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The Spectral Function of Shift-Invariant Spaces

MARCIN BOwNIK & ZIEMOWIT RZESZOTNIK

1. Introduction

The shift-invariant spaces are closed subspacég@”) that are invariant under

all shifts (i.e., integer translations). The theory of shift-invariant subspaces of
L?(R™) plays an important role in many areas, most notably in the theory of wave-
lets, spline systems, Gabor systems, and approximation theory [BMM; BDR1,;
BDRZ2; BL; Bol; HLPS; Ji; RS1; RS2; Rz2]. The study of analogous spaces for
L?(T, H) with values in a separable Hilbert spaggin terms of range func-
tion, often called doubly invariant spaces, is quite classical and goes back to Hel-
son [Hel].

The general structure of shift-invariant (Sl) spaces was revealed in the work of
de Boor, DeVore, and Ron [BDR1] with the use of fiberization techniques based
on range function. In particular, conditions under which a finitely generated Sl
space has a generating set satisfying some desirable properties (e.g., stability, or-
thogonality or quasi-orthogonality) were given. This has been further developed in
the work of Ron and Shen [RS1] with the introduction of the technique of Grami-
ans and dual Gramians. The general properties of S| spaces and shift-preserving
operators have also been studied by the first author [Bol].

The contribution of this paper is a systematic study of yet another tool in SI
spaces, apparently overlooked in the previous research, which we cglebieal
function. This function was introduced by the second author in his Ph.D. the-
sis. It was motivated by [BDR1] and is similar to the multiplicity function studied
by Baggett, Medina, and Merrill [BMM]. More precisely, to every S| subspace
of L2(IR") we associate a function d&" that contains much useful information
about that space.

Although [BDR1] and Helson’s range function [Hel] is the origin of this ap-
proach, it is thanks to Weiss (see [WW)]) that the spectral function has a very
elementary definition. Namely, for every S| spaéec L?(R”"), there exists a
countable family of function® whose integer shifts form a tight frame with con-
stant 1 for the spac¥®, and the spectral function df is defined as the sum of
the squares of the Fourier transforms of the elements (dee Lemma 2.3). It
can be shown that such a function is well-defined, additive on orthogonal sums,
and bounded by 1. Moreover, it behaves nicely under dilations and modulations,
which makes it useful in the study of wavelet and Gabor systems. For example, it
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has already been used to show a new characterization of wavelets conjectured by
Weiss (see [Rz1]), a result originally proved in [Bo2] by applying the techniques
of [RS1; RS2]. The present paper is organized as follows.

In Section 2 we show several equivalent methods of defining the spectral func-
tion, and we study its basic properties such as behavior under dilations and modu-
lations. We also show that the spectral function can be used to characterize the ap-
proximation order of Sl spaces following [BDR2; BDR3]. In Section 3 we apply
the spectral function to give a complete characterization of dimension functions,
sometimes called multiplicity functions, associated to generalized multiresolution
analyses (GMRA) and refinable spaces. This extends the results of Baggett and
Medina [BM], who considered only locally integrable multiplicity functions, as
well as the results of Speegle and the authors [BRS] regarding the wavelet dimen-
sion function. In Section 4 we show an analogue of the Calderén reproducing
formula for GMRAs and give an explicit formula for the wavelet spectral func-
tion, whose periodization is a well-studied wavelet dimension function. Finally,
in Section 5 we present an elementary proof of Rieffel's incompleteness theorem
for Gabor systems utilizing the spectral function.

In order to define the spectral function we need to recall a few basic facts about
shift-invariant spaces.

A closed subspac€ c L?(R") is calledshift-invariant(Sl) if for every func-
tion f € V we also havdy f € V whenk € Z", whereT, f(x) = f(x —y) is the
translation by a vectoy € R”. For any subseb c L?(R"), let

S(®) =3spanTip :pe®, keZ"}

be the Sl space generated #y A principal shift-invariant(PSl) space is a Sl
spaceV generated by a single functigne L?(R"), thatis,V = S({¢}) = S(p).
A range functioris any mapping

J: T" — {closed subspaces 6f(Z")},

whereT” = R"/Z" isidentified with its fundamental domair{/2, 1/2)". We say
that J is measurablédf the associated orthogonal projectioRs(&): €2(Z") —
J(&) are operator measurable; that §s,—~ P;(&)v is measurable for any €
02(7m.

Given any subseE C R”, let E¥ be theperiodizationof E; in other words,
E? = Uiezn(E + k). LetT: R" — T" be thetranslation projectiont (&) =
& + k, wherek is a unique element df" such thatt + k € T". Finally, let
T: L>(R") — L?(T", £%(Z")) be an isometric isomorphism defined fgre
L%(R") by R

TFiT" — L32Z"), TfE = (f¢ +k)ezn,

wheref(£) = [ f(x)e 28 dx.

The following proposition, due to Helson [Hel, Thm. 8], plays an important
role in the theory of Sl spaces i?(R”). A proof of Proposition 1.1 can be also
found in [Bol, Prop. 1.5].

ProposITION 1.1. A closed subspacg c L?(R") is Sl if and only if
V ={feL?R") : Tf(€) e JE&) fora.e.& eT"}, (1.1)
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whereJ is a measurable range function. The correspondence betwesmd J
is one-to-one under the convention that the range functions are identified if they
are equal a.e. Furthermore, i = S(®) for some countablé c L?(R"), then

J(§) =SpanTy(§) : ¢ € P} 1.2)

The dimension functiorof a SI space/ ¢ L?(R") is a mapping dim: R" —

N U {0, oo} given by dim, (¢§) = dim J (&), whereJ is the range function corre-
sponding toV. Alternatively, the dimension function df can be introduced as
the multiplicity functionof the projection-valued measure coming from the rep-
resentation of the latticB” on V via translations by Stone’s theorem; see [BM;
BMM]. The equivalence of the dimension function with the corresponding mul-
tiplicity function can then be easily deduced from [He2]. Note also thavfet
L2(E), whereE is a measurable subset®f and

L*(E) = {f e LA(R") : suppf C E}, (1.3)
its dimension function is given by
dimy &) = Y 1p( + k). (1.4)

keZm
Finally, we need to recall a few facts about dual Gramian analysis of Sl systems

introduced by Ron and Shen [RS1]. Suppdse L?(R") is a countable set of
functions such that

D 1g@E)P <o for aekeR" (1.5)

ped
Thedual Gramianof a Sl systemE(®), where
E(®) ={Tip:keZ", e d}, (1.6)

is a mapG from the fundamental domaifi” = (—1/2,1/2]" into self-adjoint
infinite matrices(gx. /)« ;cz» defined for a.e§ € T" by

GEw1:=) ¢E+hPE+1) for k,lez" 1.7)

ped

Recall thata matrix (£) = (G (§)i.1)x.1ez» is bounded od?(Z") if G(£) (given
by (G(&)er, 1) = G(&)r.1, Where(e)rezn is the standard basis 6f(Z")) de-
fines a bounded operator @A(Z"). It can be shown that, for any fixede T”,
{To&) : ¢ € ®) C £3(Z") is a Bessel family if and only it (¢) is a bounded
operator in¢2(Z"). Furthermore, it follows from [RS1, Thm. 3.3.5] that (1.5) is a
necessary (but not sufficient) condition fB(®) to be a Bessel family.

The following result due to Ron and Shen [RS1] characterizes when the system
of translates of a given family of functions(®) is a frame (or Bessel family if
a = 0) in terms of the dual Gramian. See also [Bol, Thm. 2.5(ii)].

THEOREM 1.2. Suppose thab ¢ L?(R") is countable and tha® satisfieg1.5).
Then the systerfi(®) is a frame for a S| spacg(®) with frame bound® < a <
b < oo, that is,
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al fIZ <" Y UL Te)? < bl fI? forall feS(®),

ped keZ"
if and only if the dual GramiarG (£) satisfies
allv|l?> < (GE)v, v) < b|jv||> for ve J() and a.e£ eT",
whereJ(§) is the range function af (®) given by(1.2).

2. The Spectral Function

In this section we introduce the notion of a spectral function associated to a shift-
invariant space and then show its basic properties. The spectral function, which
was introduced and investigated in [Rz, Sec. 1.4], contains much more informa-
tion about shift-invariant spaces than the dimension function. It is a very useful
tool that enables us to show many results that seem to be otherwise inaccessible
by using the properties of dimension function alone.

DEFINITION 2.1.  Suppos& C L?(R") is S| with the range functiod (¢£) and
the corresponding projectioR; (§). The spectral functiorof V is a measurable
mappingoy : R" — [0, 1] given by

ov(E +k)=||Py(E)e]|? for EeT" and k e Z", (2.1)
where{e; }rez» denotes the standard basistétZ") andT” = [-1/2,1/2)".

Note thatoy (§) is well-defined for a.e5 € R”, since{k + T" : k € Z"} is a parti-
tion of R”. Moreover, there is a simple relationship between the spectral and the
dimension function:

dimy &) = > ov(& +k). (2.2)

kezn

Indeed,Y" ., ov(E + k) =Dzl Py e||? = dim Ran( P (§)) = dimy (£).

Since our definition is rather abstract, we present a description of the spectral
function of a general Sl spadeé in terms of the spectral function of orthogonal
PSI components df.

ProOPOSITION 2.2. Let & be the set of all Sl subspacesIGi(R"). Then the spec-
tral functionoy of V € & is determined as the unique mapping

0.6 — L®(R"

that satisfies

R . -1 .
19 1P( X peznl@(E +K)I?) ~ for & € suppg,
5§ = { (Liez ) _ (2:3)
0 otherwise,
which is additive with respect to the orthogonal suthst is,
Vz@v,-forsomev,-GG — Uv=20w~ (2.4)

ieN ieN
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Proposition 2.2 is a consequence of yet another description of the spectral function
of Sl spaceV in terms of the Fourier transform of a system of functidnehose

shifts form a tight frame fol. Lemma 2.3 can also serve as an alternative defini-
tion of the spectral function [Rz1; Rz2]. Indeed, a direct calculation involving the
standard Gabor orthonormal bai$™(*:/) 1u(x — k)); ez Shows that formula

(2.5) is well-defined and independent of the chofcésee [Rz2, Thm. 1.8]).

Lemma 2.3. Suppose a Sl spadé c L2(R") is generated by the shifts of a
countable familyd c V; thatis, letV = S(®). If E(®) = {Trp : k€ Z", ¢ € D}
forms a tight frame with constadtfor the space/, then

ov(®) =) 18@I> (2.5)
ped
In particular, (2.5)does not depend on the choice®dfas long asE(®d) is a tight
frame with constant for V.

Proof. Let J (&) be the range function df and letP, (&) be the corresponding or-
thogonal projection ontd (). By [Bol, Thm. 2.5(ii)], E(®) is a tight frame with
constant 1 folV if and only if {T¢ (&) : ¢ € ®} is a tight frame with constant 1 for
J(&) for a.e.£. Therefore, for a.& € T",

lI? =) "1, Te@)? forall ve ).

ped
Hence
IPEWI? =Y (v, Te@)* forall ve*(2Z")

ped

and, in particular, for any € Z" we have

ov(E+k) = [PEecll> =) e, Te®)* = Y 19E + k)%

ped ped
This shows (2.5) and completes the proof of Lemma 2.3. O

REMARK. Lemma 2.3 also shows that there is a close connection between spec-
tral functions and dual Gramians. Indeed, for a given Sl spaead a family

® C V such thatE(®) is a tight frame with constant 1 fdr, we can consider

the corresponding dual Grami&n(¢) given by (1.7). By Theorem 1.Z;(€) re-
stricted toJ (¢) is an identity on/(£). Since the dual Gramia@i (£) is self-adjoint

and since ke€ (&) = J(&)1, it follows thatG (¢) is just the orthogonal projection
onto J(§), that is,G(£) = P,(£). Therefore, by (1.7), the spectral function of
represents the diagonal entries of the dual Gramiaf(df).

Proof of Proposition 2.21t suffices to show that the spectral functiersatisfies
(2.3) and (2.4). Indeed, any mappiag & — L*°(R") satisfying (2.3) and (2.4)
is unigue, since any Sl space can be decomposét as@weq, S(p) for some
countable familyd ¢ L?(R") (see e.g. [Bol, Thm. 3.3] and [Rz2, Thm. 1.2]). To
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see (2.3), recall from [BL; BDR1] that i§(¢) is a PSI space then the functipp
given by

1B remldE +0)2) 2 for & e suppg,

$o®) = { 0 otherwise,

is thequasi-orthogonal generatdior S(¢), meaning thatE(¢y) is a tight frame
with constant 1 foS(¢). Hence, by Lemma 2.3, we have (2.3).

Next, suppose/ = @,y Vi for some S| spaceg;. We can decompose each
V;asV; = EB%(D,, S(p) for somed; C V; such thatE(d;) forms a tight frame
with constant 1 foV;, i € N. Since E(®) forms a tight frame with constant 1 for
V, where® = [ J, . ®;, by Lemma 2.3 we have

ov(&) =Y 19p@E1P =YY 19®OF =) ov®.
ped ieN ped; ieN
This completes the proof of Proposition 2.2. O
Next we will show that the spectral function behaves nicely with respect to the
action of modulations and dilations. This will be relevant in our study of Gabor

systems and wavelets—or, more generally, framelets. Recall thatdtalation
by a vectorz e R” of f e L?(R") is given by

Mo (f)(x) = e f(x).
Thedilation by ann x n nonsingular matrixA of f € L?(R”") is given by
Dy f(x) = |detA|2f (Ax).

We restrict our attention to dilations preserving the latticé” because this is ex-
actly when in general we can expect thiafV is Sl (with respect to the action of
Z™) if Vis Sl.

THEOREM 2.4. LetV c L?(R") be Sl and letA be ann x n integer matrix with
detA # 0. ThenD,(V) is Sl and

op (&) = oy (A) %), (2.6)
whereA* is the transpose oA. Likewise, for any: e R", M, (V) is Sl and
om,v)(§) = ov(§ —a). (2.7)

Proof. First we decompos& as the orthogonal sui = @, _ S(¢;), where
@; is a quasi-orthogonal generator 8fy;). Since D, is an unitary operator on
L?(R") we haveD,V = D, n DaS(p;), and by Proposition 2.2 it suffices to
show that

oD (&) = 05 (A7), (2.8)

wheregp is a quasi-orthogonal generator®fy).
Let £ be a set ofldetA| representatives of different cosets &f/AZ". For
l € L, define®; e L2(T", ¢3(Z")) by
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®;(6) = T(DaTip) (§) = (|detA| Y25 ((A")E + k))e 2T Exhuly, o
LetD be any set ofdetA| representatives of different cosets3YA*Z". Ford €
D, definew,; e L2(T", £%(Z")) by

PUAYUE + k) (fked+ A*Z",
Wy (§) (k) = { .
0 otherwise.

Forl € L, we have
@(5) = e’z”"((A*)flg’”|detA|’1/2 Z 6727ri((A*)’1d,1)\I,d(%.).
deD
Because th@detA| x |detA| matrix

—1/2 _—2mi((A*) 1,1
(|detA| Y2 2milA =Dy, o yep

is unitary, by a simple calculation we have

D v, @@ =Y (v, W(§)* forall vee*(Z". (2.9)
lel deD
SinceW, (&) L Y, (&) for d # d’ € D and since| W, ()] is either 0 or 1, the
system{¥, (&) : d € D} is a tight frame with constant 1 for its span. By (2.9),
{®;(§) : | € L} is also a tight frame with constant 1 for the spab@) =
sparf®;(§) : [ € L} = spaiV, (&) : d € D}, whereJ(§) is the range func-
tion of DyS(¢). Therefore, for every € Z",

o5& +5) = [ Prgyerl®> =Y [D1E). endl> = D [(Wa(®). ex)[?
lel deD
= [§((A")THE + k) = 055 (A) HE + ).
This shows (2.8) and therefore (2.6).
The case of modulations is much easier, since by Proposition 2.2 it suffices to
showoy, s (&) = o5, (& —a), whereyp is a quasi-orthogonal generatorsfy).
SinceM, ¢ is a quasi-orthogonal generator®fM,¢) = M,S(¢), we have

o5& = Mg ©) = 19 — )? = 05 — a).
which completes the proof of Theorem 2.4. O

As an immediate consequence of (2.2) and Theorem 2.4, we obtain the following
corollary.

COROLLARY 2.5. Suppose tha¥ ¢ L?(R") is Sl and thatd is ann x n integer
matrix withdetA # 0. Then

dimp,y (&) = Y _ dimy ((4") 7 +d)), (2.10)

deD
whereD is the set ofldetA| representatives of different cosetsof/(A*Z").

ExampLE 1. Given a measurable sé& c R”, let V = iz(E). Thenoy =
1g. Indeed, consider the family of functiorig)iez» given by@, = Llenwtn)-
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Clearly gy is a quasi-orthogonal generator®fy; ), andS(¢r) L S(pi) for k #
k' € Z". Now it suffices to invoke Lemma 2.3. ConverselyVifis any Sl space
such thatby = 15 for some measurable c R”, then necessarily = LZ(E).
Indeed, let/(§) be the range function df. Since

) 1 ifE+keE,
Py &)exll” =0ov(E +k)=1(E +k) = { 0 if £+keE,
it follows that
e, ifE+keE,
Egkk:{o if £+k¢E,

and hence (¢§) = Sparie; : £ + k € E} is the range function at2(E). Therefore,
V = L%E).

ExampLE 2. There exist distinct Sl spaces that have identical spectral functions.
Indeed, letypg, 1 € L2(R) be given bygo = 27Y2(L01 + La2) andg; =
27Y2(101 — La2)- Theng; is a quasi-orthogonal generatorigf= S(g;); that

is, E(¢;) is a tight frame ofS(¢;) with constant 1. Hencey, = oy, = 2*11(0,2),
butVy L Vi.

We can now collect the main properties of the spectral function into a single
proposition.

ProposITION 2.6. Let & be the set of all SI subspaces bf(R”). Then, for

V, W € &, the spectral function satisfies the following properties

(@ O<oy(®) <L

(b) V= @ieNVi (Vie®) = oy(§) = ZieN O-V,'(S);

) VCW = oy(é) <ow(b):

@dVCWw = (V=W < ov() =ow(®)

(€) ov(®) =1p(§) < V =L%E);

(f) om,wv)(€) = o(& —a), whereM, is a modulation by: € R";

(9) op,v (&) = oy ((A*)~%), where D, is a dilation by nonsingular integer ma-
trix A;

(h) dimy (&) = > ;ez0 ov(E +K).

We will also need the following approximation lemma.

Lemma 2.7. LetV be a Sl space and leV;);cn be a sequence of Sl spaces.
Suppose thaPy, — Py strongly asj — oo, where Py denotes the orthogonal
projection ontoV; that is, for everyf e L(R"), let |Pv,f — Pvfll2 — Oas

J — oo. Then, for any measurable sEtC R” with finite Lebesgue measure,

/‘lovj(é) —oy(§)|dé - 0 asj — oo. (2.11)
E

In particular, there exists a subsequenge)en such that
klim oy, (&) =oy(§) for a.efeR" (2.12)
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Proof. Let J andJ; (j € N) be the range functions correspondingtandV;, re-
spectively. Denote the corresponding projections’pg) and Py, (§). Then, for
any f € LA(R"),

T(Pyf)E) = PiE)(Tf(E) for a.e&eT” (2.13)
by [Hel, p. 58; Bol, Lemma 1.4]. Because

1Py f — PyfI? = IT(Py f — Pyf)I2
- /T WTPyDE ~ TPy )@ ds

= /En||PJ(E)(Tf(§)) — P& (TFE)F d8,

it follows that, for anyk € Z", we obtain

O=j|im/ 1Ps(&)(ex) — P () (en) |2, dE
—00 JTn

> lim lov (&)Y — ov, ()2 d&
=00 JiyTn '
1 )
> lim / lov (&) — oy, () 2 dt
J=00 Jk4T"
1

2
> 7 lim ( / |av<s>—ov_,.<s>|ds>
J 7O Jk+Tn

by taking f € L2(R") such thatTf(¢) = e for all £ € T". This shows (2.11).
Finally, (2.12) is a consequence of (2.11) and the standard diagonal subsequence
argument. UJ

The following lemma provides another way of looking at the spectral function.

LEmMA 2.8. Supposé/ is Sl andK C R" is a measurable set such thafy is
one-to-one. Then

1Py (dp)lI* = / oy (§) d§, (2.14)
K
where Py is an orthogonal projection ont¥.
Proof. Let f = 1x. Then, for any e T”,

e, ifthereisan € Z" such that + 1 € K,
0 otherwise.

776 - |
Therefore, by (2.13),

1Py (NP = /T NPIE(TFENIPdE = ) /T P en* 1k (€ +1) dt

leZ

= [ vt +nas = [
n K

leZ"
whereJ is the range function o¥. O
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As a consequence of Lemma 2.8 and the Lebesgue differentiation theorem, we
have another formula for the spectral function:

. ||PV(iB(g M II?
= | e VARSE. /i

ov® = M. B& n
whereB (&, r) denotes the ball with centérand radius-.

for a.e.£ eR”, (2.15)

APPROXIMATION ORDERS OF SI SPACES. As an example of the utility of the spec-
tral function, we will show how it can be used to characterize approximation
orders of Sl spaces. In order to state the main result we recall a few basic facts
from [BDR1; BDR2].
SupposeV C L?(R") is a closed subspace. For aiy- 0, define the scaled
space
Vi i={g(-/h) 1 g €V} = Dya(V),

where D,-1 is the dilation operator by a diagonal matfixtId. For any closed
subspace/ ¢ L%(R") and a functionf € L?(R"), we define theapproximation
error as

E(f,V):=inf{llf —gll: g€V}

Givenk > 0, we say that the spadé providesapproximation order if there is
a constanC > 0 such that

E(f, V") < Ch*|| fllgeny forall f e HYR™M), (2.16)
where H*(R") is theSobolev space
HYR") = {(f € LA(R™) < || fllmeceny = A+ 1 - DF Il < oo}

We say thaV’ providesdensity ordek if, for a givenk > 0, for every f € H¥(R")
we have (in addition to (2.16))

E(f, V" = o(h*) ash — O. (2.17)
Giveng € L?(R"), we define the function ,: T" — [0, 1] by
16(®)[? Y2 V2
Ay(€) = <1— ~ ) = (1— osp(ENYA (2.18)
’ > reonlb(E + )2 @

where Q0 should be interpreted as 0. De Boor, DeVore, and Ron [BDR2, Thms.
1.6, 1.7] showed that the approximation and density orders of a PSI $jgage

are characterized by the behavior of the functior> A, (&)/|£|* at the origin.
Moreover, they also proved the following remarkable result showing that approx-
imation by arbitrary (closed) SI subspaces/3{R") can be reduced to the case
of PSI spaces.

THEOREM 2.9 [BDR2, Thm. 1.9]. Suppose tha¥V ¢ L?(R") is Sl and that
k > 0. Then the following statements are equivalent

(i) V provides approximation ordek;
(if) there exists @& € V such thatS(¢) provides approximation ordek,
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(iii) §(PV (¢0)) provides approximation ordet, wheregy is the sinc-function,
¢o = 1=, and Py is the orthogonal projection ont®.

Moreover, the same is true whén> 0 and the term “approximation order” is
replaced by “density order”.

As a consequence of this result, we obtain the following characterization of ap-
proximation and density orders of Sl spaces in terms of the spectral function.

THEOREM 2.10. A Sl space/ C L2(R") provides approximation order > 0 if
and only if there is &€ > 0 such that

oy(€) > 1—C|g?* for a.e.e €T (2.19)
The spacé/ provides density order > 0 if and only if (2.19)holds and

fim = / 171 — oy () d& = 0. (2.20)
h—0 h" KT
Proof. Letgo(x, ..., x,) = [/, Sin(mx;)/(7x;) € L?(R™) be the sinc-function;
that is,¢o = 1. Let 1 = Py (¢o) be the orthogonal projection gf, onto V.
Then, by Theorem 2.9, the approximation order and the density order provided by
V are the same as the approximation order and the density order provided by its
PSI subspacé&(¢1).
Note that
0'5(451)(5) =oy(&) for a.ete T" (221)

Indeed, take ang € T”. By (2.13),

T(P1) (&) = T(Pv(d0)(E) = Psi(§)(T(¢o)(&)) = Ps(§)(eo).
Hence, ifT(¢1) () # 0 then by (2.3) we have

|p1(&)[2 [(P1(§)eo, eo)|? »
= = = P = .
o5 () IT@DEN2 — I1PyE)(eo)l2 |28} en)l” = ov )

If T(¢1)(&) = 0 then clearlysg,) () = ov(£) = 0. This shows (2.21).

By [BDR2, Thm. 1.6],S(¢1) provides approximation ordér> 0 if |- | %A,
is in L°°(T"). Combining this with (2.18) and (2.21) shows (2.19). Likewise, by
[BDR2, Thm. 1.7],5(¢1) provides density order > 0 if |- | %A, isin L>(T")
and

fim A" f 1§72 Ay, ()]2dE = 0.
h—0 hTn
Combining this with (2.18) and (2.21) shows (2.20), which completes the proof of
Theorem 2.10. O
3. The Dimension Function of a GMRA

As one of the applications of the spectral function studied in Section 2, we extend
a result from [BM] by providing a characterization of dimension functions as-
sociated with an arbitrary generalized multiresolution analysis (GMRA). In other
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words, we characterize all multiplicity functions associated with the core subspace
of a GMRA. This extends a result of Baggett and Merrill [BM], who considered
only locally integrable multiplicity functions. In this work we not only allow non-
integrable multiplicity functions, we also allow functions equabtoon a set of
nonzero measure. As an immediate consequence, we also obtain a characteriza-
tion of wavelet dimension functions shown by Speegle and the authors in [BRS].

We start by recalling the notion of a GMRA, which has been studied by a num-
ber of authors [Ba2; BM; BMM; BL; Bo3; HLPS; LTW].

DEerINITION 3.1. LetA be a fixedn x n integer expansive dilation matrix (i.e.,
for all eigenvalues. of A, |A| > 1). We say that a sequence of closed subspaces
(Vi)jez C L?(R") is ageneralized multiresolution analySi§MRA) if

Vi C Vs, DaV; =V UV—L(R” (V= {0}
ez

JjeZ

andVp is Sl. The spacé#) is often called aore spacef (V;);cz. An (orthonor-
mal) wavelet is a collectiod = (%, ..., ¥’} such that the system

DTy jez" keZ" 1=1,..., L)
is an orthonormal basis df?(R").

There is a close relationship between wavelets and GMRAs. For any orthonormal
wavelety we can associate a GMRA); <z by setting

V, =spaiDyu Ty’ :i < j, keZ" 1=1,...,L}.

Conversely, [BMM] characterized GMRAs that can be generated by orthonor-
mal wavelets. These are precisely GMRAS);<z such that the dimension func-
tion dimy, (&) of the core spac#, is finite for a.e £ and satisfies the consistency
equation

> dimy, (A 7HE +d) = dimy,(§) + L for a.e,
deD

whereD is the set ofdetA| representatives of different cosetfA* Z". Another
related result is the characterization in [LTW] of Riesz wavelets that generate
GMRAs.

A key ingredient of a GMRA is its core spadg, which uniquely determines
the subspace®; = D,;Vo, j € Z. Since the core space is a refinable space, our
main goal is to give a complete characterization of dimension functions of refin-
able spaces; see Theorem 3.2. The proof of this result will follow the ideas from
[BRS]. Recall that a Sl spadé ¢ L2(R") is said to baefinable(with respect to
the expansive dilatiod) if V C D4V.

Tueorem 3.2. Suppose a Sl spadée C L2(R") is refinable, that isy C D,V.
Then the dimension function &f D(¢) := dimy (§), satisfies
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(D1) D: R" - NU {0, oo} is a measurabl&."-periodic function

(D2) 3 ,.p D(B™YE +d)) > D(£) for a.e.& e R", whereD is the set of repre-
sentatives of different cosets Bf/BZ" (B = A*); and

(D3) > iezn 1aE + k) = D(§) for a.e.& eR”, where

A ={£eR": DB /&) > 1for j e NU{0}}. (3.1

Conversely, suppose th#t satisfieg(D1), (D2), and (D3). Then there exists
a refinable spacé& such thatdimy (§) = D(&) for a.e.& € R". Furthermore,V
satisfies

() DaV = {0}, (32)
JEZ

Duv = L2<UBJ'A>. (3.3)
JEZ JEZ

Proof of Theorem 3.2: Necessity (iD1)—(D3). Clearly, the dimension function
of any Sl spacé/ must satisfy (D1). Condition (D2) is a consequence of Corol-
lary 2.5, sinceV C D4V implies that diny (§) < dimp,y (§). To show (D3), note
thatV c D,V implies thatoy (§) < oy (B~) by Proposition 2.6(c) and (g). By
Proposition 2.6(h)gy (§) # 0 implies dim,(§) # 0 and hence dig(¢) > L
Thus

A = (&€ eR" : dimy (B 7€) > 1for j e NU {0}}
D {§ eR" 1oy (§) # 0} = suppoy.
Therefore, by Proposition 2.6(a) and (h),

Do LE+k) = ) ov(E +k) =dimy (@),

keZ" kezZn
which shows (D3). O

The key role in the proof of thsufficiencyof (D1)—(D3) in Theorem 3.2 is played
by Lemma 3.3.

LeEMMA 3.3. Suppose that a functioP satisfies(D1), (D2), and (D3). Then
there exists a measurable setc R" such that

DE =) 15 +k), (3.4)
keZ"
S C BS, (3.5)
(B'S =0, (3.6)
JEZ
B/s=]BA, (3.7)
JEZ JjEZ

whereA is given by(3.1).
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The proof of Lemma 3.3 is an adaptation of the proof of the characterization of di-
mension functions of wavelets that follows the constructive procedure described
in [BRS, Algo. 4.4]. The major difference with [BRS] is that we allow a func-
tion D to be infinite on some set with nonzero measure and that the consistency
equation [BRS, (D3) in Thm. 4.2] is replaced by our consistency inequality (D2).
Assuming that Lemma 3.3 holds, we can complete the proof of Theorem 3.2.

Proof of Theorem 3.2: Sufficiency @1)—(D3). Define a Sl space = L2(S),
whereS is a setguaranteed by Lemma 3.3. Clearly,digh = >, ;. 15(6+k) =
D(§) by (3.4). HenceV is refinable becaus€ = L2(S) ¢ L%(BS) = D,V.
Furthermore} satisfies (3.2) and (3.3) by virtue of (3.6), (3.7), and the fact that
D,V = L%(BIS) for j e Z. O

To prove Lemma 3.3, we will need [BRS, Lemma 4.1] as follows.

LemMa 3.4. Let B be a dilation and letD satisfy(D1) and (D3). LetA; =

{€eT": D) > j} for j e Nand let{S;}_, (wherek € N is fixed) be a col-

lection of measurable sets such thay, is injective and ontay; fori =1, ..., k.

Then

(i) there exists a measurable sg8tC A such thatr (G) = A3, and

(i) there exists a measurable gétC A such tha1Uf‘:l SiNH =Wandt(H) =
Ajq1.

Proof of Lemma 3.3 undd € T" : D(§) < oo} with nonzero measurd.et

A=|JBA, (3.8)
JEZ
whereA is given by (3.1). For ang € N, let
Ay =1{§€T": D) = k}. (3.9)

The idea of the proof is to construct a sequence of 88tk.n such thatS =
Usen Sk satisfies (3.4)—(3.7). In particular, to guarantee (3.4), we will require
(among other things) that s, be injective and ontal, for eachk € N.
Fix any measurable s C R” such thatQ C BQ, 7|, is injective,D(¢) > 1
for& € 0, and . ~
Iim 15(B77¢) =1 for a.efeA. (3.10)
j—)OO

SinceB is a dilation,0 = A N7, B/T" is an example of a set that satisfies
these properties.
We are now ready to defin®. Let E; = Q. Form € N, define

m
Eppor = (BEm \ U Ef) N AP
i=1

and letE,, .1 C E,,.1 be any measurable set such théE,, 1) = t(E,+1) and
7|g,,, IS injective. We claim that the sét = J,,.y E satisfies

Q0 C 81, $1CBS1, T1lg isinjective and onto;. (3.11)
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This can been seen by repeating verbatim the arguments in the proof of [BRS,
Thm. 4.2] and then using Lemma43i). We continue defining setgS; }ien by
induction with the use of a technical Lemma 3.5.

LemMma 3.5. Suppose that there exist séts..., S; such thatQ c S; = P; and

P, C BP;, fori=1 ...,k whereP;, = US,; (3.12)
j=1

7ls, isinjective and ontt; for i =1,...,k; (3.13)

Siﬂsz(ZJ for l,]:l,,k,l?éj (314)

Then there exis§; .1 such thatSy, ..., S;,1 satisfy(3.12)—(3.14).

Proof. Given S1, -0 Sk satisfying (3.12)—(3.14), we defirfg . ; by the inductive
procedure. Lef; = (BP,\ Py) N A}, and

Foir = <BFm \ U Fl.P) nAL,,. (3.15)
i=1

whereF,, C F, is any measurable set such thaf,,.1) = t(F,.1) andt|,,,
is injective. We claim thaby, ..., Siy1, whereS,1 = U,fle F,, satisfy (3.12)—
(3.14).

To see (3.12), it suffices to show thft,; C BP,1. This follows from the fact
that F1 C BP, andF,,.1 C BF,, C BS;41 C BP;1formeN.

To see that|s,,, is injective, suppose thdtk, &> € S,11 andz (&) = t(£2).
Thereforeg, € F; andé; € Fy, for somej, k e N. If j < k (the casg > k is iden-
tical) thené&, ¢ Fj”, which contradictg (§1) = 1(&2). Thusj = k and&; = &5,
sincert| g, is injective.

To see (3.14), it is enough to prove tht, N P, = @. SinceFy C BP; \ Py
andF,, C BF,,_iform > 2, by induction we obtairF,, ¢ B"P;\ B" 1P, for all
m € N. By (3.12) withi = k it follows that P, ¢ B"~P, for anym < N. Hence
F, NP, =0, that iS,Sk_H_ﬂ P, = 0.

The proof of the remaining part of (3.13) (i.€(S,.1) = A1) IS much more
difficult. First note that, since(F,,) C Ax,1, we certainly have (Sy11) C Ayt
For the reverse inclusion, we will find it useful to prove

Ai110 BS{1 C St (3.16)

Indeed, if¢ € AY,, N BS{,,, thenB™ + [ € F,, for somem € N and! €
Z". Since¢’' := & + Bl € BF,, and§ € A}, we obtaing’ € BF,, N A} ;. If
£ ¢ |, FF, then by (3.15) we have’ € F,1 C S, and hencé e SF,,.
However, if§’ € F” for somei = 1,...,m, theng’ € S/, and hence € S/,,.
This shows (3.16).

Continuing with the proof of (3.13), it remains to show thgt,.1 C 7(Sk11).
By Lemma 3.4(ii) thereisasdf Cc A suchthatH N P, =@, t(H) = Agya,
andD(B~/&) > 1for everyj > 0 and¢ € H. Therefore, all we have to prove is
T(H) C ©(Sk41), thatis,H C S¢;.
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We split the proof off C S¢, into two cases. First, we consider &l H
such that, for every' > 0, D(B7/&) > k + 1; that is, we consider the s&t :=
HnN ﬂj 0 BfAk+1 For a.e£ R, it follows from (3.10) thatB —/& € Q for some
j =1 SinceQ C S1 C P, we can considej, = min{j e N : B~/& € P;}. Since
H N P, = @, it follows that B—/°*1 ¢ BP, \ P;. Moreover, sinceB—/otl¢ ¢
A%, we obtain

Bt e (BP\ P N AL, = F1 C St
HenceR C (J;Z, B/S{,,. Therefore,

00 00 J
R=J®RnBisycl <H N()BAL,,N BfS,fH).
j=0 j=0 i=0
But (3.16) implies that, foj > 0,
j
() BAL N BIS{y C St (3.17)
i=0
SOR C Sf,;.
Next we consider the st := H \ (5, B/A},, and wish to show thak C
,f’+1 Take anyé € R. Sinceé € H C AL, we can findjo > 0 such that e
20 BJA,(+1 andg ¢ B/otA? . To prove that € S/, ,, itis enough to show that
£ e B/oS? | and then use (3.17) with = jo. To see whyg € B/oS!, |, observe
that D(B—/°£) > k + 1. Hence, by the consistency inequality (D2),

k+1< DB <) DB %+ B ), (318)
deD
whereD is the set of representatives of different coset&$fBZ”. Without loss
of generality we can assume thate0D. For eachd € D we denotek(d) =
D(B~~% 4+ B~*d). Thent (B~ + B~d) e ) A;. Moreover, sincel =
0€ D, 1(B~°7%) € Ay, andg ¢ BIoHAP | we obtaink(0) < k. Since¢ €
H, it follows that D(B—/°~%) > 1, and we obtairk(0) > 1. By (3.13) we have
B~io~l e M4 sP thatis,B~/o~Y+p0 e 5, wherep® e Z" for j = 1, ..., k(0)
are distinct by (3 14). For eache D\ {0} such thatJ(d) # 0, by usmg (3.13)
again we can find distingt{ € Z" such thatB /o1 + p¢ + B~'d € §;, where
Jj=21...,min(k(d), k).
Thus, for eachl € D such thak(d) # 0, we have

B %% + Bp! +d e BS; C BP, for j=1....,min(k(d), k). (3.19)

We claim that this gives us at ledstt+ 1 distinct elements oBP;. Indeed, if
Bp! +d = Bpf +d' for somej = 1....min(k(d).k) and j" = 1,...,
min(k(d’), k), thend — d’ € BZ", henced = d’. Also, for fixedd € D, we
havep;’ # pjf", for j # j’. What remains to check is that the number of elements
in (3.19), which is equal tQ _ ,., min(k(d), k), is > k + 1. This is indeed the
case by k< k(0) < k and (3.18).
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By the induction hypothesis (3.13), at least one of the elements in (3.19) must lie
in the complement of;. Hence there is @ € Z", andB~/°¢ 4+ p € BP; \ P;. In
addition, sinceB—/o¢ ¢ AkH, we haveB=/°¢ +p AkJrl Therefore B~°¢ 4+ p e
F1 C SP ;; thatis,& € B/oSP | and hencé e S7, ;. Since bothR and R are con-
tained inS;, ,, it follows that H C S;,, and soA;;1 C S¢,4, which completes
the proof of (3.13) by the induction. We have thus shown the existence of the sets
{Si}ren Satisfying (3.12)—(3.14), which completes the proof of Lemma 3.5

Finally, we are ready to continue the proof of Lemma 3.3. By Lemma 3.5, define
the setS = J;—, Sk. We claim thatS satisfies (3.4)—(3.7). To see (3.4), it suffices
to show that the equality in (3.4) holds for ages T". By (3.14),15 = Y2, 1s,.

and by (3.13),

YL+ =) 15E+1D

lezn k=1lez"
= Z Ly = Z 14,(6) = D(§) for a.eseT"

For (3.5) it suffices to show that, c BS for everyk € N, but this is immediate
from (3.12). For (3.7) it suffices to show that lim,, 15(B~/§) = 1 for a.e&

A, which is an immediate consequence®fc S and (3.10). Finally, it remains
to show (3.6). By the contradiction, suppose that ﬂ,ez B/S has a nonzero
measure. Sincd = BS, we can partitionS into a countable family of subsets
{S:}ien such thatS; = BS; andS; has a nonzero (and hence infinite) measure for
all i e N. SinceB induces an ergodic endomorphismmf (see [BRS, proof of
Thm. 5.11]), we have (S;) = T". Therefore,

DE =Y 1sE+k =Y 15 +k)

keZn" keZ"
=Y ) I+ =00 foraes
keZ™ ieN

which contradicts our initial assumption thgte T" : D(&) < oo} has a nonzero
measure. This shows (3.6) and completes the proof of Lemma 3.3 under this
assumption. O

Proof of Lemma 3.3 unddp = oco. Finally, we need to construct a sgsatisfy-
ing (3.4)—(3.7) for the case when the dimension functidi) is constantlyoo.
Let Sg be a set obtained from Lemma 3.3 when= 1. Any such sefS, is called
ascaling setBy (3.5)—(3.7), the famil{{(B/1S) \ (B/S0)} jez forms a partition
of R” (modulo sets of measure zero), sinke= A = R”". Define by induction a
sequence of sets;}7°, such that, forali = 0,1, ...,

Siy1 C (BSH\ S;, Z 1s.(6 +k) =1 for a.eé.
kez"
This is possible because
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D LG+l =) 13(BE+ B

keZ" keZ"

=Y > 1B % +k+ B 'd) = |detB|.

keZ" deD

Define the sef = [ J;2, S:. It remains to show (3.4)—(3.7). To see (3.4), notice

i=

thatS; C (B'So) \ (BI~1Sp) for i € N. Hence the setS; are pairwise disjoint and

DLE+h =) Y 15E+h=co.

keZ" kezZ" i=0

Observe that (3.5) follows from

o0 o0
BS = BSoU|_J BS; D Sou| JSisa= 5.
i=0 i=0
while (3.7) is an immediate consequenceefc S andeEZ B/So = R". To see
(3.6), letc = |z B/S N ((BSo) \ So)|. Foranyi €N,

1=8i| = 1((B'So) \ (B 'So) N S|

> = |detB| .

((B'So) \ (B~ 'So)) N (] B’S
JEZ

By lettingi — oo, we conclude that is zero and hence

‘((BiSo) \ (B IS0 N ﬂ B/S| =0 forall ieZ.
JEZ
This shows (3.6) and completes the proof of Lemma 3.3. O

Finally, we are ready to show our main result.

THEOREM 3.6. Suppos&V;);cz is a GMRA. Then the dimension function of the
core space/y, D(&) := dimy, (), satisfieq D1)—(D3)and

(D4) liminf;_.., D(B7/¢) > 1fora.e.§ e R™.

Conversely, iD satisfieg D1)—(D4)then there exists a GMR});z such that
dimy,(§) = D(§) fora.e.§ e R™.

Proof. Suppose thatV;);cz isa GMRA. Then, by Theorem 3.2,(£) = dimy, (£)
satisfies (D}—(D3). To see (D4), by Proposition 2.6(g) and (h) it suffices to show
that

liminf oy, (&) = liminf oy, (B~/6) =1 for a.e& eR". (3.20)
Jj—>00 : j—o00

However, by Lemma 2.7, there exists a sequélgi.cy such that

Ii;[rliollf oy, (&) = op2@n(§) =1 for a.eé,
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because th&; converge toL?(R") asj — oo. Because(oy; (£))jcz is a non-
decreasing sequence, by C V;1 and Proposition 2.6(c) we necessarily have
(3.20).

The converse isimmediate by Theorem 3.2, (3.2), and (3.3), since (D4) is equiv-
alenttolJ,;., B/A =R". O
We conclude this section by giving an example of a GMRA whose dimension func-
tion of its core space is infinite on a set of nonzero (but not full) measure. Note
that the construction of a GMRA whose dimension function constantly eguals
is given in the proof of Lemma 3.3. More examples of dimension functions of
GMRAs associated with orthonormal wavelets can be found in [BRS, Sec. 5].

ExampLE 3.7. For simplicity, assume that we work in the dimensiog 1 and
that the dilation factoA = 2. Given 0< § < 1/2, define a sef C R by

s=1-12.1y21u | J[2/.2/ + ).
j=-1

An elementary calculation shows th&tc 25, (1., 2/S = ¢, andJ,., 2/S =
R. Hence the sequenc®;));cz, whereV; = iz(ZfS), isa GMRA. Moreover, the

dimension function of its core space satisfies
oo forz(¢)€(0,9),
1 otherwise.

dImVo(‘i:) = {

4. The Spectral Function of a GMRA

In this section we investigate properties of the spectral function associated to the
core space of a GMRA by showing the fundamental representation formula (4.1),
which is a close analogue to the Calderdn reproducing formula in the theory of
wavelets. As an immediate consequence, we show an explicit formula for the
wavelet spectral function, which also gives the usual well-known formula for the
wavelet dimension function.

THEOREM 4.1. Suppose&V;);cz is a GMRA such thagt € R” : dimy,(§) < oo}
has a nonzerdLebesguemeasure. Then

[e¢]

Z ow,((A*)/&) =1 for a.e.g, (4.1)

j=—00

whereWy = V1 © V. As a consequence, the spectral function of the core space
Vo can be represented as

ove(€) = D ow,((A")E) for ae.s. (4.2)

j=1
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It is intuitively clear that (4.1) should hold. Indeed, it appears that by Proposi-
tion 2.6 we havery, (&) = op,w,(§) = ow,((A*)7/€) and Zjez ow;(§) =1,
since

P w, = LAR"). where W; = V.16 V;. (4.3)

JjEZ
However, in general the spac®5 are not Sl (with respect to the standard lattice
Z") for j < 0. Indeed, forj < O we can be sure only thiif; is S| with respect to
a larger latticeA=/Z". Nevertheless, this idea can be transformed into a rigorous
proof.

Proof of Theorem 4.1SinceVo = @, _oW; = (;.,W;)" is Sl and sincé/s ®

EBjZoWj = L?(R"), by Proposition 2.6(b) and (g) we have

1= 0120 (&) = 0, (&) + Y ow, ()

j=0

=oy,(8) + ) _ow,((A")8) for a.e. (4.4)

j=0

Pick any£o € R" such that (4.4) holds for arfy= A&, wherei € Z. By applying
(4.4) for& = A’&g and lettingi — —oo, we obtain

o0

Z ow,((A*)/€) <1 for a.ek. (4.5)

j=—00

Assume by way of contradiction that (4.1) fails. Then, by (4.5), theresis-a0
such thatt = {§ e R" : D e owe((A)E) < 1— 8} has a nonzero measure.
Since A*(E) = E and A* is expansive E must then have an infinite measure.
Clearly, we can partitiorE into a countable family of subset®;};cy such that
A*(E;) = E; andE; has a nonzero (hence infinite) measure. Siicenduces an
ergodic endomorphism @f” (see [BRS, proof of Thm. 5.11]), we haveE;) =
T”. On the other hand, by (4.49,,(&) > & for & € E. Therefore, by Proposi-
tion 2.6(h) for a.e¢,

dimy@) = D ovE+K) =D ) 1nE+hovE+k =Y §=oc.
keZ" ieN kezn ieN

This contradicts our initial hypothesis and so proves (4.1). Equation (4.2) follows
from (4.1) and (4.4). O

THEOREM 4.2. Suppose that = {y% ..., v} ¢ L?(R") is a semi-orthogonal
wavelet(i.e., that the affine systefD,,; Ty : j € Z, k € Z", v € W} is a tight
frame with constant) and letW; L W; fori # j, where

W; = spanDyu Ty - k€ Z", ¥ € U} = Dy(S(W)).
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Then the spectral function of the core spéégof the GMRA(V))jez, Vi =
@Kj W;, is given by

ove (&) = D D I ((A)E)2 (4.6)
Yew j=1

Proof. By the semi-orthogonality conditiorE (W) forms a tight frame with con-
stant 1forWo = S(¥) and thusry, (§) = Y-, c4¥(€)[? by Lemma 2.3. By (4.4),

ove (&) =1= ) ow,((A")78)

i=0

1= Y W@y o= 3 Sy pi,

j=0 yevw yev j=1
where we used the Calderon formdig, ., Z?‘;_OOW((A*)-/&)F =1fora.ef
(see e.g. [Bo2; HW]). This completes the proof of Theorem 4.2. O

As a corollary to Proposition 2.6 (h) and Theorem 4.2 we obtain the usual formula
for the wavelet dimension function [BRS; LTW; RS4; We].

COROLLARY 4.3. SupposeV = {y/%, ..., ¥*} ¢ L%(R") is a semi-orthogonal
wavelet. Then the dimension function of the core spgaoef the GMRA(V)) <7
associated withl is given by

dimy, (&) = Y oG +h =Y > D IAYE+ A (4.7)

kezm yeWV j=1 keZ"

REMARK. It should be noted that neither Theorem 4.2 nor Corollary 4.3 are true
for general affine tight frame systems with constant 1. Indeed, Theorem 3.1 of
[PSWX] shows that a (dyadic) normalized tight frame wavefet L?(R) is
semi-orthogonal if and only ig;’;lzkezw}(zf(g + k))|? is integer-valued al-
most everywhere. Therefore, one can expect that the right-hand side of (4.7) is a
dimension function o#/, and thus integer-valued, onlyJ¥f is a semi-orthogonal
wavelet. As aresult, Theorem 4.2 and Corollary 4.3 are not valid for more general
tight affine frame systems.

5. Rieffel's Incompleteness Theorem for Gabor Systems

In this section we present an elementary proof of Rieffel's incompleteness theo-
rem for Gabor systems that utilizes the spectral function introduced in Section 2.
We will start by giving some historical background information.

In 1986, Daubechies, Grossmann, and Meyer [DGM] constructed a Gabor
system

2miblx

{gbl,am(x) =e g(x - am)}l,meZ
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forming a tight frame for?(R) with g a compactly supported function in the
Schwartz class for every positiveandb such thaub < 1. Lyubarskii [Ly] and
independently Seip and Wallstén [SW] proved that the original choice of Gabor
[Ga] (i.e.,g a Gaussian) gives rise to a frameldi(R) if ab < 1 (this was con-
jectured by Daubechies and Grossmann in 1988).

Both of these results utilize the situatiah < 1, since forab > 1 the Gabor
system{ g,1,am }1,mez AN NEver be complete P (R) for any choice of € L?(R).

This simple fact was communicated by Baggett [Bal] and Daubechies [D], and it
follows from the work of Rieffel [Ri] on von Neumann algebras (see also [DLL]).
Even though the argument in [DLL] is rather simple, it is based completely on
[Ri], which requires a reasonable knowledge of the theorg tflgebras. This,

in turn, has motivated several researchers to find an “elementary” proof of the in-
completeness result.

Daubechies [D] was able to find a very elegant argument for the case when
ab > 1 is rational by constructing a function orthogonal to every element of
{&b1.am }1.mez- The problem of (explicitly) constructing such a function in the gen-
eral caserb > 1is still open. In 1993 Landau [La] proved, under certain assump-
tions on the decay of andg, that{g 4m};,mez cannot be a frame fak2(R) if
ab > 1. Janssen [Ja] showed the same without any decay assumptions for a general
g € L>(R"); see also [CDH; RS3]. Furthermore, Ramanathan and Steger [RSt]
proved Landau’s result for irregular Gabor systems without any decay assump-
tions. Their methods allowed them to recover Rieffel's incompleteness theorem.
They also conjectured that the incompleteness result can be extended to the case
of irregular sampling sets with a uniform density smaller than 1, which was later
disproved in [BHW] by exhibiting a counterexample based on Landau’s result
from 1960s. Another proof of Rieffel’'s incompleteness theorem (again based on
von Neumann algebras) was recently given by Gabardo and Han [GH] (see also
[HWa, Thm. 3.3]).

We shall now show Rieffel's incompleteness theorem in its full generality—that
is, for Gabor multi-systems ih?(R”). The advantage of our approach is that we
do not use any results about von Neumann algebras; instead, our proof is based on
the spectral function introduced in Section 2. Moreover, we are not aware of any
other proofs of Theorem 5.1 in its full generality that do not use the machinery of
von Neumann algebras. For example, [RS3, Cor. 4.7] contains a proof of this re-
sult for compressible Gabor systems, which correspond in one dimension to the
case whemb is rational.

THEOREM 5.1. If {g%, ..., g’} c L3(R") andifA, B aren x n nonsingular ma-
trices, then the Gabor system

{gé?l,Am l,meZ" i=1..., L},
where

881, am(X) = Mp Tang = e F¥g(x — Am), g e L*(R"), (5.1)
is incomplete inL?(R") if |detA| - |detB| > L.
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Proof. The standard dilation argument allows us to reduce the general case to
A = Id. Indeed, this follows immediately fronD,(gp;, am) = (Da&)aTBim>
wherel, m € Z"". We present a proof by contradiction; that is, we shall assume that
the systerr gy, ,,} 7" is complete and then prove thaetB| < L follows.

We start by constructing a multiresolution scheme for Gabor systems. Suppose
that{g ..., g%}  LA(R") and that{g}, ,}\ 7" is the corresponding Gabor
system. For everye 7", define

G =Spagy,, meZ" i =1.. L} = SUMu(gh. ... Mu(g"). (5.2)

We will use the lexicographic order of%", <) defined by(ky, ko, ..., k,) <
(I, 12, ..., 1,) if there existr =1, ..., n such thak; = [; forall j < r andk, <
l.. Foranyl € Z", let

V, = Spaigsm ik <1, k.meZ") =+ Gi. (5.3)
k<l

Let S be the closed subspacelof(R") spanned bYgs;  }1.mezn. Our discussion
is general and we do not yet assume that the system is complete. We would expect
to have the following properties of the “multiresolution analysig;);czn:

(G1) V, c Vv, foranyk <l eZ",

(G2) Mpi(Vi) = Vi foranyk, 1 e Z";

(G3) U,z Vi is dense ins;

(G4) mlezn Vi = {0}

(G5) Vg is shift-invariant, wher® = (0, ..., 0) e Z".

Indeed, all of these conditions except (G4) follow immediately from (5.3). How-
ever, a serious difficulty arises because (G4) does not hold in general (see Example
5.2). Nevertheless, if we assume in addition that the funciiéns. , g” are band-
limited, then this easily implies that (G4) holds. Indeed, if sghp. ., suppg’ C
K for some bounded s&t c R”, thenG, c L2(Bl+K) for anyl € Z". Therefore,

Vi=|4G c Zz(U(BlJr K))

<k <k
and
Ve ) LZ(U(BI ~|—K)) = i2<B< N (U(1+ BlK)>>) = {0},
keZn keZ" I<k keZ™ ™l<k

and (G4) follows.

Finally, we will need an additional condition that, in general, is guaranteed to
hold only in the band-limited case. Recall tHatc Z" is abeginning intervalf,
for everyk,l € Z", we have thak < [ and! € I together implyk € I. It is not
hard to show that all nonempty beginning intervalg4f, <) can be associated
with its ending, which consists of either

(i) elements ofZ” or
(i) elements of the forntky, ..., k,, c0), where O< r < n andky, ..., k, € Z.
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That is, for any beginning intervdl c Z", there exist = 0,1, ...,n andk € Z"
suchthal = {{e€Z" : (Iy, ...,1,) < (ka, ..., k,)}.

We claim that, for any beginning intervalc Z" of type (ii),
(G6) ﬂleZ”\l Vi = Ulel Vi
The inclusion 5" in (G6) is obvious. To show ", suppose that a beginning in-
tervalI is associated witliks, .. ., k., oo) and that supg?, ..., suppg’ C K for
some bounded sé&f c R”". For anyr > 0, consider an orthogonal projectidn

of L2(R") ontoL2((—r, r)") defined byP, f = 1., f. Foranyj € Z, consider
an index sef;,

I ={(ks, ...k, +Lmy, ... omp_) €Z" imy < j, (my,...,m,_,) €Z""}.

We now claim that, for sufficiently smalji, P, (Ule[ G,) = {0}. Indeed, iff €
U,GI G, then

suppf N (=r.r)" c | JBI+ K) N (=r.1)"

l€]j

= B< U(z +B*K)N B X, r)”> =0

lel;

Thus, for sufficiently smalf,

Pr( ﬂ Vl> C Pr(v(kl,‘..,kr+1,./'70,...,0))
leZ"\1
c P,(L—l_—JGl o &JG;) = P,(H—J G,) = P,(UV,).

lel lel; lel lel

Sincer > 0 is arbitrary, the preceding formula yields (G6).

We shall use (G1)—(G6) in the same way one uses the multiresolution analysis
scheme to construct wavelets. This is exactly true in dimensieri, but an ad-
ditional argument based on (G6) is needed in dimensiossl. In our case, for
everyl € Z" we define a space

Wi =ViieV, (5.4)
wherel = (0, ...,0,1) € Z". By (G2) we have
Mg (W) = W for keZ" (5.5)
We claim that from (G1)—(G6) it follows that
s=EPpw. (5.6)
lezn

Indeed, by (G1), (G3), and (G4),

S=@< N wer), (5.7)

I Nezm\I lel
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where the orthogonal sum is taken over all nonempty beginning intehal&”.
By (G6), the orthogonal sum in (5.7) is effectively taken only over the beginning
intervals of type (i), which clearly implies (5.6).
The decomposition (5.6) allows us to see that the spectral functiSisafiven
by a simple formula. In fact, we have

Wo=V16 Vo = (VoW Go) © V.

By (5.2), Gy is a Sl space with the dimension function @jgi¢) < L fora.e. €

R". Hence, by (G5)W; is also a Sl space with the dimension function that satisfies
dimy, (&) < dimg, (&) < L for a.e.£ e R". Therefore W, has aguasi-orthogonal
basis¥ ¢ W, with cardinality at mosL; that is, E(W) is a tight frame with con-
stant 1 forW, (see [BDR1]). The spectral function 8fy is thusoy, = Zwe\phmz

by Lemma 2.3. Therefore, by Proposition 2.6, (5.5), and (5.6), we have

as€) =Y ow(&) =Y ouymwe()

leZ™ leZn
=Y owE—B) =Y > [¥E— B (5.8)
lezn [€Z" YeW

fora.e.k e R

The system{ g u}1.mez» is complete inL2(R") if and only if § = L2(R"),
which by Proposition 2.6 is equivalent to haviag = 1 a.e. If we integrate this
equality over the cub&([0, 1]"), then by (5.8) we have

detB| = I — BD)|?d
|detB| /qu,l] D € - B de

") leZ" yeV¥
=X [ ierde= Y i
IIIE‘I’IEZ” B([+[O,l]") we\p

Now W is a quasi-orthogonal basis Bf, and so we must havg/||» < 1for every
¥ € W, which proves thafdetB| < L.

To drop the assumption that, ..., ¢’ are band-limited, we approximate each
¢' by a sequence of band-limited functiohs"},en C L*(R") in the L3(R")-
norm. For example, we can define such a sequengéby 1, ,»g’ forr e N,
and then A _

r|LmOO||g’ —g""ll2=0. (5.9)

Let S be the closure of the space spanned by the Gabor sysiBin 57"
and letPs- be the orthogonal projection onty for » € N. For everyl, m € Z",
we have . A . A
l&B1.m — &B1mllz=llg" —&"" 2.
Therefore, the completeness of the systgg)_m}j;le'z',;L and (5.9) imply that, for
every f € L2(R"), '
lim [|Pse f — fll2=0.

Thus, by Lemma 2.7 it follows that
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lim ogi(§) =1 for a.e& (5.10)
j—o0

for some subsequenge} ;cy. For everyj € N, the functionsg®”, ..., g&/i are
band-limited and so by (5.8) we have

osn(® =Y Y IY(E - BDI
1€Z" Yev;

wherey; C L?(R") has cardinality< L and||y||, < 1fory e ;. This equality
together with (5.10) gives us

lim Y > ¢ —B)P=1 for a.efeR"

I ez yev

Integrating this limit equality over the culi[0, 1]") yields|detB| < L. Indeed,
by Fatou’s lemma we have

detB| = l I — BI)?d
|detB| /qu, im > > (& — Bl dk

I T ey,
< liminf 3" S - BD2ds = liminf > w2 < L.
17 JBAOAM jezn yey, 1T ey
which concludes the proof of Theorem 5.1. O

The following example shows that condition (G4) does not hold in general.

ExampLE 5.2.  We will construct a functiog € L2(R) such that the correspond-
ing Gabor systentg; ,.(x) = e?™*g(x — m)}; .z fails condition (G4)—that is,
such that

ﬂ V, # {0}, whereV, = 5parig., : k <1, k,m € Z}. (5.11)

leZ
Let g € L%(R) be such thag(x) # 0 if and only if x € (0,1), and also let
folloglg(x)| dx = —oo. Then, by a classical result of Helson [Hel, pp. 13, 21],
the system of functionge?™*g(x) : k € N} is complete inL?(0,1) := {f €
L?(R) : suppf C (0, 1)}. As an immediate consequence,

sparfe?™*g(x) : k <1} = L?0,1) foranyleZ.

Therefore,V; = L?(R) for any! € Z, and (5.11) holds. This example shows that
we cannot expect (G4) to hold unlegsatisfies some additional hypotheses (e.g.,
thatg be band-limited).
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