl are proper. For
each t ∈ [0,1], consider the juxtaposition mapping Jt(f , g) defined by

Jt(f , g) = tf ⊕
√

1 − t 2g. (13)

Since ‖Jt(f , g)‖2 = t 2‖f ‖2 +(1− t 2)‖g‖2 and since f and g are proper mappings
to balls, it follows that Jt(f , g) : Bn → Bk+l also is. We may think of Jt(f , g) as
providing a homotopy between f and g by allowing the natural embedding of each
target ball in a target ball of higher dimension. We allow composition of Jt(f , g)
with a linear mapping in order to make the target dimension minimal. Here is a
simple example: Set f(z,w) = (z, zw,w2) and g(z,w) = (

z2,
√

2zw,w2
)
. Let

ut = LJt(f , g), where

ut(z,w) = (
tz,
√

1 − t 2z2,
√

2 − t 2zw,w2
)
. (14)

This yields a 1-parameter family of proper mappings from B2 to B4.

In Section VI we will see how the juxtaposition operation affects volume.

III. Volume Computations for Balls and Eggs

This section is primarily calculus, but some of the results use subtle multi-index
notation.

Lemma 1. The dimension of the vector space of homogeneous polynomials of
degree d in n (commuting) variables is

(
n+d−1
n−1

)
.

This combinatorial result is well known, so we omit the proof.
Let K+ denote the part of the unit ball in Rn lying in the first orthant; that is,

K+ = {
x :

∑
x 2
j ≤ 1 and xj ≥ 0 for all j

}
. Let α be an n-tuple of nonnegative

real numbers. We denote by |α| the sum of the αj (the length of the multi-index α).
For t > 0 we let /(t) denote the usual Gamma function; for example, /(n+1) =
n! when n is an integer ≥ 0. When each αj > 0, we define an n-dimensional ana-
logue of the Euler Beta function by

B(α) =
∏
/(αj )

/(|α|) . (15)
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There is a beautiful integral formula for this B function. See [D5, p. 75] for
more discussion and see [D1] for the place where the author first used this formula:

B(α) = 2n|α|
∫
K+
r 2α−1 dV(r). (16)

As an aside, we observe that one can find the volume /
(

1
2

)n/
/
(
n
2 +1

)
of the unit

ball in Rn instantly from (16) by setting each αj equal to 1
2 . We evaluate additional

integrals using (16) after describing two uses of multi-index notation:

‖z‖2d =
( n∑
j=1

|zj |2
)d

=
∑
|α|=d

(
d

α

)
|z|2α; (17)

|z|2α =
n∏
j=1

|zj |2αj. (18)

Lemma 2. Let d be a nonnegative integer and α a multi-index of nonnegative
real numbers. Let Bn denote the unit ball in Cn. Then∫

Bn

‖z‖2d dV = πn

(n− 1)! (n+ d) , (19)

∫
Bn

|z|2α dV = πn

n+ |α|B(α + 1). (20)

Let p be an n-tuple of positive integers, and put �(p) = {
z :

∑|zj |2pj < 1
}
.

Then ∫
�(p)

|z|2α dV = πn∏
pj

B( α+1
p

)
[
α+1
p

] . (21)

Proof. In each case we use polar coordinates in each variable separately. To eval-
uate (19), we have

I =
∫
Bn

‖z‖2d dV2n = (2π)n
∫
K+

‖r‖2d
∏
rj dVn.

We then expand ‖r‖2d using the multinomial theorem (17) and use multi-index
notation to obtain (22):

I = πn2n
∑
|γ |=d

(
d

γ

)∫
K+
r 2γ+1 dVn. (22)

Using formula (16) for the Beta function in (22) and then (15) yields

I = πn
∑
|γ |=d

(
d

γ

)B(γ + 1)

|γ + 1|

= πn
∑
|γ |=d

d!∏
γj

∏
γj

(d + n)/(d + n) = πn d!

(d + n)!
∑
|γ |=d

1. (23)
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Finally, using Lemma 1, we simplify further to obtain the desired result:

I = πn d!

(d + n)!
(n+ d − 1)!

(n− 1)! d!
= πn

(n− 1)! (n+ d) . (24)

The calculation of (20) is similar but easier (since there is no summation for us to
compute):

I =
∫
Bn

|z|2α dV2n = (2π)n
∫
K+
r 2α+1 dVn = πnB(α + 1)

|α| + n .

The calculation of (21) is also similar. After introducing polar coordinates in each
variable and integrating them, we change variables and imitate the proof of (20).

For convenience we write (20) when n = 2 and a, b are integers:∫
B2

|z|2a|w|2b dV4 = π2a! b!

(a + b + 2)!
. (25)

We next recall how to find 2k-dimensional volumes of nice sets in Cn that are
parameterized by holomorphic mappings. We want to find the parameterized vol-
ume rather than the volume of the image set. The distinction arises because our
mappings need not be injective.

Let � be an open subset in Ck, and suppose that f : � → CN is holomorphic.
Definition 1 provides a method for finding the 2k-dimensional parameterized vol-
ume of f(�).

Notation. Let ω denote the usual (1,1)-form on CN given by

ω = i

2

N∑
j=1

dzj ∧ dz̄j .

The factor i
2 arises, of course, because dz ∧ dz̄ = −2idx ∧ dy in C. We let ωk

denote the k-fold wedge product of ω with itself.

Definition 1 (2k-dimensional volume). Let � be an open subset in Ck, and
suppose that f : �→ CN is holomorphic. We define V2k(f ,�) by

V2k(f ,�) =
∫
�

(f ∗ω)k

k!
=
∫
�

r dV. (26)

We call V2k(f ,�) the 2k-dimensional parameterized volume. When� = Bk , we
abbreviate V2k(f ,�) by Vf .

In (26) the asterisk denotes pullback and the k! arises because there are k! ways

to permute the indices from 1 to k. The (k, k)-form
(f ∗ω)k
k! is r dV, where dV is

the Euclidean volume form in k complex dimensions for some function r. This
function is always a squared norm:

r =
∑

|J(fI)|2 = det(H(‖f ‖2)). (27)
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The sum in (27) is taken over all choices of k component functions, and J(fI) de-
notes the Jacobian determinant of the mapping fI with components fi1 , . . . , fik .
This sum equals the determinant of the complex HessianH(‖f ‖2) of the function
‖f ‖2. In this paper we often compute volumes using (27).

We elaborate when k = 2; write the variables as (z,w). In the notation of clas-
sical differential geometry, we have

E =
∥∥∥∥∂f∂z

∥∥∥∥
2

, (28a)

G =
∥∥∥∥ ∂f∂w

∥∥∥∥
2

, (28b)

F =
〈
∂f

∂z
,
∂f

∂w

〉
. (28c)

Then r = EG− |F |2. Notice that there is no square root; the classical formula for

the surface area form in the real case is
√
EG− F 2, where E,G,F have analo-

gous definitions.

We return to the homogeneous mapping Hm(z) and consider Hm : Bk → CN,
where N = (

k+m−1
k−1

)
by Lemma 1. We next obtain an explicit formula for the

2k-dimensional parameterized volume of the image of the unit ball under Hm.

Lemma 3. The pullback k th power (H ∗
m(ω))

k satisfies

(H ∗
m(ω))

k = mk+1k! ‖z‖2k(m−1)dV2k. (29)

Proof. Note first that (H ∗
m(ω))

k is a smooth (k, k)-form and hence a multiple r of
dV2k. Next observe that Hm is invariant under unitary transformations, so r must
be a function of ‖z‖2. SinceHm is homogeneous of degreem, each first derivative
is homogeneous of degree m − 1. The (1,1)-form H ∗

m(ω) must then have coeffi-
cients that are bihomogeneous of degree (m−1,m−1). The coefficient r of its kth
power must be homogeneous of degree 2k(m − 1). Combining the homogeneity
with the dependence on ‖z‖2 gives the desired expression, except for evaluating
the constant mk+1k!.

For this evaluation it suffices to compute the coefficient of |z1|2k(m−1). To do
so, we compute dHm and then work modulo z2 , . . . , zn. Thus, in the formula for
(H ∗

m(ω))
k we set all variables (except the first) equal to zero; this yields

H ∗
m(ω) = m2|z1|2m−2|dz1|2 +m|z1|2m−2

k∑
j=2

|dzj |2. (30)

From (30) it suffices to compute(
m2|dz1|2 +m

k∑
j=2

|dzj |2
)k
. (31)

Expanding (31) gives us
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k!mk+1dz1 ∧ dz̄1 ∧ · · · ∧ dzk ∧ dz̄k ,
and (29) follows by putting the factor |z1|(2m−2)k from (30) back in. We could also
prove this lemma using (27).

Putting these results together enables us to obtain the following result.

Theorem 1. Let f : Bk → BK be a proper holomorphic homogeneous polyno-
mial mapping of degree m. Then the 2k-dimensional parameterized volume Vf is
given by

Vf = mkπk 1

k!
. (32)

Proof. Consider the function ‖f ‖2. Since

‖f(z)‖2 = 1 = ‖z‖2m = ‖Hm(z)‖2

on the unit sphere and since f and Hm both are homogeneous, this equality holds
everywhere. Hence ‖f ‖2 = ‖Hm‖2, and these two functions have the same com-
plex Hessian determinant. By (27) they determine the same volume form:∑

I

|J(fI)|2 =
∑
I

|J((Hm)I)|2;

hence, by Lemma 3,

Vf =
∫
Bk

(H ∗
m(ω))

k

k!
=
∫
Bk

mk+1‖z‖2k(m−1) dV2k.

Using Lemma 2 now yields

Vf = mk+1 πk

k(m− 1)+ k
1

(k − 1)!
= mkπk

k!
.

As a check we observe, when m = 1, that Vf = πk

k! , which is the volume of Bk.
When k = 1 we obtain Vf = πm; this is also the correct result, since we have
covered the unit disk m times and hence obtain mπ for the area of the parameter-
ization.

We next describe how proper polynomial maps between balls can be expressed
using proper monomial maps between balls. Let {Eα} denote the standard or-
thonormal basis for CK and {eα} that for CN. Let L : CK → CN be linear; its
matrix with respect to the standard bases has entries Lαβ.

Now let f : Bn → BN be a proper polynomial mapping. We write

f(z) =
∑

cαz
α =

∑
β

∑
α

cαβeβz
α

for vectors cα ∈ CN. Define a monomial mapping p : Cn → CK by

p(z) =
∑

‖cα‖zαEα = (. . . , ‖cα‖zα, . . . )
and a linear mapping L : CK → CN by
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L(Eα) =
∑ cαβ

‖cα‖eβ.

Thus Lαβ = cαβ

‖cα‖ and so f = L � p. It is then not hard to show that p : Bn → BN
is proper. We obtain the following result from [D3].

Proposition 2. Let f : Bn → BN be a proper polynomial mapping. Then there
exist an integer K, a proper monomial mapping p : Bn → BK , and a linear map-
ping L such that f = L � p.
We provide an example for later use.

Example 1. Define f : B2 → B3 and p : B2 → B5 by

f(z,w) = 1√
2
(z− w, z2 + zw, zw + w2), (33a)

p(z,w) = 1√
2

(
z, −w, z2,

√
2zw,w2

)
. (33b)

Then f and p are proper and f = L � p, where L : C5 → C3 has the following
matrix representation (with respect to the usual bases):

 1 1 0 0 0
0 0 1

√
2/2 0

0 0 0
√

2/2 1


 . (34)

Next we determine the volumes of some specific polynomial proper mappings
from B2. We illustrate the computation in one case. Put f(z,w) = (z, zw,w2);
then f : B2 → B3 is proper. Using EG− |F |2 or (27) yields

f ∗(ω)2 = ((1 + |w|2)(4|w|2 + |z|2)− |zw|2)dV4

= (|z|2 + 4|w|2 + 4|w|4)dV4. (35)

Integrating (35) using (25) then gives

V =
∫
B2

f ∗(ω)2 =
∫
B2

(|z|2 + 4|w|2 + 4|w|4) dV4

= π2

(
1

3!
+ 4

3!
+ 4 · 2!

4!

)
= 7π2

6
.

Two proper holomorphic mappingsf and g fromBn toBN are spherically equiv-
alent if there are automorphisms φ and ψ of the domain and target balls such that
f = ψ � g �φ. Faran [Fa] proved there are precisely four distinct spherical equiv-
alence classes of proper rational mappings from B2 to B3. These four (monomial)
mappings appear in the next example, where we compare their parameterized vol-
umes; we also include a 1-parameter family of maps to B4 and a map to B5.

Example 2. Here are the 4-dimensional volumes of the image of B2 under var-
ious proper mappings to B3, B4, and B5.
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(z,w)→ (z,w, 0): V = π2

2
. (36)

(z,w)→ (z, zw,w2): V = 7π2

6
. (37)

(z,w)→ (
z2,

√
2zw,w2

)
: V = 2π2. (38)

(z,w)→ (
z3,

√
3zw,w3

)
: V = 63π2

20
. (39)

(z,w)→ (
tz,
√

1 − t 2z2,
√

2 − t 2zw,w2
)
: V = (t 4 − 6t 2 + 12)π2

6
. (40)

(z,w)→ 1√
2
(z− w, z2 + zw, zw + w2): V = 7π2

6
. (41)

(z,w)→ 1√
2

(
z, −w, z2,

√
2zw,w2

)
: V = 9π2

8
. (42)

The mappings in (37) and (41) are spherically equivalent. We include (41) in order
to follow up on Example 1. Notice that the volume in (41) exceeds that in (42),
even though (see Example 1) f = L � p holds. There is no simple way to ex-
press the relationship between the two answers in terms of L, because L is not
an equidimensional mapping. The Jacobian matrix of f has three rows and two
columns; the Jacobian matrix of p has five rows and two columns. We find the
volume form by taking the sum of squared absolute values of three minors for f
but of ten minors for p. Even though f = L � p, the various Jacobians involve
different submatrices of L.

IV. A Real-Variables Analogue

In this short section we pause to present an elegant version of Theorem 1 when the
mapping Hm is restricted to real variables and the domain is the unit disk. Let

hm(x, y) =
(
xm, . . . ,

√(
m

a

)
xaym−a, . . . , ym

)
(43)

denote the corresponding mapping. We provide a simple geometric argument for
finding the surface area of the hm(D), where D is the unit disk. One can also ob-
tain the result along the same lines used in Theorem 1.

We begin with the following geometric result.

Proposition 3. Let g : S1 → Sm define a continuously differentiable curve of
length l(g) in the sphere. Suppose f : D → Rm+1 is defined by f(re iθ ) = r mg(θ).
Then the surface area of f(D) equals 1

2 l(g).

Proof. Using the notation of classical differential geometry, the surface area V2 is
the iterated integral
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V2 =
∫ 2π

0

∫ 1

0

√
EG− F 2 dr dθ, (44)

where

E =
∥∥∥∥∂f∂r

∥∥∥∥
2

= m2r 2m−2‖g(θ)‖2 = m2r 2m−2, (45a)

G =
∥∥∥∥∂f∂θ

∥∥∥∥
2

= r 2m‖g ′(θ)‖2, (45b)

F =
〈
∂f

∂r
,
∂f

∂θ

〉
= mr 2m−1〈g, g ′ 〉 = 0. (45c)

In (45a) we have used that ‖g(θ)‖2 = 1; hence g ′ is orthogonal to g. We obtain

V2 =
∫ 2π

0

∫ 1

0
mr 2m−1‖g ′(θ)‖ dr dθ = 1

2

∫ 2π

0
‖g ′(θ)‖ dθ = 1

2
l(g).

Theorem 2. Let hm be given by (43). Then the ( parameterized ) surface area of
hm(D) is π

√
m.

Proof. We claim that it suffices to find the length of the curve gm, where

gm =
(
cm, . . . ,

√(
m

a

)
casm−a, . . . , sm

)

and where c and s stand for cosine and sine. The claim follows because g maps
to the sphere:

‖gm‖2 = (c2 + s2)m = 1

and because hm(x, y) = r mgm(θ). Hence Proposition 3 applies and so, assuming
that the length of gm is 2π

√
m, we obtain the result:

V2(hm(D)) = 1
2 l(g) = π√

m.

To find l(gm), we show that g has constant speed
√
m. Compute ‖g ′(θ)‖2 as

follows:

‖g ′(θ)‖2 =
m∑
a=0

(
m

a

)
(−aca−1sm−a+1 + (m− a)ca+1sm−a)2

=
m∑
a=0

(
m

a

)
c2(a−1)s2(m−a−1)(−as2 + (m− a)c2)2

=
m∑
a=0

(
m

a

)
c2(a−1)s2(m−a−1)(mc2 − a)2. (46)

Evaluating the sum in (46) is a standard kind of combinatorial problem. We shall
use the following identities on the three separate sums that arise from expanding
(mc2 − a)2:
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m∑
a=0

(
m

a

)
t a = (1 + t)m,

m∑
a=0

a

(
m

a

)
t a−1 = m(1 + t)m−1,

m∑
a=0

a2

(
m

a

)
t a−1 = m d

dt
t(1 + t)m−1.

Using also that c2 + s2 = 1, we obtain from (46) that ‖g ′(θ)‖2 = m and the
theorem follows.

Remark. In fact, all derivatives of g have constant norm.

V. The Effect of Tensor Products on Volume

This section provides the main result of this paper. We begin with a few lemmas.

Lemma 4. Suppose that h : Bn → C is holomorphic and square integrable, with
power series expansion h(z) = ∑

cαz
α. Then∫

Bn

|h(z)|2 dV =
∫
Bn

∑
α

|cα|2|z|2α dV = πn
∑
α

|cα|2 B(α + 1)

|α| + n . (47)

Proof. The first step follows because distinct monomials are orthogonal inL2. The
second step follows by plugging in (20) from Lemma 2.

Lemma 5. Let f : Cn → Cn be the monomial mapping f = (m1, . . . ,mn), and
let J(f ) denote the Jacobian determinant of f. Then

J(f ) =
∏
j mj∏
j zj

det(akl), (48)

where akl is the exponent of zl in mk.

Proof. Since each mj is a monomial, we easily see that

∂mj

∂zk
= ajk mj

zk
.

Multilinearity properties of the determinant (for rows and columns both) then
imply (48).

Lemma 6. Let f : Bn → Cn be a monomial mapping f = (m1, . . . ,mn). In the
notation of Lemma 5, the 2n-dimensional parameterized volume Vf is given by

Vf = πn|det(akl)|2
∏
k

(∑
j ajk − 1

)
!(∑

j

∑
k ajk

)
!
. (49)
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Proof. By definition, the volume Vf is the integral

Vf =
∫
Bn

|J(f )|2 dV.

Using Lemmas 4 and 5 now yields

Vf = |det(akl)|2
∫
Bn

∏
j

|zj |2(
∑
k akj−1) dV.

Using Lemma 2, we evaluate the integral to obtain the result.

Let f : Bn → Cn be a holomorphic mapping. Then

f(z) =
(∑

cα1z
α1, . . . ,

∑
cαnz

αn

)
,

where each αj is itself a multi-index. By multilinearity, the Jacobian J(f ) satisfies

J(f ) =
∑( n∏

j=1

cαj

)
J(zα1, . . . , zαn).

Combining the previous lemmas allows us to compute ‖J(f )‖2
L2 . First,

‖J(f )‖2
L2 =

∫
Bn

|J(f )|2 dV =
∫
Bn

∣∣∣∣∑
( n∏
j=1

cαj

)
J(zα1, . . . , zαn)

∣∣∣∣
2

dV.

Define new multi-indices m by mj = ∑
k αjk − 1. Then∫

Bn

|J(f )|2 dV =
∫
Bn

∣∣∣∣∑
m

Amz
m

∣∣∣∣
2

dV = πn
∑
m

|Am|2 B(m+ 1)

|m| + n , (50)

where Am = ∑(∏n
j=1 cαj

)
det(αkl) and the sum is restricted by the definition of

m. For later convenience we rewrite the mth term in (50) as

πn|Am|2 B(m+ 1)

|m| + n

= πn|Am|2
∏
j mj!

(|m| + n)!

=
∣∣∣∣∑

( n∏
j=1

cαj

)
det(αkl)

∣∣∣∣
2

πn(∑∑
αjk
)
!

n∏
j=1

((∑
k

αkj − 1

)
!

)
. (51)

Our aim is see the effect on (51) of replacing f by a tensor product. In order to
do so, we establish an inequality about determinants.

Proposition 4. Let L = (ajk) be an n×n matrix of real numbers. Suppose that
each column sum vj of L is nonnegative. LetDj = (δnj ) denote the matrix whose
entires are zero except that the entry in the j th column and nth row is unity. Let
Cj be the cofactor determinant (with sign included) obtained by deleting the j th
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column and nth row and taking the signed determinant. Then the following rela-
tions hold:

det(L) =
n∑
j=1

Cjvj ; (52)

n∑
j=1

det(L+Dj)2vj = det(L)2
(

2 +
∑
j

vj

)
+
∑
j

C2
j vj ; (53)

det(L)2
(

2 +
∑
j

vj

)
≤

n∑
j=1

det(L+Dj)2vj . (54)

Proof. The right-hand side of (52) includes the usual expansion of the determinant
in terms of cofactors plus additional terms. The additional terms occur in pairs
with opposite signs and hence cancel, so (52) holds. To prove (53), we first write

det(L+Dj)2 = (det(L)+ Cj)2 = det(L)2 + 2 det(L)Cj + C2
j . (55)

Now multiply both sides of (55) by vj and sum to obtain

n∑
j=1

det(L+Dj)2vj = det(L)2
n∑
j=1

vj + 2 det(L)
n∑
j=1

Cjvj +
n∑
j=1

C2
j vj . (56)

Using (52) in (56) yields (53), and dropping the nonnegative last term in (53)
yields (54).

We can now generalize Proposition 1; as in one dimension, the parameterized vol-
ume increases under tensor product. As in one dimension, there is generally no
pointwise inequality on the volume forms; the inequality requires integration. We
note one new issue in higher dimensions: Example 3 will show that the inequality
fails if we allow multiplication by only a single coordinate function. Example 4
and Theorem 4 indicate that we must tensor with something closely related to the
geometry of the boundary.

Theorem 3. Let f : Bn → CN be holomorphic, and suppose that the 2n-
dimensional parameterized volume Vf of the image f(Bn) is finite. Let g = Ef

be defined by
g = (f1, . . . , fN−1, z1fN , . . . , znfN).

Then Vg ≥ Vf . Equality occurs if and only if fN = 0.
More generally, letp = (p1, . . . ,pn) be an n-tuple of positive integers, let�(p)

be the egg domain
{
z :
∑n
j=1|zj |2pj < 1

}
, and let f : �(p)→ CN be a holomor-

phic mapping. Assume that the volume of the image of �(p) is finite. Define g =
Ef by

g = (f1, . . . , fN−1, z
p1
1 fN , . . . , zpnn fN).

Write V pg and V pf for the corresponding volumes of images of �(p). Then V pg ≥
V
p

f , and equality occurs if and only if fN = 0.
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Proof. We will write the details for the case of the ball, and at the end of the
proof we indicate how and why the proof easily generalizes. Assume first that �
is the ball. We use (51), applied to both f and g, and then Proposition 4. The
parameterized volume Vg is the sum of the integrals of all |J(gI)|2. We separate
the n-tuples gI into three types. Type I consists of those formed from n of the
functions f1, . . . , fN−1. The corresponding Jacobians occur also in the expression
for Vf and hence can be ignored when proving the inequality between Vf and Vg.
Type II consists of those n-tuples for which exactly n − 1 of the components are
chosen from among f1, . . . , fN−1, and type III consists of those n-tuples for which
at most n − 2 are chosen from among f1, . . . , fN−1. Those of type III contribute
positively to Vg but do not contribute to Vf and hence can be ignored. We will
therefore prove that∫

Bn

∑
|J(fI)|2 dV ≤

∫
Bn

∑
|J(gI)|2 dV, (57)

where the sums on both sides are taken over those n-tuples of type II.
To verify (57) it suffices to prove, for any choice of n components (note the re-

labeling) f = (f1, . . . , fn), the following inequality:∫
Bn

|J(f )|2 dV ≤
∫
Bn

n∑
ν=1

|J(f1, . . . , fn−1, zνfn)|2 dV. (58)

The left-hand side has been computed in (50). We compute the right-hand side in
the same fashion, obtaining a sum of n terms. As before, we define multi-indices
m by mj = ∑

k αjk − 1. The following sums in Am and Km(ν) are taken over all
n-tuples of multi-indices such that this definition holds. The mth term of the left-
hand side of (58) is

πn|Am|2
∏
j mj!

(|m| + n)! .

Computing ‖J(f1, . . . , fn−1, zνfn)‖2
L2 in the same way, we obtain

πn|Km(v)|2
(mν + 1)

∏
j mj!

(|m| + n+ 1)!

for the mth term, where

Km(ν) =
∑( n∏

j=1

cαj

)
det(αjk +Dv). (59)

Using the ideas of Proposition 4, we write

det(αjk +Dv) = det(αjk)+ C(α, ν);
here C(α, ν) is an appropriate cofactor determinant. Hence

Km(ν) = Am +
∑( n∏

j=1

cαj

)
C(α, ν). (60)
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We will show for each multi-index m that

πn|Am|2
∏
j mj!

(|m| + n)! ≤
∑
ν

πn|Km(v)|2
(mν + 1)

∏
j mj!

(|m| + n+ 1)!
. (61)

Summing (61) overm implies (58). After canceling common factors, (61) is equiv-
alent to

|Am|2(|m| + n+ 1) ≤
∑
ν

(mν + 1)|Km(v)|2. (62)

By (60), the right-hand side of (62) becomes∑
ν

(mν + 1)|Km(v)|2

= |Am|2
(∑

ν

(mν + 1)

)
+
∑
ν

(mν + 1)

∣∣∣∣∑
( n∏
j=1

cαj C(α, v)

)∣∣∣∣
2

+ 2 Re

(
Am

∑ n∏
j=1

cαj

∑
ν

C(α, v)(mν + 1)

)
. (63)

Recall that |m| + n = ∑
ν(mν + 1) by multi-index notation. Also, because

mν + 1 = ∑
ανj , (52) implies that

Am =
∑ n∏

j=1

cαj

∑
ν

C(α, v)(mν + 1).

Thus, the last term in (63) is 2|Am|2. We may drop the nonnegative middle term
in (63). The right-hand side of (63) is thus at least |Am|2(|m| + n + 2), and (62)
follows.

In other words, the determinantal inequality from Proposition 4 holds for each
m. Summing overm yields (61) and hence (58). Recalling that it suffices to prove
the inequality for type II terms, we have proved that Vf ≤ Vg.

If fN = 0, then Vf = Vg. If fN �= 0 (and n ≥ 2), then there is a Type III term
of the form |J(z1fN , . . . , znfN)|2; it is easy to see that such a Jacobian is not iden-
tically zero. Therefore, in this case Vf < Vg.

Suppose next that �(p) is an egg domain. The monomials remain a complete
orthogonal system for L2(�(p)), and a holomorphic mapping f has a power se-
ries expansion valid on all �(p). Thus the structure of the proof is identical. The
calculations are quite similar, except that the various factorials used in case of the
ball become values of Gamma functions at nonintegral values. By (21) we have

‖zα‖2
L2(�(p))

= πn∏
pj

B( α+1
p

)
[ α+1
p

] . (64)

In forming the tensor product we multiply zα by each zpνν . The effect is to alter
the multi-index α+1

p
appearing in (64) by adding1in the νth slot. Recalling (15), we

can then use the formula/(x+1) = x/(x) in both the numerator and denominator
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of the resulting terms, rather than using j! = j(j −1)! as in the proof for the ball.
After these modifications, the proof goes through as before.

The following consequence gives an extremal property of the homogeneous proper
mappings between balls, and it is one of the main results of this paper.

Corollary 2. Let p : Bk → BK be a proper polynomial mapping of degree d.
Then the parameterized volume Vp is at most d kπk 1

k! . Equality occurs only if p is
homogeneous.

Proof. We saw in Theorem 1 that Vp = VHd = d kπk 1
k! , so equality holds if p

is homogeneous. If p is not homogeneous, then we can repeatedly tensor p on
1-dimensional subspaces as in the proof of Theorem 0 from Section II until it is
homogeneous. By Theorem 3, each tensor operation increases the volume, so we
obtain Vp < VHd .

Example 3. The conclusion of Theorem 3 fails in general if we multiply a com-
ponent of f by only a single coordinate function. The simplest example is given
by f(z,w) = (zw,w). In this case ‖J(f )‖L2 > 0, whereas ‖J(g)‖L2 = 0 if
g(z,w) = (zw, zw).

Example 4. The conclusion of Theorem 3 for the ball fails in general if we ten-
sor with a mapping other than z = (z1, . . . , zn), even when the mapping defines a
0-dimensional variety. Let n = 2, and put f(z,w) = (z4,w). Suppose we ten-
sor by multiplying the second component by both z3 and w3, obtaining g(z,w) =
(z4, z3w,w4). Then the parameterized volume decreases:

Vf = 4π2

5
>

24π2

35
= Vg.

Similarly, on the egg �(p) one must tensor by (zp1
1 , . . . , zpnn ) in order for the con-

clusion to be valid.

We can express Theorem 3 in an operator-theoretic manner. For convenience we
work on the ball. Let H be a Hilbert space with norm ‖·‖; we think of the various
CN as subspaces of H. Let f : Bn → H be holomorphic, and suppose that the
range of f is finite dimensional. Such an f is square integrable if

∫
Bn

‖f ‖2 dV <

∞. Let Df denote the mapping listing all the (finitely many) J(fI). We say that
Df is square integrable if

∫
Bn

∑
I‖J(fI)‖2 dV < ∞. Equivalently, Df is square

integrable if the determinant of the complex Hessian of ‖f ‖2 is square integrable.
We can regard D as an unbounded operator on the space of square-integrable
holomorphic mappings from Bn to H. We also have the operator M given by
taking the tensor product on a 1-dimensional subspace. Theorem 3 states that
(DM)∗DM −D∗D is a nonnegative operator on its domain.

VI. The Effect of Juxtaposition on Volume

Let f : Bk → BN1 and g : Bk → BN2 be proper holomorphic mappings. Suppose
that we know the 2k-dimensional volumes Vf and Vg of the parameterized images
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of Bk under f and g. The next result tells us how to find the 2k-dimensional vol-
ume of the parameterized image of the juxtaposition Jt(f , g). For simplicity we
write down the answer only when k = 1 and k = 2.

Example 5. Suppose that f : B1 → BN1 and g : B1 → BN2 are proper map-
pings, and let Jt = Jt(f , g) denote their juxtaposition. Then

AJt = t 2Af + (1 − t 2)Ag.
This equality follows immediately once we observe that

J ∗
t (ω) = i

2
(t 2df ∧ df + (1 − t 2)dg ∧ dg) = t 2f ∗(ω)+ (1 − t 2)g∗(ω).

The result in general is more complicated because we must compute the kth exte-
rior power of the (1,1)-form J ∗

t (ω). Here is the result when k = 2; see Example 6
for an application.

Proposition 5. Let f : B2 → BN1 and g : B2 → BN2 be proper holomorphic
mappings, and let Jt = Jt(f , g) denote their juxtaposition. Then

VJt = t 4Vf + (1 − t 2)2Vg + t 2(1 − t 2)
∫ ∥∥∥∥∂f∂z ⊗ ∂g

∂w
− ∂f

∂w
⊗ ∂g

∂z

∥∥∥∥
2

dV. (65)

Proof. We compute J ∗
t (ω) and then J ∗

t (ω)
2. Let

E = t 2
∥∥∥∥∂f∂z

∥∥∥∥
2

+ (1 − t 2)
∥∥∥∥∂g∂z

∥∥∥∥
2

, (66a)

G = t 2
∥∥∥∥ ∂f∂w

∥∥∥∥
2

+ (1 − t 2)
∥∥∥∥ ∂g∂w

∥∥∥∥
2

, (66b)

F = t 2
〈
∂f

∂z
,
∂f

∂w

〉
+ (1 − t 2)

〈
∂g

∂z
,
∂g

∂w

〉
. (66c)

The coefficient of the volume form is the determinant EG − |F |2. We com-
pute it to obtain the first two terms in (65) plus various other terms. We then have
two products of squared norms as well as the inner products

〈 ∂f
∂z

, ∂f
∂w

〉
and

〈 ∂g
∂z

, ∂g
∂w

〉
.

Using the result that

‖u1 ⊗ v2 − u2 ⊗ v1‖2 = ‖u1‖2‖v2‖2 + ‖u2‖2‖v1‖2 − 2 Re〈u1, u2〉〈v1, v2〉, (67)

we obtain the expression claimed.

Corollary 3. Under the assumptions of Proposition 5, we have

VJt ≥ t 4Vf + (1 − t 2)2Vg ≥ VfVg

Vg + Vf . (68)

Proof. The first inequality in (68) follows from dropping the nonnegative integral
in (65). The second inequality follows because the middle term is at least as large
as its minimum for 0 ≤ t ≤ 1. The minimum value is the term on the far right
in (68).
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We conclude this section by finding volumes of the parameterized images for an
interesting 1-parameter family of maps from B2 to B5. The resulting formula is
rather complicated because of the third term in (65).

Example 6. Define pt : B2 → B5 by

pt(z,w) = (
z3,w3,

√
3
√

1 − t 2z2w,
√

3
√

1 − t 2zw2, t
√

3zw
)
. (69)

For each t ∈ [0,1], pt is a proper mapping; it defines (via the juxtaposition idea) a
homotopy betweenH3 and the mapping (39). Either directly or by using Proposi-
tion 5 (each involves considerable computation), we conclude that the coefficient
EG− |F |2 of dV4 is given by

EG− |F |2
= 27(1 − t 2)(|z|8 + 4|z|6|w|2 + 4|z|2|w|6)+ 81(1 + (1 − t 2)2)|z|4|w|4

+ 27t 2(|z|6 + |w|6)+ 9t 2(1 − t 2)(|z|4|w|2 + |z|2|w|4). (70)

The corresponding volume is

π2 90 − 12t 2 − 15t 4

20
. (71)

Evaluating (71) at t = 0 gives 9π2/2, in agreement with Theorem 1 when m = 3,
and evaluating (71) at t = 1 gives 63π2/20, in agreement with (39).

VII. A General Monotonicity Result

Let P : Cn → CM be a holomorphic mapping, and let r(z, z̄) = ‖P(z)‖2. We
assume that the level set r = 1 is compact. Note that r is plurisubharmonic and
hence ∂∂̄r

−2i is a nonnegative (1,1)-form. The domain � = {z : r(z, z̄) < 1} is a
bounded pseudoconvex domain.

Let f : � → CN be a holomorphic mapping and assume that f extends to be
continuously differentiable on b�. For convenience we define the tensor prod-
uct operation on the first component of f (rather than on the last component as
before):

EPf = g = (p1f1, . . . ,pMf1, f2 , . . . , fN). (72)

Let Vf and VEPf denote the 2n-dimensional volumes of the images of � under
f and EPf. We have the following monotonicity result.

Theorem 4. Let � be the bounded pseudoconvex domain defined by ‖P ‖2 < 1,
with P as just described. Let f : � → CN be a holomorphic mapping and as-
sume that f is continuously differentiable on b�. Then

VEPf ≥ Vf .
Proof. As in the proof of Theorem 3, we can write

VEPf =
∑∫

�

|J(gI)|2 dV, (73)
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where the multi-indices I are of three types. Those terms with multi-indices of
type I occur also in the formula for Vf and will be ignored; those of type III occur
only in the formula for VEPf and can also be ignored. Terms of type II are all of
the form ∫

�

|J(pvf1, fi2 , . . . , fin)|2 dV.
Hence, to prove the theorem it suffices to show that∑

ν

∫
�

|J(pvf1, fi2 , . . . , fin)|2 dV ≥
∫
�

|J(f1, fi2 , . . . , fin)|2 dV (74)

for all multi-indices I ′ = (i2 , . . . , in). For convenience we write I ′ = (2, . . . , n),
and in proving (74) we now assume that f = (f1, . . . , fn). Let η denote the non-
negative (n− 1, n− 1)-form given by

1

(−2i)n−1
df2 ∧ df2 ∧ · · · ∧ dfn ∧dfn. (75)

Since f is continuously differentiable on b�, we may apply Stokes’s theorem and
so obtain

Vf =
∫
�

|J(f1, . . . , fn)|2 dV =
∫
b�

f1

−2i
∧ df1 ∧ η. (76)

We replace f1 by Pνf1 in (76) and use the product rule, which yields∫
�

|J(Pνf1, f2 , . . . , fn)|2 dV =
∫
b�

|Pν |2 f1

−2i
df1∧η+

∫
b�

|f1|2 Pν−2i
dPν∧η. (77)

We sum (77) over µ to find VEPf . Note that r = ∑|Pν |2 = 1 on b� and that

∂̄r =
∑
ν

Pν dPν. (78)

Putting these together and using (76), we obtain

VEPf = Vf +
∫
b�

|f1|2
−2i

∂̄r ∧ η. (79)

Since r is plurisubharmonic and the (n−1, n−1)-form η is nonnegative, it fol-
lows that ∂̄r

−2i ∧ η is a nonnegative multiple of the surface area form. The surface
integral in (80) is therefore nonnegative. Theorem 4 follows.
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