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The Spectral Function of Shift-Invariant Spaces

Marcin Bownik & Ziemowit Rzeszotnik

1. Introduction

The shift-invariant spaces are closed subspaces ofL2(Rn) that are invariant under
all shifts (i.e., integer translations). The theory of shift-invariant subspaces of
L2(Rn) plays an important role in many areas, most notably in the theory of wave-
lets, spline systems, Gabor systems, and approximation theory [BMM; BDR1;
BDR2; BL; Bo1; HLPS; Ji; RS1; RS2; Rz2]. The study of analogous spaces for
L2(T,H) with values in a separable Hilbert spaceH in terms of range func-
tion, often called doubly invariant spaces, is quite classical and goes back to Hel-
son [He1].

The general structure of shift-invariant (SI) spaces was revealed in the work of
de Boor, DeVore, and Ron [BDR1] with the use of fiberization techniques based
on range function. In particular, conditions under which a finitely generated SI
space has a generating set satisfying some desirable properties (e.g., stability, or-
thogonality or quasi-orthogonality) were given. This has been further developed in
the work of Ron and Shen [RS1] with the introduction of the technique of Grami-
ans and dual Gramians. The general properties of SI spaces and shift-preserving
operators have also been studied by the first author [Bo1].

The contribution of this paper is a systematic study of yet another tool in SI
spaces, apparently overlooked in the previous research, which we call thespectral
function. This function was introduced by the second author in his Ph.D. the-
sis. It was motivated by [BDR1] and is similar to the multiplicity function studied
by Baggett, Medina, and Merrill [BMM]. More precisely, to every SI subspace
of L2(Rn) we associate a function onRn that contains much useful information
about that space.

Although [BDR1] and Helson’s range function [He1] is the origin of this ap-
proach, it is thanks to Weiss (see [WW]) that the spectral function has a very
elementary definition. Namely, for every SI spaceV ⊂ L2(Rn), there exists a
countable family of functions8 whose integer shifts form a tight frame with con-
stant 1 for the spaceV, and the spectral function ofV is defined as the sum of
the squares of the Fourier transforms of the elements of8 (see Lemma 2.3). It
can be shown that such a function is well-defined, additive on orthogonal sums,
and bounded by 1. Moreover, it behaves nicely under dilations and modulations,
which makes it useful in the study of wavelet and Gabor systems. For example, it
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has already been used to show a new characterization of wavelets conjectured by
Weiss (see [Rz1]), a result originally proved in [Bo2] by applying the techniques
of [RS1; RS2]. The present paper is organized as follows.

In Section 2 we show several equivalent methods of defining the spectral func-
tion, and we study its basic properties such as behavior under dilations and modu-
lations. We also show that the spectral function can be used to characterize the ap-
proximation order of SI spaces following [BDR2; BDR3]. In Section 3 we apply
the spectral function to give a complete characterization of dimension functions,
sometimes called multiplicity functions, associated to generalized multiresolution
analyses (GMRA) and refinable spaces. This extends the results of Baggett and
Medina [BM], who considered only locally integrable multiplicity functions, as
well as the results of Speegle and the authors [BRS] regarding the wavelet dimen-
sion function. In Section 4 we show an analogue of the Calderón reproducing
formula for GMRAs and give an explicit formula for the wavelet spectral func-
tion, whose periodization is a well-studied wavelet dimension function. Finally,
in Section 5 we present an elementary proof of Rieffel’s incompleteness theorem
for Gabor systems utilizing the spectral function.

In order to define the spectral function we need to recall a few basic facts about
shift-invariant spaces.

A closed subspaceV ⊂ L2(Rn) is calledshift-invariant(SI) if for every func-
tion f ∈V we also haveTkf ∈V whenk ∈Zn, whereTyf(x) = f(x − y) is the
translation by a vectory ∈Rn. For any subset8 ⊂ L2(Rn), let

S(8) = span{Tkϕ : ϕ ∈8, k ∈Zn}
be the SI space generated by8. A principal shift-invariant(PSI) space is a SI
spaceV generated by a single functionϕ ∈L2(Rn), that is,V = S({ϕ}) = S(ϕ).

A range functionis any mapping

J : Tn→ {closed subspaces of`2(Zn)},
whereTn = Rn/Zn is identified with its fundamental domain [−1/2,1/2)n.We say
thatJ is measurableif the associated orthogonal projectionsPJ(ξ) : `2(Zn) →
J(ξ) are operator measurable; that is,ξ 7→ PJ(ξ)v is measurable for anyv ∈
`2(Zn).

Given any subsetE ⊂ Rn, let EP be theperiodizationof E; in other words,
EP = ⋃

k∈Zn(E + k). Let τ : Rn → Tn be thetranslation projection,τ(ξ) =
ξ + k, wherek is a unique element ofZn such thatξ + k ∈ Tn. Finally, let
T : L2(Rn) → L2(Tn, `2(Zn)) be an isometric isomorphism defined forf ∈
L2(Rn) by

Tf : Tn→ `2(Zn), Tf(ξ) = (f̂ (ξ + k))k∈Zn ,
wheref̂ (ξ) = ∫ f(x)e−2πi〈x,ξ〉 dx.

The following proposition, due to Helson [He1, Thm. 8], plays an important
role in the theory of SI spaces inL2(Rn). A proof of Proposition 1.1 can be also
found in [Bo1, Prop. 1.5].

Proposition 1.1. A closed subspaceV ⊂ L2(Rn) is SI if and only if

V = {f ∈L2(Rn) : Tf(ξ)∈ J(ξ) for a.e.ξ ∈Tn}, (1.1)
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whereJ is a measurable range function. The correspondence betweenV andJ
is one-to-one under the convention that the range functions are identified if they
are equal a.e. Furthermore, ifV = S(8) for some countable8 ⊂ L2(Rn), then

J(ξ) = span{Tϕ(ξ) : ϕ ∈8}. (1.2)

The dimension functionof a SI spaceV ⊂ L2(Rn) is a mapping dimV : Rn →
N ∪ {0,∞} given by dimV (ξ) = dimJ(ξ), whereJ is the range function corre-
sponding toV. Alternatively, the dimension function ofV can be introduced as
the multiplicity functionof the projection-valued measure coming from the rep-
resentation of the latticeZn onV via translations by Stone’s theorem; see [BM;
BMM]. The equivalence of the dimension function with the corresponding mul-
tiplicity function can then be easily deduced from [He2]. Note also that forV =
Ľ2(E), whereE is a measurable subset ofRn and

Ľ2(E) = {f ∈L2(Rn) : suppf̂ ⊂ E}, (1.3)

its dimension function is given by

dimV (ξ) =
∑
k∈Zn

1E(ξ + k). (1.4)

Finally, we need to recall a few facts about dual Gramian analysis of SI systems
introduced by Ron and Shen [RS1]. Suppose8 ⊂ L2(Rn) is a countable set of
functions such that ∑

ϕ∈8
|ϕ̂(ξ)|2 <∞ for a.e.ξ ∈Rn. (1.5)

Thedual Gramianof a SI systemE(8), where

E(8) = {Tkϕ : k ∈Zn, ϕ ∈8}, (1.6)

is a mapG̃ from the fundamental domainTn = (−1/2,1/2]n into self-adjoint
infinite matrices(gk,l)k,l∈Zn defined for a.e.ξ ∈Tn by

G̃(ξ)k,l :=
∑
ϕ∈8

ϕ̂(ξ + k)ϕ̂(ξ + l ) for k, l ∈Zn. (1.7)

Recall that a matrix̃G(ξ) = (G̃(ξ)k,l)k,l∈Zn is bounded oǹ2(Zn) if G̃(ξ) (given
by 〈G̃(ξ)ek, el〉 = G̃(ξ)k,l , where(ek)k∈Zn is the standard basis of`2(Zn)) de-
fines a bounded operator on`2(Zn). It can be shown that, for any fixedξ ∈ Tn,
{Tϕ(ξ) : ϕ ∈ 8} ⊂ `2(Zn) is a Bessel family if and only ifG̃(ξ) is a bounded
operator iǹ 2(Zn). Furthermore, it follows from [RS1, Thm. 3.3.5] that (1.5) is a
necessary (but not sufficient) condition forE(8) to be a Bessel family.

The following result due to Ron and Shen [RS1] characterizes when the system
of translates of a given family of functionsE(8) is a frame (or Bessel family if
a = 0) in terms of the dual Gramian. See also [Bo1, Thm. 2.5(ii)].

Theorem 1.2. Suppose that8 ⊂ L2(Rn) is countable and that8 satisfies(1.5).
Then the systemE(8) is a frame for a SI spaceS(8) with frame bounds0 ≤ a ≤
b <∞, that is,
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a‖f ‖2 ≤
∑
ϕ∈8

∑
k∈Zn
|〈f, Tkϕ〉|2 ≤ b‖f ‖2 for all f ∈ S(8),

if and only if the dual GramiañG(ξ) satisfies

a‖v‖2 ≤ 〈G̃(ξ)v, v〉 ≤ b‖v‖2 for v ∈ J(ξ) and a.e.ξ ∈Tn,
whereJ(ξ) is the range function ofS(8) given by(1.2).

2. The Spectral Function

In this section we introduce the notion of a spectral function associated to a shift-
invariant space and then show its basic properties. The spectral function, which
was introduced and investigated in [Rz, Sec. 1.4], contains much more informa-
tion about shift-invariant spaces than the dimension function. It is a very useful
tool that enables us to show many results that seem to be otherwise inaccessible
by using the properties of dimension function alone.

Definition 2.1. SupposeV ⊂ L2(Rn) is SI with the range functionJ(ξ) and
the corresponding projectionPJ(ξ). The spectral functionof V is a measurable
mappingσV : Rn→ [0,1] given by

σV (ξ + k) = ‖PJ(ξ)ek‖2 for ξ ∈Tn and k ∈Zn, (2.1)

where{ek}k∈Zn denotes the standard basis of`2(Zn) andTn = [−1/2,1/2)n.

Note thatσV (ξ) is well-defined for a.e.ξ ∈Rn, since{k + Tn : k ∈Zn} is a parti-
tion of Rn. Moreover, there is a simple relationship between the spectral and the
dimension function:

dimV (ξ) =
∑
k∈Zn

σV (ξ + k). (2.2)

Indeed,
∑

k∈Zn σV (ξ + k) =
∑

k∈Zn‖PJ(ξ)ek‖2 = dim Ran(PJ(ξ)) = dimV (ξ).

Since our definition is rather abstract, we present a description of the spectral
function of a general SI spaceV in terms of the spectral function of orthogonal
PSI components ofV.

Proposition 2.2. LetS be the set of all SI subspaces ofL2(Rn). Then the spec-
tral functionσV of V ∈S is determined as the unique mapping

σ : S→ L∞(Rn)

that satisfies

σS(ϕ)(ξ) =
{ |ϕ̂(ξ)|2(∑k∈Zn|ϕ̂(ξ + k)|2

)−1
for ξ ∈ suppϕ̂,

0 otherwise,
(2.3)

which is additive with respect to the orthogonal sums; that is,

V =
⊕
i∈N

Vi for someVi ∈S H⇒ σV =
∑
i∈N

σVi . (2.4)
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Proposition 2.2 is a consequence of yet another description of the spectral function
of SI spaceV in terms of the Fourier transform of a system of functions8 whose
shifts form a tight frame forV. Lemma 2.3 can also serve as an alternative defini-
tion of the spectral function [Rz1; Rz2]. Indeed, a direct calculation involving the
standard Gabor orthonormal basis(e2πi〈x,j〉1Tn(x − k))j,k∈Zn shows that formula
(2.5) is well-defined and independent of the choice8 (see [Rz2, Thm. 1.8]).

Lemma 2.3. Suppose a SI spaceV ⊂ L2(Rn) is generated by the shifts of a
countable family8 ⊂ V ; that is, letV = S(8). If E(8) = {Tkϕ : k ∈Zn, ϕ ∈8}
forms a tight frame with constant1 for the spaceV, then

σV (ξ) =
∑
ϕ∈8
|ϕ̂(ξ)|2. (2.5)

In particular, (2.5)does not depend on the choice of8 as long asE(8) is a tight
frame with constant1 for V.

Proof. Let J(ξ) be the range function ofV and letPJ(ξ) be the corresponding or-
thogonal projection ontoJ(ξ). By [Bo1, Thm. 2.5(ii)],E(8) is a tight frame with
constant 1 forV if and only if {Tϕ(ξ) : ϕ ∈8} is a tight frame with constant 1 for
J(ξ) for a.e.ξ. Therefore, for a.e.ξ ∈Tn,

‖v‖2 =
∑
ϕ∈8
|〈v, Tϕ(ξ)〉|2 for all v ∈ J(ξ).

Hence
‖P(ξ)v‖2 =

∑
ϕ∈8
|〈v, Tϕ(ξ)〉|2 for all v ∈ `2(Zn)

and, in particular, for anyk ∈Zn we have

σV (ξ + k) = ‖P(ξ)ek‖2 =
∑
ϕ∈8
|〈ek, Tϕ(ξ)〉|2 =

∑
ϕ∈8
|ϕ̂(ξ + k)|2.

This shows (2.5) and completes the proof of Lemma 2.3.

Remark. Lemma 2.3 also shows that there is a close connection between spec-
tral functions and dual Gramians. Indeed, for a given SI spaceV and a family
8 ⊂ V such thatE(8) is a tight frame with constant 1 forV, we can consider
the corresponding dual GramiañG(ξ) given by (1.7). By Theorem 1.2,̃G(ξ) re-
stricted toJ(ξ) is an identity onJ(ξ). Since the dual GramiañG(ξ) is self-adjoint
and since ker̃G(ξ) = J(ξ)⊥, it follows thatG̃(ξ) is just the orthogonal projection
ontoJ(ξ), that is,G̃(ξ) = PJ(ξ). Therefore, by (1.7), the spectral function ofV
represents the diagonal entries of the dual Gramian ofE(8).

Proof of Proposition 2.2.It suffices to show that the spectral functionσ satisfies
(2.3) and (2.4). Indeed, any mappingσ : S→ L∞(Rn) satisfying (2.3) and (2.4)
is unique, since any SI space can be decomposed asV = ⊕ϕ∈8 S(ϕ) for some
countable family8 ⊂ L2(Rn) (see e.g. [Bo1, Thm. 3.3] and [Rz2, Thm. 1.2]). To
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see (2.3), recall from [BL; BDR1] that ifS(ϕ) is a PSI space then the functionϕ0

given by

ϕ̂0(ξ) =
{ |ϕ̂(ξ)|(∑k∈Zn|ϕ̂(ξ + k)|2

)−1/2
for ξ ∈ suppϕ̂,

0 otherwise,

is thequasi-orthogonal generatorfor S(ϕ), meaning thatE(ϕ0) is a tight frame
with constant 1 forS(ϕ). Hence, by Lemma 2.3, we have (2.3).

Next, supposeV = ⊕i∈NVi for some SI spacesVi. We can decompose each
Vi asVi = ⊕

ϕ∈8i S(ϕ) for some8i ⊂ Vi such thatE(8i) forms a tight frame
with constant 1 forVi, i ∈N. SinceE(8) forms a tight frame with constant 1 for
V, where8 =⋃i∈N8i, by Lemma 2.3 we have

σV (ξ) =
∑
ϕ∈8
|ϕ̂(ξ)|2 =

∑
i∈N

∑
ϕ∈8i
|ϕ̂(ξ)|2 =

∑
i∈N

σVi(ξ).

This completes the proof of Proposition 2.2.

Next we will show that the spectral function behaves nicely with respect to the
action of modulations and dilations. This will be relevant in our study of Gabor
systems and wavelets—or, more generally, framelets. Recall that themodulation
by a vectora ∈Rn of f ∈L2(Rn) is given by

Ma(f )(x) = e2πi〈a,x〉f(x).

Thedilation by ann× n nonsingular matrixA of f ∈L2(Rn) is given by

DAf(x) = |detA|1/2f(Ax).

We restrict our attention to dilationsA preserving the latticeZn because this is ex-
actly when in general we can expect thatDAV is SI (with respect to the action of
Zn) if V is SI.

Theorem 2.4. LetV ⊂ L2(Rn) be SI and letA be ann× n integer matrix with
detA 6= 0. ThenDA(V ) is SI and

σDA(V )(ξ) = σV ((A∗)−1ξ), (2.6)

whereA∗ is the transpose ofA. Likewise, for anya ∈Rn, Ma(V ) is SI and

σMa(V )(ξ) = σV (ξ − a). (2.7)

Proof. First we decomposeV as the orthogonal sumV = ⊕
i∈N S(ϕi), where

ϕi is a quasi-orthogonal generator ofS(ϕi). SinceDA is an unitary operator on
L2(Rn) we haveDAV = ⊕

i∈NDAS(ϕi), and by Proposition 2.2 it suffices to
show that

σDAS(ϕ)(ξ) = σS(ϕ)((A∗)−1ξ), (2.8)

whereϕ is a quasi-orthogonal generator ofS(ϕ).
Let L be a set of|detA| representatives of different cosets ofZn/AZn. For

l ∈L, define8l ∈L2(Tn, `2(Zn)) by



The Spectral Function of Shift-Invariant Spaces 393

8l(ξ) = T (DATlϕ)(ξ) = (|detA|−1/2ϕ̂((A∗)−1(ξ + k))e−2πi〈(A∗ )−1(ξ+k),l〉)k∈Zn .

LetD be any set of|detA| representatives of different cosets ofZn/A∗Zn. Ford ∈
D, define9d ∈L2(Tn, `2(Zn)) by

9d(ξ)(k) =
{
ϕ̂((A∗)−1(ξ + k)) if k ∈ d + A∗Zn,
0 otherwise.

For l ∈L, we have

8l(ξ) = e−2πi〈(A∗ )−1ξ,l〉|detA|−1/2
∑
d∈D

e−2πi〈(A∗ )−1d,l〉9d(ξ).

Because the|detA| × |detA| matrix

(|detA|−1/2e−2πi〈(A∗ )−1d,l〉)l∈L,d∈D
is unitary, by a simple calculation we have∑

l∈L
|〈v,8l(ξ)〉|2 =

∑
d∈D
|〈v,9d(ξ)〉|2 for all v ∈ `2(Zn). (2.9)

Since9d(ξ) ⊥ 9d ′(ξ) for d 6= d ′ ∈ D and since‖9d(ξ)‖ is either 0 or 1, the
system{9d(ξ) : d ∈ D} is a tight frame with constant 1 for its span. By (2.9),
{8l(ξ) : l ∈ L} is also a tight frame with constant 1 for the spaceJ(ξ) =
span{8l(ξ) : l ∈ L} = span{9d(ξ) : d ∈ D}, whereJ(ξ) is the range func-
tion ofDAS(ϕ). Therefore, for everyk ∈Zn,
σDAS(ϕ)(ξ + k) = ‖PJ(ξ)ek‖2 =

∑
l∈L
|〈8l(ξ), ek〉|2 =

∑
d∈D
|〈9d(ξ), ek〉|2

= |ϕ̂((A∗)−1(ξ + k))|2 = σS(ϕ)((A∗)−1(ξ + k)).
This shows (2.8) and therefore (2.6).

The case of modulations is much easier, since by Proposition 2.2 it suffices to
showσMaS(ϕ)(ξ) = σS(ϕ)(ξ−a),whereϕ is a quasi-orthogonal generator ofS(ϕ).
SinceMaϕ is a quasi-orthogonal generator ofS(Maϕ) = MaS(ϕ), we have

σMaS(ϕ)(ξ) = |M̂aϕ(ξ)|2 = |ϕ̂(ξ − a)|2 = σS(ϕ)(ξ − a),
which completes the proof of Theorem 2.4.

As an immediate consequence of (2.2) and Theorem 2.4, we obtain the following
corollary.

Corollary 2.5. Suppose thatV ⊂ L2(Rn) is SI and thatA is ann× n integer
matrix withdetA 6= 0. Then

dimDAV (ξ) =
∑
d∈D

dimV ((A
∗)−1(ξ + d)), (2.10)

whereD is the set of|detA| representatives of different cosets ofZn/(A∗Zn).

Example 1. Given a measurable setE ⊂ Rn, let V = Ľ2(E). ThenσV =
1E. Indeed, consider the family of functions(ϕk)k∈Zn given byϕ̂k = 1E∩(k+Tn).
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Clearlyϕk is a quasi-orthogonal generator ofS(ϕk), andS(ϕk) ⊥ S(ϕk ′) for k 6=
k ′ ∈ Zn. Now it suffices to invoke Lemma 2.3. Conversely, ifV is any SI space
such thatσV = 1E for some measurableE ⊂ Rn, then necessarilyV = Ľ2(E).

Indeed, letJ(ξ) be the range function ofV. Since

‖PJ(ξ)ek‖2 = σV (ξ + k) = 1E(ξ + k) =
{

1 if ξ + k ∈E,
0 if ξ + k /∈E,

it follows that

PJ(ξ)ek =
{
ek if ξ + k ∈E,
0 if ξ + k /∈E,

and henceJ(ξ) = span{ek : ξ +k ∈E} is the range function of̌L2(E). Therefore,
V = Ľ2(E).

Example 2. There exist distinct SI spaces that have identical spectral functions.
Indeed, letϕ0, ϕ1 ∈ L2(R) be given byϕ̂0 = 2−1/2(1(0,1) + 1(1,2)) and ϕ̂1 =
2−1/2(1(0,1) − 1(1,2)). Thenϕi is a quasi-orthogonal generator ofVi = S(ϕi); that
is,E(ϕi) is a tight frame ofS(ϕi) with constant 1. HenceσV0 = σV1 = 2−11(0,2),
butV0 ⊥ V1.

We can now collect the main properties of the spectral function into a single
proposition.

Proposition 2.6. Let S be the set of all SI subspaces ofL2(Rn). Then, for
V,W ∈S, the spectral function satisfies the following properties:

(a) 0≤ σV (ξ) ≤ 1;
(b) V =⊕i∈NVi (Vi ∈S) H⇒ σV (ξ) =∑ i∈N σVi(ξ);
(c) V ⊂W H⇒ σV (ξ) ≤ σW(ξ);
(d) V ⊂W H⇒ (V =W ⇐⇒ σV (ξ) = σW(ξ));
(e) σV (ξ) = 1E(ξ) ⇐⇒ V = Ľ2(E);
(f ) σMa(V )(ξ) = σ(ξ − a), whereMa is a modulation bya ∈Rn;
(g) σDAV (ξ) = σV ((A∗)−1ξ), whereDA is a dilation by nonsingular integer ma-

trix A;
(h) dimV (ξ) =∑k∈Zn σV (ξ + k).
We will also need the following approximation lemma.

Lemma 2.7. Let V be a SI space and let(Vj )j∈N be a sequence of SI spaces.
Suppose thatPVj → PV strongly asj → ∞, wherePV denotes the orthogonal
projection ontoV ; that is, for everyf ∈ L2(Rn), let ‖PVjf − PVf ‖2 → 0 as
j →∞. Then, for any measurable setE ⊂ Rn with finite Lebesgue measure,∫

E

|σVj (ξ)− σV (ξ)| dξ → 0 asj →∞. (2.11)

In particular, there exists a subsequence(jk)k∈N such that

lim
k→∞ σVjk

(ξ) = σV (ξ) for a.e.ξ ∈Rn. (2.12)
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Proof. LetJ andJj (j ∈N) be the range functions corresponding toV andVj, re-
spectively. Denote the corresponding projections byPJ(ξ) andPJj (ξ). Then, for
anyf ∈L2(Rn),

T (PVf )(ξ) = PJ(ξ)(Tf(ξ)) for a.e.ξ ∈Tn (2.13)

by [He1, p. 58; Bo1, Lemma 1.4]. Because

‖PVjf − PVf ‖2 = ‖T (PVjf − PVf )‖2

=
∫
Tn
‖T (PVjf )(ξ)− T (PVf )(ξ)‖2`2 dξ

=
∫
Tn
‖PJ(ξ)(Tf(ξ))− PJj (ξ)(Tf(ξ))‖2`2 dξ,

it follows that, for anyk ∈Zn, we obtain

0= lim
j→∞

∫
Tn
‖PJ(ξ)(ek)− PJj (ξ)(ek)‖2`2 dξ

≥ lim
j→∞

∫
k+Tn
|σV (ξ)1/2 − σVj (ξ)1/2|2 dξ

≥ 1

4
lim
j→∞

∫
k+Tn
|σV (ξ)− σVj (ξ)|2 dξ

≥ 1

4
lim
j→∞

(∫
k+Tn
|σV (ξ)− σVj (ξ)| dξ

)1/2

by takingf ∈ L2(Rn) such thatTf(ξ) = ek for all ξ ∈ Tn. This shows (2.11).
Finally, (2.12) is a consequence of (2.11) and the standard diagonal subsequence
argument.

The following lemma provides another way of looking at the spectral function.

Lemma 2.8. SupposeV is SI andK ⊂ Rn is a measurable set such thatτ |K is
one-to-one. Then

‖PV (1̌K)‖2 =
∫
K

σV (ξ) dξ, (2.14)

wherePV is an orthogonal projection ontoV.

Proof. Let f = 1̌K. Then, for anyξ ∈Tn,
Tf(ξ) =

{
el if there is anl ∈Zn such thatξ + l ∈K,
0 otherwise.

Therefore, by (2.13),

‖PV (f )‖2 =
∫
Tn
‖PJ(ξ)(Tf(ξ))‖2 dξ =

∑
l∈Zn

∫
Tn
‖PJ(ξ)(el)‖21K(ξ + l ) dξ

=
∑
l∈Zn

∫
Tn
σV (ξ + l )1K(ξ + l ) dξ =

∫
K

σV (ξ) dξ,

whereJ is the range function ofV.
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As a consequence of Lemma 2.8 and the Lebesgue differentiation theorem, we
have another formula for the spectral function:

σV (ξ) = lim
r→0+

‖PV (1̌B(ξ,r))‖2
|B(ξ, r)| for a.e.ξ ∈Rn, (2.15)

whereB(ξ, r) denotes the ball with centerξ and radiusr.

Approximation Orders of SI Spaces. As an example of the utility of the spec-
tral function, we will show how it can be used to characterize approximation
orders of SI spaces. In order to state the main result we recall a few basic facts
from [BDR1; BDR2].

SupposeV ⊂ L2(Rn) is a closed subspace. For anyh > 0, define the scaled
space

V h := {g(·/h) : g ∈V } = Dh−1(V ),

whereDh−1 is the dilation operator by a diagonal matrixh−1 Id. For any closed
subspaceV ⊂ L2(Rn) and a functionf ∈ L2(Rn), we define theapproximation
error as

E(f, V ) := inf {‖f − g‖ : g ∈V }.
Givenk > 0, we say that the spaceV providesapproximation orderk if there is
a constantC > 0 such that

E(f, V h) ≤ Chk‖f ‖H k(Rn) for all f ∈H k(Rn), (2.16)

whereH k(Rn) is theSobolev space

H k(Rn) = {f ∈L2(Rn) : ‖f ‖H k(Rn) = ‖(1+ | · |)kf̂ ‖ <∞}.
We say thatV providesdensity orderk if, for a givenk ≥ 0, for everyf ∈H k(Rn)
we have (in addition to (2.16))

E(f, V h) = o(hk) ash→ 0. (2.17)

Givenφ ∈L2(Rn), we define the function3φ : Tn→ [0,1] by

3φ(ξ) :=
(

1− |φ̂(ξ)|2∑
k∈Zn|φ̂(ξ + k)|2

)1/2

= (1− σS(φ)(ξ))1/2, (2.18)

where 0/0 should be interpreted as 0. De Boor, DeVore, and Ron [BDR2, Thms.
1.6, 1.7] showed that the approximation and density orders of a PSI spaceS(φ)
are characterized by the behavior of the functionξ 7→ 3φ(ξ)/|ξ|k at the origin.
Moreover, they also proved the following remarkable result showing that approx-
imation by arbitrary (closed) SI subspaces ofL2(Rn) can be reduced to the case
of PSI spaces.

Theorem 2.9 [BDR2, Thm. 1.9]. Suppose thatV ⊂ L2(Rn) is SI and that
k > 0. Then the following statements are equivalent:

(i) V provides approximation orderk;
(ii) there exists aφ ∈V such thatS(φ) provides approximation orderk,
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(iii) S(PV (φ0)) provides approximation orderk, whereφ0 is the sinc-function,
φ̂0 = 1Tn , andPV is the orthogonal projection ontoV.

Moreover, the same is true whenk ≥ 0 and the term “approximation order” is
replaced by “density order”.

As a consequence of this result, we obtain the following characterization of ap-
proximation and density orders of SI spaces in terms of the spectral function.

Theorem 2.10. A SI spaceV ⊂ L2(Rn) provides approximation orderk > 0 if
and only if there is aC > 0 such that

σV (ξ) ≥ 1− C|ξ|2k for a.e.ξ ∈Tn. (2.19)

The spaceV provides density orderk ≥ 0 if and only if (2.19)holds and

lim
h→0

1

hn

∫
hTn
|ξ|−2k(1− σV (ξ)) dξ = 0. (2.20)

Proof. Letφ0(x1, . . . , xn) =∏n
i=1 sin(πxi)/(πxi)∈L2(Rn) be the sinc-function;

that is,φ̂0 = 1Tn . Let φ1 = PV (φ0) be the orthogonal projection ofφ0 ontoV.
Then, by Theorem 2.9, the approximation order and the density order provided by
V are the same as the approximation order and the density order provided by its
PSI subspaceS(φ1).

Note that
σS(φ1)(ξ) = σV (ξ) for a.e.ξ ∈Tn. (2.21)

Indeed, take anyξ ∈Tn. By (2.13),

T (φ1)(ξ) = T (PV (φ0))(ξ) = PJ(ξ)(T (φ0)(ξ)) = PJ(ξ)(e0).

Hence, ifT (φ1)(ξ) 6= 0 then by (2.3) we have

σS(φ1)(ξ) =
|φ̂1(ξ)|2
‖T (φ1)(ξ)‖2 =

|〈PJ(ξ)e0, e0〉|2
‖PJ(ξ)(e0)‖2 = ‖PJ(ξ)(e0)‖2 = σV (ξ).

If T (φ1)(ξ) = 0 then clearlyσS(φ1)(ξ) = σV (ξ) = 0. This shows (2.21).
By [BDR2, Thm. 1.6],S(φ1) provides approximation orderk > 0 if | · |−k3φ1

is in L∞(Tn). Combining this with (2.18) and (2.21) shows (2.19). Likewise, by
[BDR2, Thm. 1.7],S(φ1) provides density orderk ≥ 0 if | · |−k3φ1 is inL∞(Tn)
and

lim
h→0

h−n
∫
hTn
|ξ|−2k[3φ1(ξ)]

2 dξ = 0.

Combining this with (2.18) and (2.21) shows (2.20), which completes the proof of
Theorem 2.10.

3. The Dimension Function of a GMRA

As one of the applications of the spectral function studied in Section 2, we extend
a result from [BM] by providing a characterization of dimension functions as-
sociated with an arbitrary generalized multiresolution analysis (GMRA). In other
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words, we characterize all multiplicity functions associated with the core subspace
of a GMRA. This extends a result of Baggett and Merrill [BM], who considered
only locally integrable multiplicity functions. In this work we not only allow non-
integrable multiplicity functions, we also allow functions equal to∞ on a set of
nonzero measure. As an immediate consequence, we also obtain a characteriza-
tion of wavelet dimension functions shown by Speegle and the authors in [BRS].

We start by recalling the notion of a GMRA, which has been studied by a num-
ber of authors [Ba2; BM; BMM; BL; Bo3; HLPS; LTW].

Definition 3.1. LetA be a fixedn × n integer expansive dilation matrix (i.e.,
for all eigenvaluesλ of A, |λ| > 1). We say that a sequence of closed subspaces
(Vj )j∈Z ⊂ L2(Rn) is ageneralized multiresolution analysis(GMRA) if

Vj ⊂ Vj+1, DAVj = Vj+1,
⋃
j∈Z

Vj = L2(Rn),
⋂
j∈Z

Vj = {0},

andV0 is SI. The spaceV0 is often called acore spaceof (Vj )j∈Z. An (orthonor-
mal) wavelet is a collection9 = {ψ1, . . . , ψL} such that the system

{DAjTkψ l : j ∈Zn, k ∈Zn, l = 1, . . . , L}
is an orthonormal basis ofL2(Rn).

There is a close relationship between wavelets and GMRAs. For any orthonormal
wavelet9 we can associate a GMRA(Vj )j∈Z by setting

Vj = span{DAiTkψ l : i < j, k ∈Zn, l = 1, . . . , L}.
Conversely, [BMM] characterized GMRAs that can be generated by orthonor-
mal wavelets. These are precisely GMRAs(Vj )j∈Z such that the dimension func-
tion dimV0(ξ) of the core spaceV0 is finite for a.e.ξ and satisfies the consistency
equation ∑

d∈D
dimV0((A

∗)−1(ξ + d )) = dimV0(ξ)+ L for a.e.ξ,

whereD is the set of|detA| representatives of different cosets ofZn/A∗Zn.Another
related result is the characterization in [LTW] of Riesz wavelets that generate
GMRAs.

A key ingredient of a GMRA is its core spaceV0, which uniquely determines
the subspacesVj = DAjV0, j ∈ Z. Since the core space is a refinable space, our
main goal is to give a complete characterization of dimension functions of refin-
able spaces; see Theorem 3.2. The proof of this result will follow the ideas from
[BRS]. Recall that a SI spaceV ⊂ L2(Rn) is said to berefinable(with respect to
the expansive dilationA) if V ⊂ DAV.
Theorem 3.2. Suppose a SI spaceV ⊂ L2(Rn) is refinable, that is,V ⊂ DAV.
Then the dimension function ofV, D(ξ) := dimV (ξ), satisfies:
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(D1) D : Rn→ N ∪ {0,∞} is a measurableZn-periodic function;
(D2)

∑
d∈DD(B−1(ξ + d)) ≥ D(ξ) for a.e.ξ ∈Rn, whereD is the set of repre-

sentatives of different cosets ofZn/BZn (B = A∗); and
(D3)

∑
k∈Zn 11(ξ + k) ≥ D(ξ) for a.e.ξ ∈Rn, where

1 = {ξ ∈Rn : D(B−jξ) ≥ 1 for j ∈N ∪ {0}}. (3.1)

Conversely, suppose thatD satisfies(D1), (D2), and (D3). Then there exists
a refinable spaceV such thatdimV (ξ) = D(ξ) for a.e.ξ ∈ Rn. Furthermore,V
satisfies ⋂

j∈Z
DAjV = {0}, (3.2)

⋃
j∈Z

DAjV = Ľ2

(⋃
j∈Z

Bj1

)
. (3.3)

Proof of Theorem 3.2: Necessity of(D1)–(D3). Clearly, the dimension function
of any SI spaceV must satisfy (D1). Condition (D2) is a consequence of Corol-
lary 2.5, sinceV ⊂ DAV implies that dimV (ξ) ≤ dimDAV (ξ). To show (D3), note
thatV ⊂ DAV implies thatσV (ξ) ≤ σV (B−1ξ) by Proposition 2.6(c) and (g). By
Proposition 2.6(h),σV (ξ) 6= 0 implies dimV (ξ) 6= 0 and hence dimV (ξ) ≥ 1.
Thus

1 = {ξ ∈Rn : dimV (B
−jξ) ≥ 1 for j ∈N ∪ {0}}

⊃ {ξ ∈Rn : σV (ξ) 6= 0} = suppσV .

Therefore, by Proposition 2.6(a) and (h),∑
k∈Zn

11(ξ + k) ≥
∑
k∈Zn

σV (ξ + k) = dimV (ξ),

which shows (D3).

The key role in the proof of thesufficiencyof (D1)–(D3) in Theorem 3.2 is played
by Lemma 3.3.

Lemma 3.3. Suppose that a functionD satisfies(D1), (D2), and (D3). Then
there exists a measurable setS ⊂ Rn such that

D(ξ) =
∑
k∈Zn

1S(ξ + k), (3.4)

S ⊂ BS, (3.5)⋂
j∈Z

BjS = ∅, (3.6)

⋃
j∈Z

BjS =
⋃
j∈Z

Bj1, (3.7)

where1 is given by(3.1).
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The proof of Lemma 3.3 is an adaptation of the proof of the characterization of di-
mension functions of wavelets that follows the constructive procedure described
in [BRS, Algo. 4.4]. The major difference with [BRS] is that we allow a func-
tionD to be infinite on some set with nonzero measure and that the consistency
equation [BRS, (D3) in Thm. 4.2] is replaced by our consistency inequality (D2).
Assuming that Lemma 3.3 holds, we can complete the proof of Theorem 3.2.

Proof of Theorem 3.2: Sufficiency of(D1)–(D3). Define a SI spaceV = Ľ2(S),

whereS is a set guaranteed by Lemma 3.3. Clearly, dimV (ξ) =∑k∈Zn 1S(ξ+k) =
D(ξ) by (3.4). HenceV is refinable becauseV = Ľ2(S) ⊂ Ľ2(BS) = DAV.

Furthermore,V satisfies (3.2) and (3.3) by virtue of (3.6), (3.7), and the fact that
DAjV = Ľ2(BjS) for j ∈Z.
To prove Lemma 3.3, we will need [BRS, Lemma 4.1] as follows.

Lemma 3.4. Let B be a dilation and letD satisfy(D1) and (D3). Let Aj =
{ξ ∈ Tn : D(ξ) ≥ j} for j ∈ N and let {Si}ki=1 (wherek ∈ N is fixed) be a col-
lection of measurable sets such thatτ |Si is injective and ontoAi for i = 1, . . . , k.
Then

(i) there exists a measurable setG ⊂ 1 such thatτ(G) = A1, and
(ii) there exists a measurable setH ⊂ 1 such that

⋃k
i=1Si∩H = ∅ andτ(H ) =

Ak+1.

Proof of Lemma 3.3 under{ξ ∈Tn : D(ξ) <∞} with nonzero measure.Let

1̃ =
⋃
j∈Z

Bj1, (3.8)

where1 is given by (3.1). For anyk ∈N, let

Ak = {ξ ∈Tn : D(ξ) ≥ k}. (3.9)

The idea of the proof is to construct a sequence of sets{Sk}k∈N such thatS =⋃
k∈N Sk satisfies (3.4)–(3.7). In particular, to guarantee (3.4), we will require

(among other things) thatτ |Sk be injective and ontoAk for eachk ∈N.
Fix any measurable setQ ⊂ Rn such thatQ ⊂ BQ, τ |Q is injective,D(ξ) ≥ 1

for ξ ∈Q, and
lim
j→∞1Q(B−jξ) = 1 for a.e.ξ ∈ 1̃. (3.10)

SinceB is a dilation,Q = 1 ∩⋂∞j=0B
jTn is an example of a set that satisfies

these properties.
We are now ready to defineS1. LetE1= Q. Form∈N, define

Ẽm+1=
(
BEm

∖ m⋃
i=1

EPi

)
∩ AP1

and letEm+1 ⊂ Ẽm+1 be any measurable set such thatτ(Em+1) = τ(Ẽm+1) and
τ |Em+1 is injective. We claim that the setS1=⋃m∈N Em satisfies

Q ⊂ S1, S1⊂ BS1, τ |S1 is injective and ontoA1. (3.11)
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This can been seen by repeating verbatim the arguments in the proof of [BRS,
Thm. 4.2] and then using Lemma 3.4(i). We continue defining sets{Sk}k∈N by
induction with the use of a technical Lemma 3.5.

Lemma 3.5. Suppose that there exist setsS1, . . . , Sk such thatQ ⊂ S1= P1 and

Pi ⊂ BPi for i = 1, . . . , k, wherePi =
i⋃

j=1

Sj ; (3.12)

τ |Si is injective and ontoAi for i = 1, . . . , k; (3.13)

Si ∩ Sj = ∅ for i, j = 1, . . . , k, i 6= j. (3.14)

Then there existSk+1 such thatS1, . . . , Sk+1 satisfy(3.12)–(3.14).

Proof. GivenS1, . . . , Sk satisfying (3.12)–(3.14), we defineSk+1 by the inductive
procedure. LetF̃1= (BPk \ Pk) ∩ APk+1 and

F̃m+1=
(
BFm

∖ m⋃
i=1

FPi

)
∩ APk+1, (3.15)

whereFm ⊂ F̃m is any measurable set such thatτ(Fm+1) = τ(F̃m+1) andτ |Fm+1

is injective. We claim thatS1, . . . , Sk+1, whereSk+1 = ⋃∞
m=1Fm satisfy (3.12)–

(3.14).
To see (3.12), it suffices to show thatSk+1 ⊂ BPk+1. This follows from the fact

thatF1⊂ BPk andFm+1⊂ BFm ⊂ BSk+1⊂ BPk+1 for m∈N.
To see thatτ |Sk+1 is injective, suppose thatξ1, ξ2 ∈ Sn+1 andτ(ξ1) = τ(ξ2).

Therefore,ξ1 ∈Fj andξ2 ∈Fk for somej, k ∈N. If j < k (the casej > k is iden-
tical) thenξ2 /∈ FPj , which contradictsτ(ξ1) = τ(ξ2). Thusj = k andξ1 = ξ2,

sinceτ |Fk is injective.
To see (3.14), it is enough to prove thatSk+1 ∩ Pk = ∅. SinceF1 ⊂ BPk \ Pk

andFm ⊂ BFm−1 form ≥ 2, by induction we obtainFm ⊂ BmPk \Bm−1Pk for all
m ∈ N. By (3.12) withi = k it follows thatPk ⊂ Bm−1Pk for anym ∈N. Hence
Fm ∩ Pk = ∅, that is,Sk+1∩ Pk = ∅.

The proof of the remaining part of (3.13) (i.e.,τ(Sk+1) = Ak+1) is much more
difficult. First note that, sinceτ(Fm) ⊂ Ak+1, we certainly haveτ(Sk+1) ⊂ Ak+1.

For the reverse inclusion, we will find it useful to prove

APk+1∩ BSPk+1⊂ SPk+1. (3.16)

Indeed, ifξ ∈ APk+1 ∩ BSPk+1, thenB−1ξ + l ∈ Fm for somem ∈ N and l ∈
Zn. Sinceξ ′ := ξ + Bl ∈ BFm andξ ∈ APk+1, we obtainξ ′ ∈ BFm ∩ APk+1. If
ξ ′ /∈ ⋃m

i=1F
P
i , then by (3.15) we haveξ ′ ∈ F̃m+1 ⊂ SPk+1 and henceξ ∈ SPk+1.

However, ifξ ′ ∈ FPi for somei = 1, . . . , m, thenξ ′ ∈ SPk+1 and henceξ ∈ SPk+1.

This shows (3.16).
Continuing with the proof of (3.13), it remains to show thatAk+1 ⊂ τ(Sk+1).

By Lemma 3.4(ii) there is a setH ⊂ 1 such thatH ∩ Pk = ∅, τ (H ) = Ak+1,

andD(B−jξ) ≥ 1 for everyj ≥ 0 andξ ∈H. Therefore, all we have to prove is
τ(H ) ⊂ τ(Sk+1), that is,H ⊂ SPk+1.
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We split the proof ofH ⊂ SPk+1 into two cases. First, we consider allξ ∈ H
such that, for everyj ≥ 0, D(B−jξ) ≥ k + 1; that is, we consider the setR :=
H ∩⋂∞j=0B

jAPk+1. For a.e.ξ ∈R, it follows from (3.10) thatB−jξ ∈Q for some
j ≥ 1. SinceQ ⊂ S1⊂ Pk,we can considerj0 = min{j ∈N : B−jξ ∈Pk}. Since
H ∩ Pk = ∅, it follows thatB−j0+1ξ ∈ BPk \ Pk. Moreover, sinceB−j0+1ξ ∈
APk+1, we obtain

B−j0+1ξ ∈ (BPk \ Pk) ∩ APk+1= F̃1⊂ SPk+1.

HenceR ⊂⋃∞j=0B
jSPk+1. Therefore,

R =
∞⋃
j=0

(R ∩ BjSPk+1) ⊂
∞⋃
j=0

(
H ∩

j⋂
i=0

BiAPk+1∩ BjSPk+1

)
.

But (3.16) implies that, forj ≥ 0,
j⋂
i=0

BiAPk+1∩ BjSPk+1⊂ SPk+1, (3.17)

soR ⊂ SPk+1.

Next we consider the set̃R := H \⋂∞j=0B
jAPk+1 and wish to show that̃R ⊂

SPk+1. Take anyξ ∈ R̃. Sinceξ ∈ H ⊂ APk+1, we can findj0 ≥ 0 such thatξ ∈⋂j0
j=0B

jAPk+1 andξ /∈Bj0+1APk+1. To prove thatξ ∈ SPk+1, it is enough to show that
ξ ∈Bj0SPk+1 and then use (3.17) withj = j0. To see whyξ ∈Bj0SPk+1, observe
thatD(B−j0ξ) ≥ k +1. Hence, by the consistency inequality (D2),

k +1≤ D(B−j0ξ) ≤
∑
d∈D

D(B−j0−1ξ + B−1d ), (3.18)

whereD is the set of representatives of different cosets ofZn/BZn. Without loss
of generality we can assume that 0∈ D. For eachd ∈ D we denotek(d ) =
D(B−j0−1ξ +B−1d ). Thenτ(B−j0−1ξ +B−1d )∈⋂k(d )

j=1 Aj . Moreover, sinced =
0 ∈ D, τ (B−j0−1ξ) ∈ Ak(0), andξ /∈ Bj0+1APk+1, we obtaink(0) ≤ k. Sinceξ ∈
H, it follows thatD(B−j0−1ξ) ≥ 1, and we obtaink(0) ≥ 1. By (3.13) we have
B−j0−1ξ ∈⋂k(0)

j=1S
P
j , that is,B−j0−1ξ+p0

j ∈ Sj,wherep0
j ∈Zn for j = 1, . . . , k(0)

are distinct by (3.14). For eachd ∈ D \ {0} such thatj(d ) 6= 0, by using (3.13)
again we can find distinctpdj ∈ Zn such thatB−j0−1ξ + pdj + B−1d ∈ Sj, where
j = 1, . . . ,min(k(d ), k).

Thus, for eachd ∈D such thatk(d ) 6= 0, we have

B−j0ξ + Bpdj + d ∈BSj ⊂ BPk for j = 1, . . . ,min(k(d ), k). (3.19)

We claim that this gives us at leastk + 1 distinct elements ofBPk. Indeed, if
Bpdj + d = Bpd ′j ′ + d ′ for some j = 1, . . . ,min(k(d ), k) and j ′ = 1, . . . ,
min(k(d ′), k), thend − d ′ ∈ BZn, henced = d ′. Also, for fixed d ∈ D, we
havepdj 6= pdj ′ for j 6= j ′. What remains to check is that the number of elements
in (3.19), which is equal to

∑
d∈Dmin(k(d ), k), is ≥ k + 1. This is indeed the

case by 1≤ k(0) ≤ k and (3.18).
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By the induction hypothesis (3.13), at least one of the elements in (3.19) must lie
in the complement ofPk. Hence there is ap ∈Zn, andB−j0ξ + p ∈BPk \ Pk. In
addition, sinceB−j0ξ ∈APk+1,we haveB−j0ξ+p ∈APk+1. Therefore,B−j0ξ+p ∈
F̃1 ⊂ SPk+1; that is,ξ ∈Bj0SPk+1 and henceξ ∈ SPk+1. Since bothR andR̃ are con-
tained inSPk+1, it follows thatH ⊂ SPk+1 and soAk+1 ⊂ SPk+1, which completes
the proof of (3.13) by the induction. We have thus shown the existence of the sets
{Sk}k∈N satisfying (3.12)–(3.14), which completes the proof of Lemma 3.5.

Finally, we are ready to continue the proof of Lemma 3.3. By Lemma 3.5, define
the setS =⋃∞k=1Sk. We claim thatS satisfies (3.4)–(3.7). To see (3.4), it suffices
to show that the equality in (3.4) holds for a.e.ξ ∈Tn. By (3.14),1S =∑∞k=1 1Sk ,
and by (3.13),∑

l∈Zn
1S(ξ + l ) =

∞∑
k=1

∑
l∈Zn

1Sk(ξ + l )

=
∞∑
k=1

1τ(Sk)(ξ) =
∞∑
k=1

1Ak(ξ) = D(ξ) for a.e.ξ ∈Tn.

For (3.5) it suffices to show thatSk ⊂ BS for everyk ∈ N, but this is immediate
from (3.12). For (3.7) it suffices to show that limj→∞ 1S(B−jξ) = 1 for a.e.ξ ∈
1̃, which is an immediate consequence ofQ ⊂ S and (3.10). Finally, it remains
to show (3.6). By the contradiction, suppose thatS̃ =⋂j∈Z BjS has a nonzero
measure. SincẽS = BS̃, we can partitionS̃ into a countable family of subsets
{S̃i}i∈N such thatS̃i = BS̃i andS̃i has a nonzero (and hence infinite) measure for
all i ∈ N. SinceB induces an ergodic endomorphism ofTn (see [BRS, proof of
Thm. 5.11]), we haveτ(S̃i) = Tn. Therefore,

D(ξ) =
∑
k∈Zn

1S(ξ + k) ≥
∑
k∈Zn

1S̃ (ξ + k)

=
∑
k∈Zn

∑
i∈N

1S̃i(ξ + k) = ∞ for a.e.ξ,

which contradicts our initial assumption that{ξ ∈Tn : D(ξ) <∞} has a nonzero
measure. This shows (3.6) and completes the proof of Lemma 3.3 under this
assumption.

Proof of Lemma 3.3 underD ≡ ∞. Finally, we need to construct a setS satisfy-
ing (3.4)–(3.7) for the case when the dimension functionD(ξ) is constantly∞.
Let S0 be a set obtained from Lemma 3.3 whenD ≡ 1. Any such setS0 is called
ascaling set.By (3.5)–(3.7), the family{(Bj+1S0) \ (BjS0)}j∈Z forms a partition
of Rn (modulo sets of measure zero), since1 = 1̃ = Rn. Define by induction a
sequence of sets{Si}∞i=0 such that, for alli = 0,1, . . . ,

Si+1⊂ (BSi) \ Si,
∑
k∈Zn

1Si(ξ + k) = 1 for a.e.ξ.

This is possible because
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k∈Zn

1BSi(ξ + k) =
∑
k∈Zn

1Si(B
−1ξ + B−1k)

=
∑
k∈Zn

∑
d∈D

1Si(B
−1ξ + k + B−1d ) = |detB|.

Define the setS = ⋃∞i=0 Si. It remains to show (3.4)–(3.7). To see (3.4), notice
thatSi ⊂ (BiS0) \ (Bi−1S0) for i ∈N. Hence the setsSi are pairwise disjoint and∑

k∈Zn
1S(ξ + k) =

∑
k∈Zn

∞∑
i=0

1Si(ξ + k) = ∞.

Observe that (3.5) follows from

BS = BS0 ∪
∞⋃
i=0

BSi ⊃ S0 ∪
∞⋃
i=0

Si+1= S,

while (3.7) is an immediate consequence ofS0 ⊂ S and
⋃
j∈Z BjS0 = Rn. To see

(3.6), letc = ∣∣⋂j∈Z BjS ∩ ((BS0) \ S0)
∣∣. For anyi ∈N,

1= |Si | = |((BiS0) \ (Bi−1S0) ∩ S|

≥
∣∣∣∣((BiS0) \ (Bi−1S0)) ∩

⋂
j∈Z

BjS

∣∣∣∣ = |detB|i−1c.

By letting i →∞, we conclude thatc is zero and hence∣∣∣∣((BiS0) \ (Bi−1S0)) ∩
⋂
j∈Z

BjS

∣∣∣∣ = 0 for all i ∈Z.

This shows (3.6) and completes the proof of Lemma 3.3.

Finally, we are ready to show our main result.

Theorem 3.6. Suppose(Vj )j∈Z is a GMRA. Then the dimension function of the
core spaceV0, D(ξ) := dimV0(ξ), satisfies(D1)–(D3)and

(D4) lim infj→∞D(B−jξ) ≥ 1 for a.e.ξ ∈Rn.
Conversely, ifD satisfies(D1)–(D4) then there exists a GMRA(Vj )j∈Z such that
dimV0(ξ) = D(ξ) for a.e.ξ ∈Rn.
Proof. Suppose that(Vj )j∈Z is a GMRA. Then, by Theorem 3.2,D(ξ) = dimV0(ξ)

satisfies (D1)–(D3). To see (D4), by Proposition 2.6(g) and (h) it suffices to show
that

lim inf
j→∞ σVj (ξ) = lim inf

j→∞ σV0(B
−jξ) = 1 for a.e.ξ ∈Rn. (3.20)

However, by Lemma 2.7, there exists a sequence(jk)k∈N such that

lim inf
k→∞ σVjk

(ξ) = σL2(Rn)(ξ) = 1 for a.e.ξ,
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because theVj converge toL2(Rn) asj → ∞. Because(σVj (ξ))j∈Z is a non-
decreasing sequence, byVj ⊂ Vj+1 and Proposition 2.6(c) we necessarily have
(3.20).

The converse is immediate by Theorem 3.2, (3.2), and (3.3), since (D4) is equiv-
alent to

⋃
j∈Z Bj1 = Rn.

We conclude this section by giving an example of a GMRA whose dimension func-
tion of its core space is infinite on a set of nonzero (but not full) measure. Note
that the construction of a GMRA whose dimension function constantly equals∞
is given in the proof of Lemma 3.3. More examples of dimension functions of
GMRAs associated with orthonormal wavelets can be found in [BRS, Sec. 5].

Example 3.7. For simplicity, assume that we work in the dimensionn = 1 and
that the dilation factorA = 2. Given 0< δ < 1/2, define a setS ⊂ R by

S = [−1/2,1/2] ∪
∞⋃

j=−1

[2j,2j + δ).

An elementary calculation shows thatS ⊂ 2S,
⋂

j∈Z 2jS = ∅, and
⋃
j∈Z 2jS =

R. Hence the sequence(Vj )j∈Z,whereVj = Ľ2(2jS), is a GMRA. Moreover, the
dimension function of its core space satisfies

dimV0(ξ) =
{ ∞ for τ(ξ)∈ (0, δ),

1 otherwise.

4. The Spectral Function of a GMRA

In this section we investigate properties of the spectral function associated to the
core space of a GMRA by showing the fundamental representation formula (4.1),
which is a close analogue to the Calderón reproducing formula in the theory of
wavelets. As an immediate consequence, we show an explicit formula for the
wavelet spectral function, which also gives the usual well-known formula for the
wavelet dimension function.

Theorem 4.1. Suppose(Vj )j∈Z is a GMRA such that{ξ ∈Rn : dimV0(ξ) <∞}
has a nonzero(Lebesgue) measure. Then

∞∑
j=−∞

σW0((A
∗)jξ) = 1 for a.e.ξ, (4.1)

whereW0 = V1ª V0. As a consequence, the spectral function of the core space
V0 can be represented as

σV0(ξ) =
∞∑
j=1

σW0((A
∗)jξ) for a.e.ξ. (4.2)
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It is intuitively clear that (4.1) should hold. Indeed, it appears that by Proposi-
tion 2.6 we haveσWj (ξ) = σDA jW0(ξ) = σW0((A

∗)−jξ) and
∑

j∈Z σWj (ξ) = 1,
since ⊕

j∈Z
Wj = L2(Rn), whereWj = Vj+1ªVj . (4.3)

However, in general the spacesWj are not SI (with respect to the standard lattice
Zn) for j < 0. Indeed, forj < 0 we can be sure only thatWj is SI with respect to
a larger latticeA−jZn. Nevertheless, this idea can be transformed into a rigorous
proof.

Proof of Theorem 4.1.SinceV0 =⊕j<0Wj =
(⊕

j≥0Wj
)⊥

is SI and sinceV0 ⊕⊕
j≥0Wj = L2(Rn), by Proposition 2.6(b) and (g) we have

1= σL2(Rn)(ξ) = σV0(ξ)+
∞∑
j=0

σWj (ξ)

= σV0(ξ)+
∞∑
j=0

σW0((A
∗)jξ) for a.e.ξ. (4.4)

Pick anyξ0 ∈Rn such that (4.4) holds for anyξ = Aiξ0,wherei ∈Z. By applying
(4.4) forξ = Aiξ0 and lettingi →−∞, we obtain

∞∑
j=−∞

σW0((A
∗)jξ) ≤ 1 for a.e.ξ. (4.5)

Assume by way of contradiction that (4.1) fails. Then, by (4.5), there is aδ > 0
such thatE = {ξ ∈ Rn :

∑∞
j=−∞ σW0((A

∗)jξ) < 1− δ} has a nonzero measure.
SinceA∗(E) = E andA∗ is expansive,E must then have an infinite measure.
Clearly, we can partitionE into a countable family of subsets{Ei}i∈N such that
A∗(Ei) = Ei andEi has a nonzero (hence infinite) measure. SinceA∗ induces an
ergodic endomorphism ofTn (see [BRS, proof of Thm. 5.11]), we haveτ(Ei) =
Tn. On the other hand, by (4.4),σV0(ξ) > δ for ξ ∈ E. Therefore, by Proposi-
tion 2.6(h) for a.e.ξ,

dimV0(ξ) =
∑
k∈Zn

σV0(ξ + k) ≥
∑
i∈N

∑
k∈Zn

1Ei(ξ + k)σV0(ξ + k) ≥
∑
i∈N

δ = ∞.

This contradicts our initial hypothesis and so proves (4.1). Equation (4.2) follows
from (4.1) and (4.4).

Theorem 4.2. Suppose that9 = {ψ1, . . . , ψL} ⊂ L2(Rn) is a semi-orthogonal
wavelet(i.e., that the affine system{DAjTkψ : j ∈ Z, k ∈ Zn, ψ ∈ 9} is a tight
frame with constant1) and letWi ⊥Wj for i 6= j, where

Wi = span{DAiTkψ : k ∈Zn, ψ ∈9} = DAi(S(9)).
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Then the spectral function of the core spaceV0 of the GMRA(Vj )j∈Z, Vj =⊕
i<j Wi, is given by

σV0(ξ) =
∑
ψ∈9

∞∑
j=1

|ψ̂((A∗)jξ)|2. (4.6)

Proof. By the semi-orthogonality condition,E(9) forms a tight frame with con-
stant 1 forW0 = S(9) and thusσW0(ξ) =

∑
ψ∈9|ψ̂(ξ)|2 by Lemma 2.3. By (4.4),

σV0(ξ) = 1−
∞∑
i=0

σW0((A
∗)jξ)

= 1−
∞∑
j=0

∑
ψ∈9
|ψ̂((A∗)jξ)|2 =

∑
ψ∈9

∞∑
j=1

|ψ̂((A∗)jξ)|2,

where we used the Calderón formula
∑

ψ∈9
∑∞

j=−∞|ψ̂((A∗)jξ)|2 = 1 for a.e.ξ
(see e.g. [Bo2; HW]). This completes the proof of Theorem 4.2.

As a corollary to Proposition 2.6(h) and Theorem 4.2 we obtain the usual formula
for the wavelet dimension function [BRS; LTW; RS4; We].

Corollary 4.3. Suppose9 = {ψ1, . . . , ψL} ⊂ L2(Rn) is a semi-orthogonal
wavelet. Then the dimension function of the core spaceV0 of the GMRA(Vj )j∈Z
associated with9 is given by

dimV0(ξ) =
∑
k∈Zn

σV0(ξ + k) =
∑
ψ∈9

∞∑
j=1

∑
k∈Zn
|ψ̂((A∗)j(ξ + k))|2. (4.7)

Remark. It should be noted that neither Theorem 4.2 nor Corollary 4.3 are true
for general affine tight frame systems with constant 1. Indeed, Theorem 3.1 of
[PSWX] shows that a (dyadic) normalized tight frame waveletψ ∈ L2(R) is
semi-orthogonal if and only if

∑∞
j=1

∑
k∈Z|ψ̂(2j(ξ + k))|2 is integer-valued al-

most everywhere. Therefore, one can expect that the right-hand side of (4.7) is a
dimension function ofV0, and thus integer-valued, only if9 is a semi-orthogonal
wavelet. As a result, Theorem 4.2 and Corollary 4.3 are not valid for more general
tight affine frame systems.

5. Rieffel’s Incompleteness Theorem for Gabor Systems

In this section we present an elementary proof of Rieffel’s incompleteness theo-
rem for Gabor systems that utilizes the spectral function introduced in Section 2.
We will start by giving some historical background information.

In 1986, Daubechies, Grossmann, and Meyer [DGM] constructed a Gabor
system

{gbl,am(x) = e2πiblxg(x − am)}l,m∈Z
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forming a tight frame forL2(R) with g a compactly supported function in the
Schwartz class for every positivea andb such thatab < 1. Lyubarskii [Ly] and
independently Seip and Wallstén [SW] proved that the original choice of Gabor
[Ga] (i.e.,g a Gaussian) gives rise to a frame ofL2(R) if ab < 1 (this was con-
jectured by Daubechies and Grossmann in 1988).

Both of these results utilize the situationab < 1, since forab > 1 the Gabor
system{gbl,am}l,m∈Z can never be complete inL2(R) for any choice ofg ∈L2(R).
This simple fact was communicated by Baggett [Ba1] and Daubechies [D], and it
follows from the work of Rieffel [Ri] on von Neumann algebras (see also [DLL]).
Even though the argument in [DLL] is rather simple, it is based completely on
[Ri], which requires a reasonable knowledge of the theory ofC∗-algebras. This,
in turn, has motivated several researchers to find an “elementary” proof of the in-
completeness result.

Daubechies [D] was able to find a very elegant argument for the case when
ab > 1 is rational by constructing a function orthogonal to every element of
{gbl,am}l,m∈Z. The problem of (explicitly) constructing such a function in the gen-
eral caseab > 1 is still open. In 1993 Landau [La] proved, under certain assump-
tions on the decay ofg andĝ, that {gbl,am}l,m∈Z cannot be a frame forL2(R) if
ab > 1. Janssen [Ja] showed the same without any decay assumptions for a general
g ∈ L2(Rn); see also [CDH; RS3]. Furthermore, Ramanathan and Steger [RSt]
proved Landau’s result for irregular Gabor systems without any decay assump-
tions. Their methods allowed them to recover Rieffel’s incompleteness theorem.
They also conjectured that the incompleteness result can be extended to the case
of irregular sampling sets with a uniform density smaller than 1, which was later
disproved in [BHW] by exhibiting a counterexample based on Landau’s result
from 1960s. Another proof of Rieffel’s incompleteness theorem (again based on
von Neumann algebras) was recently given by Gabardo and Han [GH] (see also
[HWa, Thm. 3.3]).

We shall now show Rieffel’s incompleteness theorem in its full generality—that
is, for Gabor multi-systems inL2(Rn). The advantage of our approach is that we
do not use any results about von Neumann algebras; instead, our proof is based on
the spectral function introduced in Section 2. Moreover, we are not aware of any
other proofs of Theorem 5.1 in its full generality that do not use the machinery of
von Neumann algebras. For example, [RS3, Cor. 4.7] contains a proof of this re-
sult for compressible Gabor systems, which correspond in one dimension to the
case whenab is rational.

Theorem 5.1. If {g1, . . . , gL} ⊂ L2(Rn) and ifA,B aren× n nonsingular ma-
trices, then the Gabor system

{giBl,Am : l, m∈Zn, i = 1, . . . , L},
where

gBl,Am(x) = MBlTAmg = e2πi〈Bl,x〉g(x − Am), g ∈L2(Rn), (5.1)

is incomplete inL2(Rn) if |detA| · |detB| > L.
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Proof. The standard dilation argument allows us to reduce the general case to
A = Id. Indeed, this follows immediately fromDA(gBl,Am) = (DAg)ATBl,m,

wherel, m∈Zn. We present a proof by contradiction; that is, we shall assume that
the system{giBl,m}i=1, ...,L

l,m∈Zn is complete and then prove that|detB| ≤ L follows.
We start by constructing a multiresolution scheme for Gabor systems. Suppose

that {g1, . . . , gL} ⊂ L2(Rn) and that{giBl,m}i=1, ...,L
l,m∈Zn is the corresponding Gabor

system. For everyl ∈Zn, define

Gl = span{giBl,m : m∈Zn, i = 1, . . . , L} = S({MBl(g
1), . . . ,MBl(g

L)}). (5.2)

We will use the lexicographic order on(Zn,<) defined by(k1, k2, . . . , kn) <

(l1, l2, . . . , ln) if there existr = 1, . . . , n such thatkj = lj for all j < r andkr <
lr . For anyl ∈Zn, let

Vl = span{gBk,m : k < l, k,m∈Zn} =
⊎
k<l

Gk. (5.3)

LetS be the closed subspace ofL2(Rn) spanned by{gBl,m}l,m∈Zn . Our discussion
is general and we do not yet assume that the system is complete. We would expect
to have the following properties of the “multiresolution analysis”(Vl)l∈Zn :
(G1) Vk ⊂ Vl for anyk < l ∈Zn;
(G2) MBk(Vl) = Vl+k for anyk, l ∈Zn;
(G3)

⋃
l∈Zn Vl is dense inS;

(G4)
⋂

l∈Zn Vl = {0};
(G5) V0 is shift-invariant, where0= (0, . . . ,0)∈Zn.

Indeed, all of these conditions except (G4) follow immediately from (5.3). How-
ever, a serious difficulty arises because (G4) does not hold in general (see Example
5.2). Nevertheless, if we assume in addition that the functionsg1, . . . , gL are band-
limited, then this easily implies that (G4) holds. Indeed, if suppĝ1, . . . , suppĝL ⊂
K for some bounded setK ⊂ Rn, thenGl ⊂ Ľ2(Bl+K) for anyl ∈Zn. Therefore,

Vk =
⊎
l<k

Gl ⊂ Ľ2

(⋃
l<k

(Bl +K)
)

and⋂
k∈Zn

Vk ⊂
⋂
k∈Zn

Ľ2

(⋃
l<k

(Bl +K)
)
= Ľ2

(
B

( ⋂
k∈Zn

(⋃
l<k

(l + B−1K)

)))
= {0},

and (G4) follows.
Finally, we will need an additional condition that, in general, is guaranteed to

hold only in the band-limited case. Recall thatI ⊂ Zn is abeginning intervalif,
for everyk, l ∈ Zn, we have thatk < l andl ∈ I together implyk ∈ I. It is not
hard to show that all nonempty beginning intervals of(Zn,<) can be associated
with its ending, which consists of either

(i) elements ofZn or
(ii) elements of the form(k1, . . . , kr ,∞), where 0≤ r < n andk1, . . . , kr ∈Z.
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That is, for any beginning intervalI ⊂ Zn, there existr = 0,1, . . . , n andk ∈ Zr
such thatI = {l ∈Zn : (l1, . . . , lr ) ≤ (k1, . . . , kr )}.

We claim that, for any beginning intervalI ⊂ Zn of type (ii),

(G6)
⋂

l∈Zn\I Vl =
⋃
l∈I Vl.

The inclusion “⊃” in (G6) is obvious. To show “⊂”, suppose that a beginning in-
tervalI is associated with(k1, . . . , kr ,∞) and that supp̂g1, . . . , suppĝL ⊂ K for
some bounded setK ⊂ Rn. For anyr > 0, consider an orthogonal projectionPr
ofL2(Rn) ontoĽ2((−r, r)n) defined byP̂rf = 1(−r,r)n f̂ . For anyj ∈Z, consider
an index setIj,

Ij = {(k1, . . . , kr +1, m1, . . . , mn−r )∈Zn : m1 ≤ j, (m1, . . . , mn−r )∈Zn−r}.
We now claim that, for sufficiently smallj, Pr

(⊎
l∈Ij Gl

) = {0}. Indeed, iff ∈⊎
l∈Ij Gl then

suppf̂ ∩ (−r, r)n ⊂
⋃
l∈Ij
(Bl +K) ∩ (−r, r)n

= B
(⋃
l∈Ij
(l + B−1K) ∩ B−1(−r, r)n

)
= ∅.

Thus, for sufficiently smallj,

Pr

( ⋂
l∈Zn\I

Vl

)
⊂ Pr(V(k1, ...,kr+1,j,0, ...,0))

⊂ Pr
(⊎
l∈I
Gl ]

⊎
l∈Ij

Gl

)
= Pr

(⊎
l∈I
Gl

)
= Pr

(⋃
l∈I
Vl

)
.

Sincer > 0 is arbitrary, the preceding formula yields (G6).
We shall use (G1)–(G6) in the same way one uses the multiresolution analysis

scheme to construct wavelets. This is exactly true in dimensionn = 1, but an ad-
ditional argument based on (G6) is needed in dimensionsn > 1. In our case, for
everyl ∈Zn we define a space

Wl = Vl+1ªVl, (5.4)

where1= (0, . . . ,0,1)∈Zn. By (G2) we have

MBk(Wl) =Wl+k for k ∈Zn. (5.5)

We claim that from (G1)–(G6) it follows that

S =
⊕
l∈Zn

Wl. (5.6)

Indeed, by (G1), (G3), and (G4),

S =
⊕
I

( ⋂
l∈Zn\I

Vl ª
⋃
l∈I
Vl

)
, (5.7)
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where the orthogonal sum is taken over all nonempty beginning intervalsI ⊂ Zn.
By (G6), the orthogonal sum in (5.7) is effectively taken only over the beginning
intervals of type (i), which clearly implies (5.6).

The decomposition (5.6) allows us to see that the spectral function ofS is given
by a simple formula. In fact, we have

W0 = V1ªV0 = (V0 ]G0)ªV0.

By (5.2),G0 is a SI space with the dimension function dimG0(ξ) ≤ L for a.e.ξ ∈
Rn. Hence, by (G5),W0 is also a SI space with the dimension function that satisfies
dimW0(ξ) ≤ dimG0(ξ) ≤ L for a.e.ξ ∈Rn. Therefore,W0 has aquasi-orthogonal
basis9 ⊂W0 with cardinality at mostL; that is,E(9) is a tight frame with con-
stant1 forW0 (see [BDR1]). The spectral function ofW0 is thusσW0 =

∑
ψ∈9 |ψ̂ |2

by Lemma 2.3. Therefore, by Proposition 2.6, (5.5), and (5.6), we have

σS(ξ) =
∑
l∈Zn

σWl (ξ) =
∑
l∈Zn

σMBl(W0)(ξ)

=
∑
l∈Zn

σW0(ξ − Bl) =
∑
l∈Zn

∑
ψ∈9
|ψ̂(ξ − Bl)|2 (5.8)

for a.e.ξ ∈Rn.
The system{gBl,m}l,m∈Zn is complete inL2(Rn) if and only if S = L2(Rn),

which by Proposition 2.6 is equivalent to havingσS = 1 a.e. If we integrate this
equality over the cubeB([0,1]n), then by (5.8) we have

|detB| =
∫
B([0,1]n)

∑
l∈Zn

∑
ψ∈9
|ψ̂(ξ − Bl)|2 dξ

=
∑
ψ∈9

∑
l∈Zn

∫
B(l+[0,1]n)

|ψ̂(ξ)|2 dξ =
∑
ψ∈9
‖ψ‖22.

Now9 is a quasi-orthogonal basis ofW0 and so we must have‖ψ‖2 ≤ 1 for every
ψ ∈9, which proves that|detB| ≤ L.

To drop the assumption thatg1, . . . , gL are band-limited, we approximate each
gi by a sequence of band-limited functions{gi,r}r∈N ⊂ L2(Rn) in theL2(Rn)-
norm. For example, we can define such a sequence byĝ i,r = 1(−r,r)n ĝ i for r ∈N,
and then

lim
r→∞‖g

i − gi,r‖2 = 0. (5.9)

Let S r be the closure of the space spanned by the Gabor system{gi,rBl,m}i=1, ...,L
l,m∈Zn

and letPSr be the orthogonal projection ontoS r for r ∈ N. For everyl, m ∈ Zn,
we have

‖giBl,m − gi,rBl,m‖2 = ‖gi − gi,r‖2.
Therefore, the completeness of the system{giBl,m}i=1, ...,L

l,m∈Zn and (5.9) imply that, for
everyf ∈L2(Rn),

lim
r→∞‖PSr f − f ‖2 = 0.

Thus, by Lemma 2.7 it follows that
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lim
j→∞ σS

r j (ξ) = 1 for a.e.ξ (5.10)

for some subsequence{rj}j∈N. For everyj ∈ N, the functionsg1,rj, . . . , gL,rj are
band-limited and so by (5.8) we have

σS r j (ξ) =
∑
l∈Zn

∑
ψ∈9j
|ψ̂(ξ − Bl)|2,

where9j ⊂ L2(Rn) has cardinality≤ L and‖ψ‖2 ≤ 1 forψ ∈9j . This equality
together with (5.10) gives us

lim
j→∞

∑
l∈Zn

∑
ψ∈9j
|ψ̂(ξ − Bl)|2 = 1 for a.e.ξ ∈Rn.

Integrating this limit equality over the cubeB([0,1]n) yields|detB| ≤ L. Indeed,
by Fatou’s lemma we have

|detB| =
∫
B([0,1]n)

lim
j→∞

∑
l∈Zn

∑
ψ∈9j
|ψ̂(ξ − Bl)|2 dξ

≤ lim inf
j→∞

∫
B([0,1]n)

∑
l∈Zn

∑
ψ∈9j
|ψ̂(ξ − Bl)|2 dξ = lim inf

j→∞
∑
ψ∈9j
‖ψ‖22 ≤ L,

which concludes the proof of Theorem 5.1.

The following example shows that condition (G4) does not hold in general.

Example 5.2. We will construct a functiong ∈L2(R) such that the correspond-
ing Gabor system{gl,m(x) = e2πlxg(x − m)}l,m∈Z fails condition (G4)—that is,
such that ⋂

l∈Z
Vl 6= {0}, where Vl = span{gk,m : k < l, k,m∈Z}. (5.11)

Let g ∈ L2(R) be such thatg(x) 6= 0 if and only if x ∈ (0,1), and also let∫ 1
0 log|g(x)| dx = −∞. Then, by a classical result of Helson [He1, pp. 13, 21],

the system of functions{e2πkxg(x) : k ∈ N} is complete inL2(0,1) := {f ∈
L2(R) : suppf ⊂ (0,1)}. As an immediate consequence,

span{e2πkxg(x) : k < l} = L2(0,1) for any l ∈Z.
Therefore,Vl = L2(R) for any l ∈ Z, and (5.11) holds. This example shows that
we cannot expect (G4) to hold unlessg satisfies some additional hypotheses (e.g.,
thatg be band-limited).
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