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On the Boundary Accumulation Points for the
Holomorphic Automorphism Groups

Jisoo ByunN

1. Introduction

For a domairt2 in C", we denote by Aui2) the group of holomorphic automor-
phisms ofQ2. It is obvious that Auf?) is a topological group with respect to the
law of composition and the compact-open topology. In particular, it is a theorem
of H. Cartan that Aut®?) is in fact a Lie group if2 is bounded.

In light of the outstanding question “Which domains possess noncompact auto-
morphism group?” there is much interest focused upon the existence and nonexis-
tence of orbits of the automorphism group action accumulating at a given bound-
ary point. The well-known Greene—Krantz conjecture belongs to such a line of
research. In this paper, we discussfihde-type boundary points that repel auto-
morphism orbits.

Denote byrs (¢) the DAngelo type (see [10]) at of the real hypersurfacg
in C". Now we present our main theorem.

THEOREM 1.1. LetQ be a domain irC2 Assume that there exists a popne 92
admitting an open neighborhodd in C? satisfying the conditions

(1) the boundanp$2 is C*°-smooth pseudoconvexin and
(2) 190(g) < tsa(p) < oo foreveryg e U N o2\ {p}.

Then there are no automorphism orbitstthhaccumulating ap.

In particular, this implies the following theorem of Byun.

THEOREM 1.2 [8]. Inthe Kohn—Nirenberg domain defined by the inequality
Rew + [zw|* + |z]® + 1—75|z|2 Rez® <0,

there does not exist any automorphism group orbit accumulating at the origin.

Although several experts commented that the nonconvexifiability of the boundary
at the origin should be the reason for the conclusion of Byun's theorem, it is now
apparent by our main theorem that the essential reason in fact lies elsewhere: any
isolated maximum finite-type boundary point repels automorphism orbits.
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Another important theme in the study of pseudoconvex domains concerns the
setS(€2) of all orbit accumulation boundary points of the given dom@inFu,
Isaev, and Krantz [11] analyzed the structures &) for the case whef is Rein-
hardt, showing thaf (2) forms a manifold of odd dimension between 1 and-2L
inclusive. Isaev and Krantz [15] showed that it is a perfect s&ti§ a bounded
pseudoconvex domain with finite type boundary arg{i2) contains at least three
points. Huang [14] analyzed the rank of Levi forms at the boundary accumula-
tion point. We present in this article a resonant result in a more general situation,
without assuming the boundedness or the Rienhardtness condition.

TueoreM 1.3. Let Q be a domain inC? with a boundary poinp € 32 admit-
ting an open neighborhooll in whicha is C*°-smooth pseudoconvex of finite
type in the sense of D'Angelo. jfis an automorphism orbit accumulation point,
thenp is also an accumulation point of the s&(i).

CoroLLary 1.4. If Qis a pseudoconvex domain wifi¥°-smooth boundary of
D’Angelo finite type, thel§ (2) is a perfect set.

AcKkNOWLEDGMENT. This work is part of the author’s dissertation for his Doc-
toral degree at the Pohang University of Science and Technology in Korea. He
would like to express his gratitude to his advisor Kang-Tae Kim for guidance and
encouragement throughout this work.

TERMINOLOGY AND NoTATION. Throughout this papefz, w) denotes the stan-
dard Euclidean coordinate system@®f.

From now on,P(z) will be understood as a real-valued polynomial. Then we
define the following concepts.

(1) a; < b; if and only if there is aC > 0 such that; < Cb; for all j, where
a;, b; are positive real numbers.

(2) P2 denotes the set of all real-valued polynomials with degree less thai2
that has no harmonic terms. This is a finite-dimensidRalector space.
| P(z)| represents the maximum of absolute values of all coefficients of the
polynomial P(z). Naturally, || - || defines a norm ofP,;.

(3) Hox is a set of all homogeneous subharmonic polynomials of degreétB-
out harmonic terms.

(4) P(z) ~ Q(z) (i.e., P is equivalent toQ) if and only if there exist a real num-
bery > 0 as well as a holomorphic polynomialz) and an automorphism
g(z) of C such that

P(z) =y Rer(z) + y0(g(2).

(5) P*(z) denotes a polynomiaD(z) whose terms consist of all terms Y z)
exceptharmonic terms.

(6) P"(z) = P(z) — P*(2).

(7) Mg = {(z, w) e C? | Rew + Q(z) < 0}, whereQ € P is called themodel
domainof Q.
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(8) LetD andD; be domains irtC2 We say thatD; convergeso D if the follow-
ing two properties hold:
(a) for every compact st C D, there is an integeN such thatk C D; if
J=N;
(b) if K is a compact set that is containedZiny for all sufficiently largej,
thenkK C D.
This is, in effect, equivalent to the local Hausdorff set convergend®; ab

DinC2

2. The Scaling Method and Its Convergence

The content of this section follows the treatment in [6]. However, for the sake of
a smooth exposition, we choose to include some details.

Let D be a domain irC? and letpg € aD. Assume thabD is smooth and pseu-
doconvex of finite type in a neighborhood pf. Let 2k be the type obD at pg
in the sense of D/Angelo [10]. We further assume thgt= (0, 0) and that Red%
is an outward normal vector @D at po.

Let { p;} be a sequence of points i that converges tgo. For every; suffi-
ciently large, there exists a unique painte 4D such that

pj + (O, 8_/') =gqj, & > 0.
Write ¢; = (a;, b;) € 0D. According to [9, Propl.1], there is a neighborhood
U of pg such that
(z,w)eDNU <= Rew+ H(z) + R(Imw, z) <0,

where H € Hy andR(Imw, z) ~ o(]z]?* + |Imw]). Consider a sequence of
maps®; defined by

(@: C?— CH: (z,w) > (z —aj, w —b; +¢j(z — a))),

wherec; € Cis chosen so that the complex tangent lineé®f(D) at po is {(z, w) |
w = 0}. Then we have

®(¢q;) = (0,0), ®;(pj) = (0, —¢)),
and
2k
(zzw) € ®;(DNU) <= Rew+ Y P ;(z) + Ri(Imw,z) <0,
=2
where theP; ;(z) are homogeneous polynomials of degfeend whereR; =
0(|z|* ™ + [Imw)).
We may letP; ;(z) = P;;(z) + P/';(z). Since P/; is harmonic, there exist
o, ; € C such that

h I, T
Pl i(2) =z + ozl
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For eachj, we define a mag; by

2k
(¥;: C2— CH: (z,w) = (z, w+ 2205],1‘21(2)>.
=2
Then
2k
(z.w) €W 0 ®(DNU) <= Rew+ Y  P};(z) + R/(Imw,z) <0.
1=2

We choosé; > 0 such that

2k
-1
et > Pl 02)
=2

Since limpP;"; = 0 (I < 2k) and limP3;, ; = H, we obtainé; < ¢;
Finally, the scaling map,; is deflned by

Aj(z,w) = <8Z;U>
J J

for every(z, w) € C2 Then

2.2)

1/2k

(z,w)eAjoW;0o®;(DNU)
1 & 1
< Rew+ =Y P52+ —Rj(&jImw, ;) < 0.
J 1=2 J
SetT; = Aj oW, o @;. Since the norm is fixed independently pfthe sequence
of polynomials{e;j‘l ijz P}, ((sz)} converges, choosing a subsequence if neces-
sary, to some polynomig) of degree at most(we call Q thelimit polynomial
with respect tg;). Since the remainder term of the defining function tends to zero
asj — oo, we see that the sequence of domaing N U) converges to a model
domain
{(z, w) | Rew + Q(z) < 0}

and that|| Q| = 1 The following theorem by Berteloot guarantees that the se-
guence of such scaling maps forms a normal family and that the limit polynomial
becomes a homogeneous polynomial.

THEOREM 2.1 [6]. LetQ beadomainirC?and letp be a pointordQ. Suppose
that 92 is of classC*°, pseudoconvex, and of finite type in a neighborhogggof
Let¢; € Aut(2) satisfy

j|Ln;o $j(z0) = po

for a pointzg € Q. Theng is biholomorphically equivalent to the model domain
My, whereH € Hq,o(po)-
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3. Proofs
Let A denote the open unit disc {D.

Lemma 3.1. Let2beadomainirC” and letp be a boundary point of2. Assume
that there exist an open neighborhobtdof p in C" and a sequence of injective
proper holomorphic mapg;: A — Q satisfying the following conditions

(1) U N Qis pseudoconvexnd
(2) lim;— g;(0) = p.
LetE = U;’il gi(A) N 9. Thenp is not an isolated point of.
Proof. Expecting a contradiction, we suppose thas an isolated point of. So,
there exists @ > 0 such that
lp—qll =8 VgeE\{p}
Choosing a subsequence if necessary, we may assume that

gj(O)eB(p; %) Vi=12 ...
Now, for eachr with §/3 < t < 28/3, we let
S ={zeC" | |p—zl =t}
B, ={zeC"|p—zl <1}
Applying the Morse—Sard theorem to the smooth map
F:guD)—>R

defined byF(¢) = ||¢ — p||% we infer that for each positive integer and for al-
most all values for, the setS; N g,,(A) is in fact a real one-dimensional manifold
without boundaryWe can also conclude th&f N g,,(D) is a smooth submanifold
with boundary inS; N g,,(A).

Moreover, we shall verify theff, Ng,,(A) is acompact set. Sinceitis abounded
subset ofC", we need only prove that it is closed.

Letx € S, N g,,(A). Thenwe have a sequencgee S,Ng,,(A) suchthat; — x
ask — oo. Sincex; € g,,(A), there exists a sequengge A such thatg,,(¢;) =
x; for eachk. Because\ is compact, there exist a pointe A and a subsequence
Lk, such that,, — ¢ asl — oo. If ¢ € dA then, by virtue of the properness of
gm,» We have

x = lim Xk,
[—o00
= lim gm(é‘k[)
[—o00
€ 092.

This leads us tgjx — p|| =t andx € E \ { p}. Since this is impossible, we must
haves € A. Hencex = g,,(¢) € g,(A). This implies thatS, N g,,(A) is closed.
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Let X,, denote the connected componentBpi g,,(A) with g,,(0) € X,,, and
let G, = g,%(X,). ThenG,, is a domain inA.

CLamm. There exists a simple closed cunvgin A satisfying

(1) gm(ym) C S, and
(2) Ois an interior point ofy,,.

Proof of Claim. Notice that 0 is an interior point af,, and thatg (S, N g.(A))
is a finite union of circles. Therefore, the claim follows by the argument principle
as soon as we prove tha,, C g;l(S, N gm(A)).

Step 1: Ifx € 3G, N A, thenx € g;X(S; N gn(A)). Sincex € A N3G, we
obtaing,,(x) € X,, \ X,,. Sinceg,(x) € Q, we haveg,,(x) € QN X,, \ X,» C
S; N gm(A). Thereforex € g, 1(S, N gu(A)).

Step 2:9G,, C g,X(S;Ngn(A)). In order to prove this, we suppose that there is
a pointx € 9A N 3G,,. We can choosg, < 1 so thatg,X(S, N g.(A)) C {z€C |
|z| < ro}. Now, we have only to show th&t, = {z € C | |z| = r} is contained in
G, if ro < r <1 The existence of € dA guarantees that, N G,, is nonempty.
If C, ¢ G, then there is a point € C, N 3G,,. By step 1g € g,,1(S: N gm(A))
and|g| = r. This is a contradiction. O

Now let y,, be the simply connected curve selected in the preceding claim. Let
I, be the set of all interior points of,,, which contains the origin by construc-
tion. We then choose a Riemann mgp: A — T, with £,,(0) = 0. Then the
composition,, = g,, o f: A — Q defines an analytic disc satisfying
hw(0) = g,(0),
hm(aA) = gm(ym) C St-

SinceQ is pseudoconvey, it follows thatlogd(x, 02): @ — R is a plurisub-
harmonic function, wheré(x, 92) denotes the Euclidean distance frano the
boundaryo2. Consequently,

d(h,(0A), 02) = d(h,,(A), 02)
< d(hu(0), 92)
<d(gn(0), p)
— 0 asm — oo.
In particular, there exisf,, € h,,(0A) C S, such that
d(qm, 0R) = d(h,(0A), 02) - 0

asm — oo. Thus, there exists @ € S; N 92 such thaty is a limit point of the
sequenca,,. Namely, we have found a poigte E N S,. By the choice of, we
have arrived at the desired contradiction, completing the proof of Lemmalf3.1.

Proof of Theorem 1.3Suppose there exist a sequefigg C Aut 2 and a point
x € © such that
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lim ¢;(x) = p.
j*)OO

By [6], there is a biholomorphisn¥ betweerQ and the domaiy = {(z, w) |
Rew+ H(z, z) < 0}, whereH is ahomogenous subharmonic polynomial without
harmonic terms. Also, we have dég= t3q(p). SinceH is homogeneous, the
model domainV/y has a two-parameter family of the following automorphisms:

l(z,w) = (z,w+it) forall reR,
hi(z, w) = (Az, A%*w) forall A > 0.

The planeP = {(0, w) | Rew < 0} is contained in the orbit of0, —1) by the
action of Aut(My). Define an injective proper holomorphic map A — My by

z—1
n(z) = (O, m)

for everyz € A. We consider a sequence of injective proper holomorphic maps
g = ¢; o W0 u from the unit disc inta2 satisfying

¢ oW o u(0) = ¢j 0 WO, —1)
= ¢;(q),

whereqg = W10, —1). Moreoverg,,(A) is contained in the orbit af by an ac-
tion of Aut(2). By Lemma 3.1,p is not an isolated point ijfilgj(A) Noag2.

Sinceg,,(A) is contained in the orbit of, it follows that U;’ilgj(A) Na2 C
S(2). Therefore, Theorem 1.3 is proved. O

Proof of Theoreni.1. Sincep is an accumulation point &f(€2), there is a point
p € U N S(Q) with t(p) < t(p). Applying the scaling theory to this poirg,
we have another model domakf, and a biholomorphisrd betweert2 andi.
By [20], we see that de@ = degH sinceMy >~ My. Thus,z(p) = t(p). This
contradiction completes the proof. O
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