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1. Introduction

Let φ denote the Euler function, which, for an integer n ≥ 1, is defined as usual by

φ(n) = #(Z/nZ)× =
∏
pν‖n

pν−1(p − 1).

The Carmichael function λ is defined for each integer n ≥ 1 as the largest order of
any element in the multiplicative group (Z/nZ)×. More explicitly, for any prime
power pν we have:

λ(pν) =
{
pν−1(p − 1) if p ≥ 3 or ν ≤ 2,

2ν−2 if p = 2 and ν ≥ 3;
and, for an arbitrary integer n ≥ 2,

λ(n) = lcm[λ(pν1
1 ), . . . , λ(p

νk
k )],

where n = pν1
1 · · ·pνkk is the prime factorization of n. Note that λ(1) = 1.

For a positive integer n, let �(n), ω(n), τ(n), and σ(n) denote (respectively)
the number of prime divisors of n with and without repetitions, the total number
of divisors of n, and their sum. Let f be any one of the functions �, ω, τ, φ, or
σ. It is well known that, if t is any positive integer and a is any permutation of
{1, . . . , t}, then there exist infinitely many positive integers n such that all inequal-
ities f(n+ a(i)) > f(n+ a(i + 1)) hold for i = 1, . . . , t − 1. In fact, in [3] it is
shown that, if a, b are any two permutations of {1, . . . , t}, then there exist infinitely
many positive integers n such that all inequalities ω(n+ a(i)) > ω(n+ a(i+1))
and τ(n+ b(i)) > τ(n+ b(i + 1)) hold for i = 1, . . . , t − 1.

In this note, we prove some effective versions of this result from [3] with the
pair of functions {ω, τ } replaced by the pair {λ,φ}.

We use the Vinogradov symbols �, 
, and � as well as the Landau symbolsO
and owith their usual meaning. We use the letters p and q for prime numbers. For
a positive real number x we write log1 x = max{1, log x}, where log is the natu-
ral logarithm, and for a positive integer k ≥ 2 we define logk x = log1(logk−1 x).

When k = 1, we omit the subscript and thus understand that all the logarithms
that will appear are ≥ 1. We write π(x) for the number of primes p ≤ x and
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write π(x; a, b) for the number of primes p ≤ x in the arithmetical progression a
(mod b).

We derive two results as follows.

Theorem 1.1. Let t be a positive integer and let a be any permutation of the in-
tegers {1, 2, . . . , t}. Then there exist infinitely many positive integers n such that
the inequality λ(n + a(i)) > λ(n + a(i + 1)) holds for all i = 1, . . . , t − 1.
Furthermore, if n := n(t) denotes the minimal value of n such that the preceding
inequality holds, then the estimate t � log2 n(t) holds as t tends to infinity.

Theorem 1.2. Let t be a positive integer and let a and b be any permutations of
the integers {1, 2, . . . , t}. Then there exist infinitely many positive integers n such
that both the inequalities λ(n + a(i)) > λ(n + a(i + 1)) and φ(n + b(i)) >

φ(n + b(i + 1)) hold for all i = 1, . . . , t − 1. Furthermore, if n := n(t) denotes
the minimal value of n such that the preceding inequalities hold, then the estimate
t � √

(log3 n(t))/(log5 n(t)) holds as t tends to infinity.
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2. Preliminary Results

In this section, we prove some lower bounds on the value of the Carmichael λ-
function of n when n runs in some arithmetic progression with the first term co-
prime to the difference. Our estimates are uniform as long as the difference of
the progression does not exceed n1/20, and as such our bounds might be of some
independent interest.

We will use the following well-known facts.

Lemma 2.1. (i) The estimate∑
p>y

1

p2
= O

(
1

y log y

)

holds as y tends to infinity.
(ii) The estimate ∑

p≡A (modB)
p≤x

1

p
= O

(
log2 x

φ(B)

)

holds uniformly when 1 ≤ A ≤ B ≤ x and A and B are coprime.
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Proof. The first estimate follows immediately from the Prime Number Theorem by
partial summation. The second estimate follows easily from the Brun–Titchmarsh
theorem after some simple calculations (see also the bound (3.1) in [2] or Lemma 1
in [1]).

Lemma 2.2. Let α > e be any constant, and put β = α log(α/e). Then the
estimate ∑

ω(m)≥�α log2 x�
m<x

1

m

 x

(log x)β

holds as x tends to infinity.

Proof. This follows easily by partial summation from Theorem 4 in Section III.6
of [7] (see also [6, Sec. 2] for an elementary approach).

The following is a well-known result due to Montgomery and Vaughan [5].

Lemma 2.3. Let x be a large positive real number. Assume that A and B are
coprime positive integers with B < x. Then

π(x;A,B) ≤ 2x

φ(B) log(x/B)
.

We now start our analysis by noting that λ(n) = φ(n)/S(n), where

S(n) =
∏
p|φ(n)

pβp(n)

with βp(n) given by

βp(n) =
∑′

qγ ‖n
pα‖φ(qγ )

α;

by
∑ ′ we mean that the maximal term of the sum is not considered.

We now write S(n) as S(n) = S1(n) · S2(n), where

S1(n) =
∏

pa‖S(n)
p>(log2 n)

3

pa and S2(n) =
∏

pb‖S(n)
p≤(log2 n)

3

pb.

Of course, an empty product is taken to be 1. We are now ready to prove the fol-
lowing lemma.

Lemma 2.4. Let x be a large positive real number. Assume that A and B are
coprime positive integers with B < x1/20. Then

#{n < x : n ≡ A (mod B) and S1(n) > 1} 
 x

B log2 x
.

Proof. Let AA,B(x) be the set in question. To simplify notation, we omit refer-
ence to the pair (A,B) and write the set simply as A(x).
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We put A1(x) = {n ∈ A(x) : p2|n for some prime p > x1/3} ∪ {n < x1/2}.
We bound the cardinality of A1(x). Let p > x1/3 be some fixed prime. Then the
number of positive integers n < x such that p2|n is ≤ x/p2 (note that the prime
p must satisfy p < x1/2). Therefore,

#A1(x) ≤ x1/2 +
∑
p>x1/3

x

p2

 x 2/3

log x
= o

(
x

B log2 x

)
. (1)

Thus, from now on we work only with the positive integers n∈ A(x)\A1(x).

Let n ∈ (x1/2, x) be such that S1(n) > 1. Since n > x1/2, it follows that
log2 n > (log2 x)/21/3 holds for large values of x. We may then replace S1(n) by
the (possibly larger) number

S1(n, x) =
∏

pa‖S(n)
p>(log2 x)

3/2

pa,

and this is still > 1. From now on, we look at such positive integers n.
If pa|S1(n, x), we then distinguish two possibilities:

(i) p2|n and there exists a prime q|n such that p|q − 1;
(ii) there exist two distinct prime factors q1 and q2 of n such that p|qi − 1 for

i = 1, 2.

We consider these two possibilities separately.
Let A2(x) be the subset of A(x)\A1(x) consisting of those positive integers n

such that there exist a prime p > (log2 x)
3/2 with p2|n and another prime fac-

tor q of n such that q ≡ 1 (modp). Since n ≡ A (mod B) and gcd(A,B) = 1,
we must also have gcd(p,B) = 1. Hence, by the Chinese Remainder Theorem, it
follows that n ≡ C (mod Bp2) with some positive integer C that depends on A,
B, and p. We now fix the prime number p. The number of such positive integers
n < x is at most x/Bp2 + 1 ≤ 2x/Bp2 if x is large enough, where we have used
that B < x1/20 and p ≤ x1/3. Hence,

#A2(x) ≤
∑

p>(log2 x)3/2

x

Bp2
= o

(
x

B(log2 x)3

)
. (2)

Next we let A3(x) be the subset of A(x)\A1(x) consisting of those positive in-
tegers n such that there exist a primep > (log2 x)

3/2 and two prime factors q1 and
q2 of n such that qi ≡ 1 (modp) for i = 1, 2. We then have that n ≡ A (mod B)
and n ≡ 0 (mod q1q2). Since gcd(A,B) = 1, it follows that gcd(q1q2 ,B) = 1.
According to the Chinese Remainder Theorem, these two congruences are equiva-
lent to a congruence of the form n ≡ C (mod Bq1q2)with some positive integerC.
The number of positive integers n < x satisfying this last congruence certainly
cannot exceed x/Bq1q2 + 1.

We now distinguish two cases.

Case 1: Bq1q2 ≤ x. We write A3,1(x) for the subset of A3(x) consisting of
those positive integers n that satisfy the hypothesis of Case 1 for some triple of
primes p, q1, and q2.
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In this case, the number of such positive integers n< x that are≡ C (modBq1q2)

is ≤ 2x/Bq1q2. Hence, the number of such positive integers does not exceed

#A3,1(x)

∑

p>(log2 x)3/2

∑
q1≡1 (modp)

q1<x

∑
q2≡1 (modp)
q2<x/Bq1

x

Bq1q2


 x

B

∑
p>(log2 x)3/2

∑
q1≡1 (modp)

q1<x

log2 x

q1p


 x(log2 x)
2

B

∑
p>(log2 x)3/2

1

p2

= o
(

x

B log2 x

)
. (3)

Case 2: Bq1q2 > x. In this case, we write n both as n = m1B +A and as n =
m2q1q2. We are looking for the number of solutions n < x to the equation

n = m1B + A = m2q1q2. (4)

Suppose q1 < q2. We fix m2 and q1. Observe that gcd(m2q1,B) = 1 because
gcd(m2q1,B) divides both A and B, which are coprime by hypothesis. We also
fix the prime number p. We first assume that p� |B, and we write A3,2(x) for the
set of such positive integers n.

Let (m2q1)
−1 stand for the multiplicative inverse of m2q1 modulo B. We then

have that q2 ≡ A(m2q1)
−1 (mod B) and also that q2 ≡ 1 (modp). So, according

to the Chinese Remainder Theorem, we must have q2 ≡ C (modpB) with some
positive integer C that is determined in terms of A, B, m2 , q1, and p. Since we
also know that q2 < x/m2q1, by Lemma 2.3 it follows that the number of such
primes q2 does not exceed

2x

m2q1φ(Bp) log(x/(Bpm2q1))
.

Because q1 < q2 , q1q2 divides n, and n < x, we immediately obtain q1 < x
1/2.

Since n = m2q1q2 < x and Bq1q2 > x, we get m2 < B < x
1/20. Finally, since

p < x1/3 (because n /∈ A1(x)), we have

Bpm2q1 < x
1/20+1/3+1/20+1/2 = x14/15;

therefore,

log(x/(Bpm2q1))� log x.

As a result, the number of primes q2 is 
 x/(m2q1pφ(B) log x). It now follows
that the total number of positive integers n in A3,2(x) does not exceed
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#A3,2(x)

∑

p>(log2 x)
3/2

∑
q1≡1 (modp)

q1<x

∑
m2<B

x

m2q1φ(B)p log x


 x logB

φ(B) log x

∑
p>(log2 x)

3/2

∑
q1≡1 (modp)

q1<x

1

q1p


 x log2 x

φ(B)

∑
p>(log2 x)

3/2

1

p2

= o
(

x

φ(B)(log2 x)2

)
= o

(
x

B log2 x

)
. (5)

In these inequalities we used both that logB < log x and thatφ(B)� B/log2 B �
B/log2 x.

We finally look at the possibility when p|B. We write A3,3(x) for the subset
of A3(x) formed by these last numbers n. Fixing m2 , p, and q1, we find that the
number of possible primes q2 ≤ x/m2q1 is (again by Lemma 2.3) at most

O

(
x

q1m2φ(B) log(x/(Bq1m2))

)
= O

(
x log2 x

q1Bm2 log x

)
, (6)

provided that m2 ≡ A (modp) and that there is no such prime otherwise. Sum-
ming up inequalities (6) over all possible values of m2 < x such that m2 ≡ A

(modp), and then over all primes q1 < x such that q1 ≡ 1 (modp), we get that
the number of such possibilities is


 x log2 x

B log x

∑
m2≡A (modp)

m2<x

∑
q1≡1 (modp)

q1<x

1

m2q1

 x(log2 x)

2

Bp2
.

Summing up the last of these bounds over all those prime factors p > (log2 x)
3/2

of B, we find that the number of such numbers n < x is

#A3,3(x)
 x(log2 x)
2

B

∑
p>(log2 x)

3/2
p|B

1

p2
≤ x(log2 x)

2

B

∑
p>(log2 x)3/2

1

p2

= o
(

x

B log2 x

)
. (7)

From inequalities (3), (5), and (7) it follows that

#A3(x) ≤ #A3,1(x)+ #A3,2(x)+ #A3,3(x)
 x

B log2 x
,

which together with estimates (1) and (2) completes the proof of Lemma 2.4.

We will also need the following result, which gives us information about the be-
havior of the function S2(n) when n runs in arithmetical progressions with the
first term coprime to the difference (which is again uniform in the difference of
the progression).
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Lemma 2.5. Let again x,A,B be as in the statement of Lemma 2.4. Assume fur-
ther that B is cubefree. Let

B(x) =
{
n < x : n ≡ A (mod B) and S2(n) > exp

(
(log2 x)

5

2

)}
.

Then

#B(x)
 x

B log2 x
.

Proof. If S2(n) > 1, it follows that we may replace S2(n) by the (presumably
larger) number

S2(n, x) =
∏

pb‖S(n)
p≤(log2 x)

3

pb

and look at the set of positive integers n such that S2(n, x) > exp((log2 x)
5/2).

We now write B1(x) for the subset of B(x) consisting of those positive integers
n such that ω(n) < 10 log2 x. Since the only prime factors of S2(n) are smaller
than (log2 x)

3, we trivially have that ω(S2(n)) < (log2 x)
3. Thus, in order to de-

duce Lemma 2.5 at least for those n∈ B1(x), it suffices to prove that the inequality

#

{
n < x : n ≡ A (mod B), ω(n) < 10 log2 x,

and max{pα : pα‖S2(n)} > exp

(
(log2 x)

2

2

)}

 x

B log2 x
(8)

holds. But all our primes p under scrutiny are < (log2 x)
3 and so, if we put y =

y(x) = (log2 x)
2/(6 log3 x), it then suffices to show that the inequality

#{n < x : n ≡ A (mod B), ω(n) < 10 log2 x,

and pα‖S2(n) for some prime p and α > y} 
 x

B log2 x
(9)

holds.
We write B2(x) for the set appearing in the left-hand side of inequality (9).

Let n ∈ B2(x). Since ω(n) < 10 log2 x, there exists a prime q such that qa‖n as
well as a prime p and an integer b such that pb|φ(qa), where b ≥ z = z(x) =
�(log2 x)/(60 log3 x)�.

From here on, we distinguish several cases. Let B3(x) be the subset of B2(x)

for which p �= q. We then have that pz|(q − 1). We also have that (q,B) = 1 be-
cause q|n, n ≡ A (mod B), and A and B are coprime. The Chinese Remainder
Theorem now implies that n ≡ C (mod Bq) holds with some positive integer C
depending on A, B, and q. The number of such positive integers n < x is at most
x/Bq + 1. We write B3,1(x) for the subset of B3(x) such that Bq ≤ x and write
B3,2(x) for the complement of B3,1(x) in B3(x).

We find an upper bound on #B3,1(x). Since for such n we have Bq ≤ x, it fol-
lows that x/Bq + 1 ≤ 2x/Bq. We allow p, q to vary and conclude that
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#B3,1(x)

∑

p<(log2 x)3

∑
q≡1 (modpz)

q<x

x

Bq


 x log2 x

B

∑
p<(log2 x)3

1

pz


 x log2 x

B2z−1
= o

(
x

B log2 x

)
. (10)

We now find an upper bound on #B3,2(x). Let B and q be such that Bq > x.
Since B is cubefree by hypothesis, we have that gcd(B,pz)|p2. In this situation,
we write n = m1B+A = m2q < x. Fixingm2 , we see that q is in a certain arith-
metical progression modulo B. Since q ≡ 1 (modpz), the Chinese Remainder
Theorem tells us that q ≡ C (mod Bpz−2), where C is some positive integer de-
pending on A, B, m2 , p, and z. Note that B < x1/20 and pz < exp(O(log2 x)) =
xo(1); therefore, Bpz−2 < x1/3 if x is sufficiently large. By applying Lemma 2.3
once again, we obtain that the number of eligible primes q is

≤ 2x

m2φ(B)pz−3(p − 1) log(x/Bpz−2m2)

 x log2 x

m2Bpz−2 log x
. (11)

Here we have used the fact that m2 < B < x
1/20 to conclude that Bpz−2m2 <

x1/2 and hence that log(x/Bpz−2m2)� log x if x is sufficiently large.
Summing up inequality (11) over all the possible values ofm2 < x

1/20 and p <
(log2 x)

3, the result is

#B3,2(x)
 x log2 x

B log x

∑
m2<x1/20

∑
p<(log2 x)3

1

m2pz−2

 x log2 x

B2z−3

= o
(

x

B log2 x

)
. (12)

From (10) and (12) we may then deduce

#B3(x) ≤ #B3,1(x)+ #B3,2(x)
 x

B log2 x
. (13)

We now look at the set B4(x), which is the subset of B2(x) consisting of those
positive integers n for which p = q. In this case, pz|n and it is clear that p and
B are coprime. It is also clear that pzB < x when x is sufficiently large (because
B < x1/20 and pz = xo(1)), so by the Chinese Remainder Theorem we must again
have n ≡ C (mod Bpz) for some positive integer C depending on A, B, p, and z.
The number of positive integers n < x satisfying this congruence is smaller than
2x/Bpz. Summing this inequality over all possible values for p yields

#B4(x)

∑

p<(log2 x)3

x

Bpz

 x

B2z−1
= o

(
x

B log2 x

)
. (14)

From inequalities (13) and (14) we obtain
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#B2(x) ≤ #B3,1(x)+ #B3,2(x)+ #B4(x)
 x

B log2 x
,

which proves inequality (9) and thus inequality (8) as well.
We now let

B5(x) = {n < x : n ≡ A (mod B) and ω(n) > 10 log2 x}.
To complete the proof of Lemma 2.5, it suffices to show that

#B5(x)
 x

B log2 x
. (15)

Put λ = λ(x) = �5 log2 x� − 1.
Each integer n in B5(x) can be written as u · v, with

u =
λ∏
i=1

pi(n) and v = n

u
;

here pi(n) stands for the ith distinct prime factor of n when arranged in increas-
ing order. Since n satisfies both n < x and ω(n) > 10 log2 x, we have ω(u) ≤
ω(n)/2 and therefore u < x1/2. Since u|n, it follows that u and B are coprime. If
we fix u then n ≡ C (mod uB) for some positive integer C depending on A, B,
and u. The number of such n < x is clearly at most x/Bu + 1 ≤ 2x/Bu, since
Bu < x1/20+1/2 < x. It now follows that

#B5(x) ≤
∑
u<x1/2

ω(u)=λ

x

Bu
. (16)

Since

λ = �5 log2 x� − 1 = �5 log2(x
1/2)+ 5 log 2� − 1> 5 log2(x

1/2)

(because 5 log 2 > 3), Lemma 2.2 with α = 5 and β = 5 log(5/e) > 1 gives us
immediately that ∑

m<x1/2

ω(u)=λ

x

Bu
= O

(
x

B(log x)β

)
= o

(
x

B log2 x

)
,

which together with estimate (16) implies estimate (15) and so completes the proof
of Lemma 2.5.

Lemma 2.6. Let x be a large positive real number and let A and B be coprime
positive integers such that B < x1/20 and B is cubefree. Then there exists an x0

such that the estimate

#

{
n < x : n ≡ A (mod B) and λ(n) <

n

exp(2(log2 x)5/3)

}

 x

B log2 x

holds for all x > x0.

Proof. Lemma 2.6 follows immediately from Lemma 2.4, Lemma 2.5, and the
fact that the estimate
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φ(n)� n

log2 n
� n

log2 x

holds for all positive integers n < x; hence, the estimate

φ(n) >
n

exp((log2 x)5/6)

holds for all positive integers n < x and all x > x0.

3. Proofs of the Main Results

We are now ready to tackle the proofs of Theorems 1 and 2.

Proof of Theorem 1.1

We begin with the following result due to Heath-Brown [4].

Lemma 3.1. There exists a positive constant B0 such that, if B > B0 is an inte-
ger and A is coprime to B, then there exists a prime P < B 6 in the arithmetical
progression A (mod B).

For the purpose of the proof of Theorem 1.1, we let M1 < M2 < · · · < Mt be
t distinct integers with M1 > t and let Pi,j be distinct primes that are less than
M 36
i for j = 1, 2 such that Pi,j ≡ 1 (modMi) for all i = 1, . . . , t. The existence

of such numbers Pi,j is guaranteed by twice applying Lemma 3.1 to each Mi for
i = 1, . . . , t. Further, we will also see that the numbers Mi can be chosen to be
primes and that the inequality Mi+1 > M

36
i holds for all i ∈ {1, . . . , t − 1}. Thus,

the primes Pi,j are all distinct for i = 1, . . . , t and j = 1, 2.
We now set B as

B =
∏
i≤t
(Pi,1Pi,2)

2.

Let x be a large positive real number (to be determined later) that depends on t
and consider those positive integers n < x such that

n ≡ −a(i)+ Pi,1Pi,2 (mod(Pi,1Pi,2)
2) for all i = 1, . . . , t.

The Chinese Remainder Theorem allows us to conclude that these congruences
are equivalent to n ≡ A (mod B) for some positive integer A coprime to B, be-
cause Pi,j > t and a(i) ≤ t for all i = 1, . . . , t and j = 1, 2. For such a positive
integer n, we write n + a(i) = miPi,1Pi,2 , where mi and Pi,1Pi,2 are coprime.
Then we have

λ(n+ a(i)) = λ(mi)(Pi,1 − 1)(Pi,2 − 1)

gcd(λ(mi), (Pi,1 − 1)(Pi,2 − 1)) gcd((Pi,1 − 1), (Pi,2 − 1))
. (17)

For the time being, we suppose that

λ(mi) ≥ mi

exp(2(log2 x)5/3)
for all i = 1, . . . , t. (18)
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Therefore,

λ(n+ a(i)) ≥ λ(mi)

Pi,1 − 1
>

mi

Pi,1 exp(2(log2 x)5/3)
= n+ a(i)
P 2
i,1Pi,2 exp(2(log2 x)5/3)

.

We then obtain

n+ a(i)
P 2
i,1Pi,2 exp(2(log2 x)5/3)

< λ(n+ a(i)) < n+ a(i)
Mi

. (19)

We want to make sure that the inequality λ(n+ a(i)) > λ(n+ a(i +1)) holds.
According to (19), this inequality will certainly hold provided that

P 2
i,1Pi,2 exp

(
2(log2 x)

5

3

)
< Mi+1

(
n+ a(i)

n+ a(i + 1)

)
. (20)

We will choose n such that n > A; hence, n > B > t t. It is then clear that the
inequality

n+ a(i)
n+ a(i + 1)

≥ n

n+ t >
1

2
> exp

(
− (log x)5

3

)

holds once t (and hence x) is sufficiently large. Thus, inequality (20) will certainly
be satisfied if

P 2
i,1Pi,2 exp((log2 x)

5) ≤ Mi+1,

when x is sufficiently large. Since P 2
i,1Pi,2 < (M

36
i )

3 = M108
i , it suffices that the

inequality

108 logMi + (log2 x)
5 ≤ logMi+1 holds for i = 1, . . . , t − 1.

Since the interval (y, 2y) contains a prime number for all y > 1, it follows that we
may further assume thatMi is prime for all i = 1, . . . , t and that

logMi+1 ≤ 108 logMi + (log2 x)
5 + log 2

holds for all i = 1, . . . , t − 1, where logM1 ≤ log(2t). By induction on i, one
shows that the inequality

logMi ≤ 108i−1(log(2t)+ (log2 x)
5 + log 2)

holds for all i = 1, . . . , t; therefore,

logB = 2
t∑
i=1

2∑
j=1

logPi,j ≤ 4 · 36
t∑
i=1

logMi

≤ 144

(
108t − 1

107

)
(log(2t)+ (log2 x)

5 + log 2). (21)

We will apply Lemma 2.6 and so will need the inequality B < x1/20 to hold.
Since 144/107 < 2, by (21) it suffices that the inequality

2 · 108t(log(2t)+ (log2 x)
5 + log 2) <

log x

20
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holds. Since e5 > 108, it follows easily that this last inequality is satisfied pro-
vided that we choose

t ≤ 1
5 log2 x, (22)

and that x is large.
Finally, we must show that we can choose n ≡ A (mod B) such that all inequal-

ities (18) hold. In order to do so, we shall apply Lemma 2.6. Let n be such that,
for some i = 1, . . . , t,

λ(mi) <
mi

exp(2(log2 x)5/3)
. (23)

Note that mi < xi = x/Pi,1Pi,2 and that mi ≡ Ai (mod Bi) with

Bi = B

Pi,1Pi,2
< x

1/20
i ,

where the above inequality holds because it is implied by the inequalityB < x1/20.

Here, Ai is some positive integer coprime to Bi that depends on A, B, Pi,1, and
Pi,2. Note also that B is cubefree (and hence Bi is cubefree as well). Inequality
(23) shows that

λ(mi) <
mi

exp(2(log2 xi)5/3)
,

and now Lemma 2.6 guarantees that the number of such positive integers is


 xi

Bi log2 xi

 x

B log2 x
. (24)

Let γ be the absolute constant implied by (24). It follows that the cardinal-
ity of the set of positive integers n < x in the arithmetical progression n ≡ A

(mod B) such that one of the inequalities (18) fails for some i = 1, . . . , t is at most
≤ γ tx/(B log2 x). Putting κ = min{γ/2,1/5} (see (22)) and choosing

t = �κ log2 x�, (25)

we see that the number of such positive integers is ≤ x/(2B). Since there are at
least x/B − 2 such positive integers, it follows that there exist at least x/(2B)− 2
positive integers n ≡ A (mod B) that satisfy all the inequalities asserted at (18).
Theorem 1.1 is therefore completely proved.

Proof of Theorem 1.2

The method is somewhat similar to the proof of Theorem 1.1, although a bit more
complicated.

We let x be a large positive real number and put t = t(x) for some integer to be
determined later. Let y0 = y0(x) = t. For i = 1, . . . , t, let yi = yi(x) be defined
inductively as the smallest positive integer such that the inequality∏

yi−1<p<yi

(
1 − 1

p

)
< (5 log t)−i (26)

holds. It is clear that, if t is large, then
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∏
yi−1<p<yi

(
1 − 1

p

)
>

1

2(5 log t)i
>

1

10(log t)

∏
yi−2<p<yi−1

(
1 − 1

p

)
(27)

for all i = 2, . . . , t. Note also that all numbers yi are primes. Inductively, it fol-
lows that∏

p<yi

(1 − p−1) >
1

2i(5 log t)i(i+1)/2

∏
p<t

(
1 − 1

p

)
� 1

2i(5 log t)i(i+1)/2+1
.

Since ∏
p<yi

(1 − p−1) � 1

log yi
,

we deduce that

log yi 
 2i(5 log t)i(i+1)/2+1 
 (log t)2(i+1)2

holds for all i = 1, . . . , t. Therefore,

yt < exp(exp((1 + o(1))2t 2 log2 t)). (28)

A similar argument shows that

log yi � (5 log t)i(i+1)/2

and hence
yt > exp

(
exp

(
1
2 t

2 log2 t
))

(29)

for large t. We now set

Yi =
∏

yi−1<p<yi

p for all i = 1, . . . , t.

To define the number B, we put T = yt and let M1 < · · · < Mt be distinct inte-
gers, withM1 > T and primes Pi,j that are< M 36

i in the arithmetical progression
1 (modMi) for j = 1, 2 and all i = 1, . . . , t. The existence of such primes is guar-
anteed by applying Lemma 3.1 twice for each Mi for i = 1, . . . , t; if we further
assume that Mi+1 > M

36
i holds for all i = 1, . . . , t − 1, then all these primes Pi,j

are distinct.
We now set

B =
t∏
i=1

(Pi,1Pi,2Yi)
2.

Choose n < x such that

n+ a(i)+ Pi,1Pi,2 ≡ 0 (mod (Pi,1Pi,2)
2) and

n+ b(i)+ Yi ≡ 0 (modY 2
i ).

The Chinese Remainder Theorem now shows that n < x is in an arithmetical pro-
gression n ≡ A (mod B).

Next we examine the values of the Carmichael λ-functions. For a positive in-
teger n < x in the arithmetical progression A (mod B), we write it as n+ a(i) =
miYj(i)Pi,1Pi,2. Here, j(i) is the only index such that a(i) = b(j(i)). We note that
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gcd(mi,Yj(i)Pi,1Pi,2) = gcd(Yj(i),Pi,1Pi,2) = 1.

Now we have

λ(n+ a(i))
= λ(miYj(i))(Pi,1 − 1)(Pi,2 − 1)

gcd(λ(miYj(i)), (Pi,1 − 1)(Pi,2 − 1)) gcd((Pi,1 − 1), (Pi,2 − 1))
. (30)

For the time being, suppose that

λ(mi) >
mi

exp(2(log2 x)5/3)
for all i = 1, . . . , t. (31)

Since λ(mi)|λ(miYj(i)), it follows that

λ(n+ a(i)) ≥ λ(mi)

Pi,1 − 1
>

mi

Pi,1 exp(2(log2 x)5/3)

= n+ a(i)
Yj(i)P

2
i,1Pi,2 exp(2(log2 x)5/3)

.

Therefore,

n+ a(i)
Yj(i)P

2
i,1Pi,2 exp(2(log2 x)5/3)

< λ(n+ a(i)) < n+ a(i)
Mi

. (32)

We want to make sure that the inequality λ(n + a(i)) > λ(n + a(i + 1)) holds.
According to (32), this inequality will certainly hold provided that

P 2
i,1Pi,2Yj(i) exp

(
2(log2 x)

5

3

)
< Mi+1

(
n+ a(i)

n+ a(i + 1)

)
. (33)

We will choose n such that n > A; hence, n > B > ytt . It is then clear that

n+ a(i)
n+ a(i + 1)

≥ n

n+ t >
1

2
> exp

(
− (log2 x)

5

3

)

holds once t (and hence x) is sufficiently large. Thus, (33) will certainly be satis-
fied if

P 2
i,1Pi,2Yj(i) exp((log2 x)

5) ≤ Mi+1,

provided that x is sufficiently large. Since P 2
i,1Pi,2 < M

108
i and since

logYj(i) ≤ 2
∑
p<yt

logp < 3yt

(provided that t is sufficiently large), we need only show

108 logMi + 3yt + (log2 x)
5 ≤ logMi+1 for i = 1, . . . , t − 1.

The interval (y, 2y) contains a prime number for all y > 1, so we may further as-
sume thatMi is prime for all i = 1, . . . , t and that

logMi+1 ≤ 108 logMi + 3yt + (log2 x)
5 + log 2
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for all i = 1, . . . , t − 1, where logM1 ≤ log(2yt ). By induction on i, one shows
that the inequality

logMi ≤ 108i−1(log(2yt )+ 3yt + (log2 x)
5 + log 2)

holds for all i = 1, . . . , t; therefore,

logB = 2
t∑
i=1

2∑
j=1

logPi,j ≤ 4 · 36
t∑
i=1

logMi

≤ 144

(
108t − 1

107

)
(log(2t)+ 3yt + (log2 x)

5 + log 2).

We will apply Lemma 2.6, so we will need the inequalityB < x1/20 to hold. Since
144/107 < 2 and 3yt > log(2yt )+ log 2 once t is large, it suffices that

4 · 108t(3yt + (log2 x)
5) <

log x

20
.

Using estimate (28), it follows easily that this last inequality is satisfied provided
we choose x large and t such that

3t 2 log2 t < log3 x. (34)

This means that we need only show that

t <
1

2

√
log3 x

log5 x
(35)

and that x is large.
The concluding argument from the proof of Theorem 1.1 demonstrates that, in

the arithmetical progression A (mod B), the number of positive integers n < x

such that at least one of the inequalities (31) fails is

O

(
xt

B log2 x

)
.

Observe, moreover, that for such integers we have n+b(i) = Yi li, where Yi and li
are coprime. Also, li is in a certain arithmetical progression Ai (mod Bi), where
Bi = B/Yi and Ai is an integer that is coprime to Bi. The concluding argument
from the proof of Lemma 2.5 shows that the number of such positive integers li <
x/Yi such thatω(li) > 10 log2 x isO(x/B log2 x). This argument—and given that
t is small (see (35))—shows that, except for a set of cardinality

O

(
xt

B log2 x

)
= o

(
x

B

)
,

all numbers n < x in the arithmetical progression A (mod B) fulfill all inequali-
ties (31) for i = 1, . . . , t as well as the inequalities ω(li) < 10 log2 x. In particular,
we know that λ(n+ a(i)) > λ(n+ a(i + 1)) for all i = 1, . . . , t − 1.

We are now finally ready to look at the values of the Euler function. On the one
hand, we have



298 Nicolas Doyon & Florian Luca

φ(n+ b(i)) ≤ (n+ b(i))
∏

yi<p<yi+1

(
1 − 1

p

)
. (36)

On the other hand, we also have

φ(n+ b(i)) ≥ (n+ b(i))
∏

yi<p<yi+1

(
1 − 1

p

) ∏
p|n+b(i)
p<t

(
1 − 1

p

) ∏
p|n+bi
p>yt

(
1 − 1

p

)
.

Now ∏
p|n+b(i)
p<t

(
1 − 1

p

)
>

∏
p<t

(
1 − 1

p

)
>

1

2(log t)
,

where the last inequality holds for large t by Mertens’s estimate. Using that

• 1 − y > exp(−y/2) if y is a sufficiently small positive number,
• ω(li) ≤ 10 log2 x, and
• every prime factor dividing n+ b(i) and larger than yt divides also li,

it follows that

1>
∏

p|n+b(i)
p>yt

(
1 − 1

p

)
> exp


−1

2

∑
p|n+b(i)
p>yt

1

p


 > exp

(
−5 log2 x

yt

)
.

From estimate (29) we conclude easily that if

exp
(
exp

(
1
2 t

2 log2 t
))
> (log2 x)

2 (37)
then ∏

p|n+b(i)
p>yt

(
1 − 1

p

)
= 1 + o(1).

Inequality (37) is satisfied for large x if

t > 2

√
log4 x

log6 x
,

which is consistent with (35). Using now the fact that

n+ b(i)
n+ b(i − 1)

= 1 + o(1) > 1

2

(because n > B > ytt ) as well as inequality (27), we obtain

φ(n+ b(i)) ≥ (n+ b(i))
(

1 + o(1)
2 log t

) ∏
yi<p<yi+1

(
1 − 1

p

)

> (n+ b(i − 1))

(
1 + o(1)
4 log t

) ∏
yi<p<yi+1

(
1 − 1

p

)

> (n+ b(i − 1))

(
1

10 log t

) ∏
yi+1<p<yi+2

(
1 − 1

p

)

> φ(n+ b(i − 1))
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for all i = 2, . . . , t when x is large. Since b was an arbitrary permutation of
{1, . . . , t}, we may replace b by its inverse and obtain the desired inequalities. This
completes the proof of Theorem 1.2.

4. Final Remarks

Theorems 1.1 and 1.2 show (respectively) that the estimates

t � log2 n(t) and t �
√

log3 n(t)

log5 n(t)

hold. It would be interesting to estimate the true value of n(t). In what follows,
we give some nontrivial lower bounds on these functions.

Let us consider first the case when the permutations a and b are taken to be iden-
tical. Since for large values of x there is always a prime number between x and
x + x7/12, we obviously have that n(t) � t12/7 in the case of Theorem 1.1. In the
case of Theorem 1.2, we can easily prove a slightly better lower bound. Namely,
for large t, the interval [n, n+ t] contains a positive integer (let’s call it n0) such
that Y(t)|n0, where Y = ∏

p<(log t)/2 p. We then have

φ(n0) < n0

∏
p<(log t)/2

(
1 − 1

p

)
∼ e−γn0

log2 t
.

On the other hand,

φ(n0 ± 1) = (n0 ± 1)
∏
p|n0±1

(
1 − 1

p

)

> (n0 ± 1)
∏

(log t)/2<p<2 log(n+t)

(
1 − 1

p

)

∼ (n0 ± 1) log2 t

log2(n+ t) .
Since φ(n0 − 1) > φ(n0) > φ(n0 + 1), we deduce that necessarily

n(t) > exp(exp((e−γ + o(1))(log2 t)
2)).

Furthermore, there are t! permutations of the integers {1, 2, . . . , t} in the case of
Theorem 1.1, so there exists a permutation a such that n(t) > t!. However, this
trivial inequality leaves a huge open gap for investigation.

Given a positive integer t and two fixed permutations a and b of the integers
1, 2, . . . , t, one could also investigate the quantities

S1(x) = #{n < x : λ(n+ a(i)) < λ(n+ a(i + 1)) for i = 1, . . . , t − 1}
and

S2(x) = #{n < x : λ(n+ a(i)) < λ(n+ a(i + 1)) and

φ(n+ b(i)) < φ(n+ b(i + 1)) for i = 1, . . . , t − 1}.
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Since the value of λ(n) does not depend much on the small prime factors of n, we
conjecture that S1(x) ∼ x/t!. That is to say, the asymptotic value of S1(x) should
not depend on the chosen permutation a. However, since the value of φ(n) de-
pends heavily on the small prime factors of n, it is likely that a similar result might
not hold for S2(x).
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