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Introduction

For us, enumerative geometry is concerned with counting the geometric figures of
some kind that have specified position with respect to some fixed, but general, fig-
ures. For instance, how many lines in space are incident on four general (fixed)
lines? (Answer: 2.) Of the figures having specified positions with respect to fixed
real figures, some will be real while the rest occur in complex conjugate pairs, and
the distribution between these two types depends subtly upon the configuration of
the fixed figures. Fulton [12] asked how many solutions to such a problem of enu-
merative geometry can be real and later with Pragacz [14] reiterated this question
in the context of flag manifolds.

It is interesting that, in every known casd, solutions may be real. These in-
clude the classical problem of 3264 plane conics tangent to 5 plane conics [30],
the 40 positions of the Stewart platform of robotics [5], the 12 lines mutually tan-
gent to 4 spheres [24], the 12 rational plane cubics meeting 8 points in the plane
[19], all problems of enumerating linear subspaces of a vector space satisfying
special Schubert conditions [34], and certain problems of enumerating rational
curves in Grassmannians [36]. These last two examples give infinitely many fam-
ilies of nontrivial enumerative problems for which all solutions may be real. They
were motivated by recent, spectacular computations [9; 40] and a very interest-
ing conjecture of Shapiro and Shapiro [35], and were proved using an idea from a
homotopy continuation algorithm [16; 17].

We first formalize the method of constructing real solutions introduced in [34;
36], which will help extend these reality results to other enumerative problems.
This method gives lower bounds on the maximum number of real solutions to
some enumerative problems, in the spirit of [18; 38]. We then apply this theory
to two families of enumerative problems, one on classi&al,) flag manifolds
and the other on Grassmannians of maximal isotropic subspaces in an orthogo-
nal vector space, showing that all solutions may be real. These techniques allow
us to prove the opposite result—that we may have no real solutions—for a family
of enumerative problems on the Lagrangian Grassmannian. Finally, we suggest a
further problem to study concerning this method.
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1. Schubert Induction

LetK be a field and let\! be an affine 1-space ov&r. A Bruhat decomposition
of an irreducible algebraic variety defined oveiK is a finite decompaosition

x=][x.

wel
satisfying the following conditions.
(1) Each stratunX;, is a (Zariski) locally closed irreducible subvariety defined
overK whose closur&¢ is a union of some strats;.
(2) There is a unique 0-dimensional stratuff.
(3) Foranyw, v € I, the intersectiorX? N X¢ is a union of some strats;.

Since X is irreducible, there is a unique largest stratdfn Such spaceX
include flag manifolds, where thé; are the Schubert cells in the Bruhat decom-
position defined with respect to a fixed flag, as well as the quantum Grassmannian
[29; 36; 37]. These are the only examples to which the theory developed here
presently applies, but we expect it (or a variant) will apply to other varieties that
have such a Bruhat decomposition, particularly some spherical varieties [21] and
analogs of the quantum Grassmannian for other flag manifolds. The key to ap-
plying this theory is to find certain geometrically interesting families> A® of
subvarieties having special properties with respect to the Bruhat decomposition
(which we describe below).

SupposeX has a Bruhat decomposition. Define Behubert variety,, to be
the closure of the stratutki;. TheBruhat orderon I is the order induced by in-
clusion of Schubert varietiest < v if X, C X,. For flag manifoldsG/P, these
are the Schubert varieties and the Bruhat ordeWgiVp; for the quantum Grass-
mannian, its quantum Schubert varieties and quantum Bruhat ordefw [Set
dim X,,. For flag manifoldsG/P, if t € W is a minimal representative of the coset
w € W/ Wp then|w| = £(t), its length in the Coxeter grouy.

Let)Y — Al be a flat family of codimension-subvarieties ofX. Fors e A,
let Y(s) be the fiber ofy over the point. We say thaf) respectghe Bruhat de-
composition if, for everyw € I, the (scheme-theoretic) limit lign, o(Y (s) N X,,)
is supported on a union of Schubert subvarie¥g®f codimensiort in X,,. This
implies that the intersectioK(s) N X,, is proper for generie € AL That is, the
intersection is proper whenis the generic point of the scheraé

Given such a family, we have the cycle-theoretic equality

I ©) 0% = 3 .
v<yw

Herev <y w if X, is a component of the support of lime(Y(s) N X,,),
and the multiplicitym?, , is the length of the local ring of the limit scheme
lim;_o(Y(s) N X,) at the generic point oX,. Thus, if X is smooth then we

have the formula
[X,]-[Y]= ) m} ,[X.)] @

w<yv
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in the Chow [10; 12] or cohomology ring df. Here [Z] denotes the cycle class
of a subvarietyZ, andY is any fiber of the family)). When these multiplicities
my, , are all 1 (or 0), we caly amultiplicity-free family.

A collection of families)s, ..., V. respecting the Bruhat decompositionof
is in general position{with respect to the Bruhat decomposition) if, for alk I,
generaly, ..., s, € AL, and 1< k < r, the intersection

Y]_(Sl) N YZ(SZ) N---N Yk(sk) N Xw (2)

is properin that either it is empty or else it has dimensior] — Zf.‘zlc,-, where
¢; is the codimension itX of the fibers ofy;. Note that, more generally (and in-
tuitively), we could require that the intersection

Yil(sil) N Yiz(siz) n---N Yik (Sik) N Xw

be proper for ang-subsefiy, ..., iy} of {1, ..., n}. We do not use this added gener-
ality, although it does hold for every application we have of this theory. By general
pointssy, ..., s; € AL, we mean general in the sense of algebraic geometry: there
is a nonempty open subset of the scheiieonsisting of pointgsy, ..., s¢) for
which the intersection (2) is proper. Wheit-- - - + ¢, = |w/, the intersection (2)
is 0-dimensional. Determining its degree is a problem in enumerative geometry.
We model this problem with combinatorics. Given a collection of families
Y1, ..., Y, in general position respecting the Bruhat decomposition viith=
dmX = c1+ --- + ¢, we construct thenultiplicity posetof this enumerative
problem. Write<; for <y, . The elements of rank in the multiplicity poset are
thosew € I for which there is a chain

0 <1w1 <o wp <3+ + <1 Wi—1 <k W = W. 3

The cover relation between tlie— 1)th andith ranks is<; . Themultiplicity of
Wi—1

a chain (3) is the product of the multiplicities,, ", of the covers in that chain.
Let degw) be the sum of the multiplicities of all chains (3) frdrto w. If X is
smooth andw| = ¢1 + - - - + ¢, then degw) is the degree of the intersection (2),
since it is proper, and so we have the formula (1).

THeoREM 1.1. SupposeX has a Bruhat decompositiop/, ..., ), are a collec-
tion of multiplicity-free families of subvarieties ovét in general position, and
each family respects this Bruhat decomposition. d.&te the codimension of the
fibers of );.

(1) For everyk and everyw € I with |w| = c1+ -+ + ¢, the intersection(2)
is transverse for generat, ..., s, € A! and has degredegw). In particu-
lar, whenK is algebraically closed, such an intersection consistdeagfw)
reduced points.

(2) WhenK = R, there exist real numbers, ..., s, such that, for every and
everyw € I with |w| = c1+ - - - + ¢, the intersection(2) is transverse with
all points real.



576 FRANK SOTTILE

Proof. For the first statement, we work in the algebraic closur& p§o that the
degree of a transverse, 0-dimensional intersection is simply the number of points
in that intersection. We argue by induction fn

Whenk = 1, supposeéw| = ¢;. Since)); is a multiplicity-free family that re-
spects the Bruhat decomposition, we have

lim (Y1(s) N X,) = m3, ,, X,

with mg,lqw either 0 or 1. Thus, for generice A%, eitherY:(s) N X,, is empty or it

is a single reduced point and hence transverse. Note here tr(at)degng’,l, -
Suppose we have proven statement (1) of the theorerh ferl. Let |w| =
c1+ -+ ¢;. We claim that, for generig, ..., s;_1, the intersection

Yi(s) NN Yialsi) N Y Xy 4

v<jw

is transverse and consists of deqg points. Its degree is dég), because dea)
satisfies the recursion deg) = »_,_ , degv). Transversality will follow if
no two summands have a point in common. Consider the intersection of two
summands

Yi(s) N---NY_a(si—1) N (X, N Xy). %)

SinceX, N X, is a union of Schubert varieties of dimensions less fhan- ¢,

and since the collection of famili€g,, ..., );_1 is in general position, it follows
that (5) is empty for generig, ..., s;—1, Which proves transversality. Consider
now the family defined by;(s) N X,, for s generic. Sinc{:ww X, is the fiber

of this family ats = 0 and since the intersection (4) is transverse and consists of
degw) points, for generig; € A! the intersection

Yi(s1) NYa(s2) N - NY_a(si—1) N Yi(s1) N Xy (6)

is transverse and consists of deg points.

For statement (2) of the theorem, we inductively constructreal numpers, s,
having the properties that: (a) for anye I andk with jw| = c1+ --- + ¢, the
intersection (2) is transverse with all points real; and (bif < c1+ -+ + ¢,
then (2) is empty. Suppose| = c;. Since for generat € R the intersection
X, N Y1(s) is either empty or consists of a single reduced point, we may select
a generak € R with the additional property that ifv| < ¢; thenYi(s) N X, is
empty.

Suppose now that we have constructgd.., s;_; € R such that (a) ifv| =
c1+ - - -+ ¢;_1 then the intersectioiiiy(s1) N --- N Y;_1(s;—1) N X, is transverse
with all points real, and (b) ifv| < c1+ - - - + ¢;—1 then this intersection is empty.
Let|w| = c1+- - -+ ¢;. Then the intersection (4) is transverse with all points real.
Thus there exists,, > 0 such that, if 0< s; < ¢,, then the intersection (6) is
transverse with all points real. Sgt= min{e,, : |lw| = ¢1+ --- + ¢;}. Since
it is an open condition (in the usual topology) on theiple (s1, ..., s;) € R for
the intersection (6) to be transverse with all points real and since there are finitely
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manyw € I, we may (if necessary) choose a neatttyple of points such that, if
|lw| < c1+4 -+ + ¢, then the intersection (6) is empty. O

ReEMaARK 1.2. The statement and proof of Theorem 1.1 are a generalization of
the main results of [34, Thm. 1] and [36, Thms. 3.1 and 3.2], and they consti-
tute a stronger version of the theory presented in [33]. (Part (1) generalizes [6,
Thm. 8.3].) We call this method of pro&chubert inductionThe proof of the
second statement is based upon the fact that small (real) perturbations of a trans-
verse intersection preserve transversality as well as the number of real and complex
points in that intersection. In principle, this leads to an optimal numerical homo-
topy continuation algorithm for finding all complex points in the intersection (2).

A construction and correctness proof of such an algorithm could be modeled on
the Pieri homotopy algorithm of [16; 17].

RemARK 1.3. The first statement of Theorem 1.1 gives an elementary proof of
generic transversality for some enumerative problems involving multiplicity-free
families. In characteristic 0, it is an alternative to Kleiman'’s transversality the-
orem [20] and could provide a basis to prove generic transversality in arbitrary
characteristic, extending the result in [32] that the intersection of general Schubert
varieties in a Grassmannian of 2-planes is generically transverse in any charac-
teristic. It also provides a proof that deg is the intersection number—without
using Chow or cohomology rings, the traditional tool in enumerative geometry.

REMARK 1.4. If the families); are not multiplicity-free, then we can prove a
lower bound on the maximum number of real solutions. A (saturated) chain (3) in
the multiplicity poset isodd if it has odd multiplicity. Let oddw) count the odd
chains from0 to w in the multiplicity poset.

THEOREM 1.5. SupposeX has a Bruhat decompositiord/s, ..., ), are a col-
lection of families of subvarieties ovét in general position, and each family
respects this Bruhat decomposition. kebe the codimension of the fibers Bf.

(1) SupposeK is algebraically closed. For every, everyw € I with |w| =
c1+ -+ ¢, and generaky, ..., s; € A, the0-dimensional intersectio(2)
has degreelegw).

(2) WhenK = R, there exist real numbers, ..., s, such that, for every and
everyw € I with |w| = ¢1 + - - - + ¢, the intersectiorn(2) is O-dimensional
and has at leasbdd(w) real points.

Sketch of ProofFor the first statement, the same arguments as in the proof of
Theorem 1.1 suffice if we replace the phrase “transverse and consists(af)deg
points” throughout by “proper and has degree@eg. For statement (2) of the
theorem, observe that a point in the intersectiats1) N --- N Y;_1(s;-1) N X,
becomesny, , points counted with multiplicity in (6), whem, is a small real
number. If this multiplicitym?,  is odd and the original point was real, then at
least one of these,  points are real. O
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The lower bound of Theorem 1.5 is the analog of the bound for sparse polyno-
mial systems in terms of alternating mixed cells [18; 26; 39]. Like that bound, it
is not sharp [23; 39]. We give an example using the notation of Section 2. The
Grassmannian of 3-planes @’ has a Bruhat decomposition indexed by triples
1< <ay <az <7ofintegers. Let = 4 and suppose that each family

is the family of Schubert varietie¥ss;F.(s), whereF,(s) is the flag of subspaces
osculating a real rational normal curve. In [35, Thm. 3.9(iii)] it is proven that if
s, t, u, v are distinct real points then

Y()NY(t) N Y@w)NY(@)

is transverse and consists of eight real points. However, there are five chains in
the multiplicity poset; four of them odd and one of multiplicity 4. In Figure 1, we
show the Hasse diagram of this multiplicity poset, indicating multiplicities greater
than 1.

567 = 1

357

A7 BN

147 237 246 156 345

N7

135

123 = 0

Figure 1 The multiplicity poset

Despite this lack of sharpness, Theorem 1.5 gives new results for the Grass-
mannian. In [7], Eisenbud and Harris show that families of Schubert subvarieties
of a Grassmannian defined by flags of subspaces osculating a rational normal curve
respect the Bruhat decomposition given by any such osculating flag, and any col-
lection is in general position. Consequently, given a collection of these families
with odd(w) > 0, it follows that oddw) is a nontrivial lower bound (new if the
Schubert varieties are not special Schubert varieties) on the number of real points
in such a 0-dimensional intersection of these Schubert varieties.

For example, in the Grassmannian of 3-plane§€in?, let Y(s) be the Schu-
bert variety consisting of 3-planes having nontrivial intersection \jth (s) and
whose linear span with, ,1(s) is not all of C"*3. (Here,F;(s) is thei-dimensional
subspace osculating a real rational normal cyna the pointy (s).) This Schu-
bert variety has codimension 3. Consider the enumerative problem given by inter-
sectingr of these Schubert varieties. Table 1 gives both the number of solutions
(degi)) and the number of odd chaisdd(1)) in the multiplicity poset for =
2,3 ...,11 The case = 4 we have already described. The conjecture of Shapiro
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Table 1 Number of solutions and odd chains

r 2 3 4 5 6 7 8 9 10 11

degl) 1 2 8 32 145 702 3,598 19,280 107,160 614,000
oddl) 1 o0 4 6 37 116 534 2,128 9,512 41,656

and Shapiro [35] asserts that all solutions for aryple of distinct real points

will be real, which is stronger than the consequence of Theorem 1.5 that there is
somer-tuple of real points for which there will be at least as many real solutions
as odd chains.

REMARK 1.6. The requirement that there be a unique 0-dimensional stratum in
a Bruhat decomposition may be relaxed. We could allow several 0-dimensional
strataX, for z € Z, each consisting of a singlé-rational point. This is the case

for toric varieties [11] and more generally for spherical varieties [21].

If we define the multiplicity poset as before, th&nindexes its minimal ele-
ments. We define the intersection number @egand the bound oda) using
chains

Z<1Wwi<pWp <3<, wy=w With zeZ.

Then almost the same proof as we gave for Theorem 1.1 proves the same statement
in this new context. We do not yet know of any applications of this extension of
Theoreml.1, but we &pect that some will be found.

2. The Classical Flag Manifolds

Fix integerss > m > 0andasequenak 0 < dy < --- < d,, < nofintegers. A
partial flag of typed is a sequence of linear subspaces

Ej yCEg C---CEy, CC”

withdim E; = d; foreachi =1, ..., m. Theflag manifoldFly is the collection of
all partial flags of typel. This manifold is the homogeneous spacg/BLC)/Pq,
where Py is the parabolic subgroup of $k, C) defined by the simple rootsot
indexed by{ds, ...,d,}. See [3] or [13] for further information on partial flag
varieties.

A fixed complete flagf, (Fy C --- C F, = C" with dim F; = i) induces a
Bruhat decomposition of

Fla=]]x;F. @)

indexed by those permutations= w;. .. w, in the symmetric grougs, whose
descentsei | w; > w;;1} isasubsetofds, ..., d,}. Write I for this set of per-
mutations. Therhw| = £(w), asly is the set of minimal coset representatives for
Wp,. The Schubert variety,, F. is the closure of the Schubert calf, F..
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Fix any real rational normal curye: C — C”, whichisamapgivenby: s —
(p1(s), ..., pa(s)) and wherep, ..., p, are a basis for the space of real polyno-
mials of degree less than All real rational normal curves are isomorphic by a
real linear transformation. For anye C, let F.(s) be the complete flag of sub-
spaces osculating the curyeat the pointy (s). The dimension-subspace;(s)
of F.(s) is the linear span of the vectopgs) andy'(s) == £y (s), ..., y ().

For each =1, ..., m, we havesimple Schubert variety; F, of Fl4. Geomet-
rically,

XiE = {E. € Fld | Ed,' N Fl‘lfd[ # {0}}

We call these “simple” Schubert varieties, for they give simple (codimension-1)
conditions on partial flags in Fl Let X; — Al be the family whose fiber over
s € Alis X;F.(s). We study these families.

THeoreMm 2.1. Letd = 0 < di < --- < d,, < n be a sequence of integers.
Foranyi = 1,...,m, the familyX; — Al of simple Schubert varieties is a
multiplicity-free family that respects the Bruhat decompositioRigfgiven by the
flag F.(0).

Any collection of these families of simple Schubert varieties is in general posi-
tion.

We shall prove Theorem 2.1 shortly. First, by Theofetywededuce the follow-
ing corollary.

CoOROLLARY 2.2. Letw € Iy and setr := |w| = dim X,,. Then, for any list of
numbersy, ..., i, €{1, ..., m}, there exist real numbers, ..., s, such that

XuF.(0) N X F.(s1) NN X, Fi(sp) (8)

is transverse and consists only of real points.

This corollary generalizes the intersection of the main results of [34] and [36],
which is the case of Corollary 2.2 for Grassmanniéhs= d; has only a single
part). This result also extends (part of) Theorem 13 in [33], which states that, if
d=2<n-2andiy,..., i, are any numbers frof2,n — 2} (r = dimFly =

4n — 12), then there exist real flagg®, ..., F’ such that

Xy F 0. N X, F!

is transverse and consists only of real points.

We recall some additional facts about the cohomology of the partial flag man-
ifolds Flg. Each stratunX ¢ F, is isomorphic toC'™! and the Bruhat decomposi-
tion (7) is a cellular decomposition of fInto even- (real) dimensional cells. Let
oy, be the cohomology class Poincaré dual to the fundamental (homology) cycle
of the Schubert variet¥,, F,. Then these Schubert classgsprovide a basis for
the integral cohomology ringl *(Flg, Z) with o,, € H?>*™)(Flg, Z), wherec(w)
is the complex codimension of, F, in Flg.
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Let z; be the class of the simple Schubert vari&yF,. There is a simple for-
mula due to Monk [25] and Chevalley [4] expressing the prodyctz; in terms
of the basis of Schubert classes. ket I4. Then

Oy T; = E Ow(j.k)»

where(j, k) is a transposition; the sum is over @lk d; < k, where

(1) w; > wy and
(2) if j <! < k then eitherw; > w; or elsew; > w;.

Write w(j, k) <; w for suchw(, k). Note that, ifw € I4, then soisany € S,
withv <; wforanyi =1,..., m.

Let Gr(d;) be the Grassmannian @f-dimensional subspaces®©f. The asso-
ciationE. — E,, induces a projection; : Flq — Gr(d;). The Grassmannian has
a Bruhat decomposition

Grd) = [ F.

indexed by increasing sequenceesf lengthd;, 1 < a1 < a2 < -+ < ag; < n,
with the Bruhat order given by componentwise comparison. Such an increasing
sequence can be uniquely completed to a permutatier) whose only descent
is atd;. The mapr; respects the two Bruhat decompositions in ma{(sza) =
XueF. andn; (X, F.) = Qg F., wherea(w) is the sequence obtained by writ-
ing wy, ..., wy, in increasing order. Thus, f < a(w), thenX,, F. N7, 'Q4F. is
a union of proper Schubert subvarietieSXQf F..

The Grassmannian has a distinguished simple Schubert variety

YFE ={EcGr(d) | ENF,_q #{0}}.

This showsX; F, = 7, (TF). We haveYF, = Q. n—da;+2.....n F..
We need the following useful fact about the famili€s — AL

LEmMA 2.3. Foranyw € I, we have )1 X, F.(s) = 0.

Proof. Any Schubert varietyX,, F, is a subset of some simple Schubert variety
X,F, = ni_lTF.. Thus it suffices to prove the lemma for the simple Schubert vari-
etiesY'F,(s) of a Grassmannian. But this is simply a consequence of [6, Thm. 2.3].
O
Proof of Theorem 2.1For anyw € Iy, we consider the scheme-theoretic limit
lim,_o(X,, F.(0) N X;F.(s)). SinceX;F, = &, }(YF,), for anys € C we have

X F.(0) N XiFi(s) = Xy F.(0) N7, X(Qacu) F.(0) N YE(s)),
sincern; X, F.(0) = Q4w F.(0). Thus, set-theoretically we have
lim (X, F.(0) N XiF(5)) € X F(O) N 17 M (R FO) N YE(5))).

But this second limitig J,_,,, $2sF. by [6, Thm. 8.3]. Thus
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lim (X, F.(0) N X;F(s)) C X,y F.(0) N n;1< U mF.(O))
s—0 o)
c |J x.F0,
viw
set-theoretically.

Since the limit scheme lign,o(X,, F.(0) N X;F.(s)) is supported on this
union of proper Schubert subvarieties ¥f, F,(0) and has dimension at least
dim X, F,(0) — 1, its support must be a union of codimension-1 Schubert sub-
varieties ofX,, F,(0). Hence the family¥; — Al respects the Bruhat decomposi-
tion, and we have

lim (X, F.(0) N XiF(s)) = ) m} , X, F(O);

i,w
v<<w

thuso, - 7 = ), 4 m; 0, in the Chow ring. Since the Schubert classgs

are linearly independent in the Chow ring, these multiplicities are either 0 or 1 by
Monk’s formula, and they are 1 precisely when<; w. Thus the familyX; —

Al is multiplicity-free, and we have proven the first statement of Theorem 2.1.

To complete the proof, lek;,, ..., X; be a collection of families of simple
Schubert varieties defined by the flag$s). We show that this collection is in
general position with respect to the Bruhat decomposition defined by thg (g
If not, then there is some index and integek with £k minimal such that, for gen-

eralsy, ..., s, € C,
X, FE(0)N Xy F(s1) NN X F.(s_1) ()]
has dimensiofw| — k + 1, but
XuF.(0) N X; Fi(s1) N--- N X; Fo(se)

has dimension exceeding| — k. Hence its dimension isv| — k& + 1. But then,
for generak € C, some component of (9) lies iy, F.(s), which implies that this
component lies irX;, F.(s) for all s € C, contradicting Lemma 2.3. O

The previous paragraph provides a proof of the following useful lemma.

LEmMA 2.4. Suppose a variet¥ has a Bruhat decomposition. L@k, ..., ),
be a collection of codimensidhtamilies inX, each of which respects this Bruhat
decomposition. If each family, — Al satisfies

() Yits) = 2.

seAl

then the collection of familie¥, ..., ), is in general position.

A fruitful question is to ask how much freedom we have to select the real numbers
s1, ..., s, of Corollary 2.2 so that all the points of the intersection (8) are real. In
1995, Boris Shapiro and Michael Shapiro conjectured that we have almost com-
plete freedom: For generic real numbeys..., s,, all points of (8) are real. This
remarkable conjecture is false in a very interesting way.
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ExampLE 2.5. Letn = 5 andd : 2 < 3 so that F} is the manifold of flags
E, C E3 C C®. This 8-dimensional flag manifold has two types of simple Schu-
bert varietiesX; F, for i = 2, 3, whereX; F, consists of those flags, c E3 with

E; N Fs_; # {0}. Write X;(s) for X, F.(s). A calculation (using Maple and Singu-
lar [15]) shows that

X2(—8) N X3(—4 N X2(—2) N X3(—1) N X2(D) N X3(2) N X2(4) N X3(8)

is transverse and consists of twelve points, none of which are real.

Despite this counterexample, quite a lot may be salvaged from the conjecture of
Shapiro and Shapiro. When the partial flag manifolglisla Grassmannian, there

are no known counterexamples, many enumerative problems, and choices of real
numberssy, ..., s, for which all solutions are real [35]; in [8], the conjecture is
proven for any Grassmannian of 2-planes. The general situation seems much sub-
tler. In our counterexample, the poirts 8, —2, 1, 4} at which we evaluat&,
alternate with the points-4, —1, 2, 8} at which we evaluat&s. If, however, we
evaluateX, at pointssy, ..., s4 and X3 at pointsss, ..., sg With s; < 50 < -+ <

sg, then we know of no examples with any points of intersection not real. We have
checked this for all 24,310 subsets of eight numbers from

{-6,-5,—-4,-3 —-2,-112,35,7,11 13 17,19, 23 29}.
On the other hand, if we evaluak® at any four of the eight numbers
{1,2,3% 4% 5% 6% 7% 8')

and X3 at the other four numbers, then all twelve points of intersection are real.

3. The Orthogonal Grassmannian

Let V be a vector space equipped with a nondegenerate symmetric bilinear form
(-,-). A subspaced C V isisotropicif the restriction of the form tdd is identi-
cally zero. Isotropic subspaces have dimension at most half thafidgfe orthog-
onal Grassmanniais the collection of all isotropic subspaceslofvith maximal
dimension. If the dimension df is even then the orthogonal Grassmannian has
two connected components, and each is isomorphic to the orthogonal Grassmann-
ian for a generic hyperplane sectionlofthe isomorphism is given by intersecting
with that hyperplane. Thus, it suffices to consider only the case when the dimen-
sion of V is odd.

WhenV has dimension 2+ 1, a maximal isotropic subspadé of V has di-
mensiom, and we write OGn) for this orthogonal Grassmannian. To ensure that
OG(n) hasK-rational points, we assume thethas aK-basises, ..., es,.1, for

which our form is
<ine,-,2y,-e_,-> = iny2n+2_,~. (10)

Then OQn) is a homogeneous space of the (split) special orthogonal group
SO(2n + 1, K) = Aut(V, (-, -)). This algebraic manifold has dimensiﬁhjl).
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An isotropic flagis a complete flagr, of V such that (a)F, is isotropic and
(b) for everyi > n, F; is the annihilator offp,1;, that is,(Fo,+1-;, F;) = 0.
An isotropic flag induces a Bruhat decomposition

OG(n) = | [ X;F.

indexed by decreasing sequenaedf positive integerss > Ay > --- > A; > 0,
calledstrict partitions. Let SR(n) denote this set of strict partitions. The Schubert
variety X, F, is the closure of(; F, and has dimensiofi| ;== A1+ --- + ;. The
Bruhat order is given by componentwise comparisbre w if A; > u; forall i
with both;, ; > 0. Figure 2 illustrates this Bruhat order when= 3.

321 =1
32
AN
31
VRN
21 3
\2/
e
1
/.
0 =0

Figure 2 The Bruhat order for OG3)

The unique simple Schubert variety of @4 is (set-theoretically)
YF,:={H € OG(n) | HN F,+1# {0}}.

ThusYF, is the set-theoretic intersection of @& with the simple Schubert vari-
ety YF, of the ordinary Grassmannian @ of n-dimensional subspaceséfThe
multiplicity of this intersectionis 2 (see [14, p. 68]). We ha®é = X, ,—1... 2 F..
The Bruhat orders of these two Grassmanni@&(n) and Gi(n)) are related.

LemMma 3.1.  LetF, be afixed isotropic flag itv. Then every Schubert cel} F, of
OG(n) lies in a unique Schubert canng. of Gr(n). Moreover, for any strict
partition A, we have the set-theoretic equality

X, FEn | QpF = X.F.
B<a(d) H<

Let ¢ be the cohomology class dual to the fundamental cyclBRf and leto;
be the class dual to the fundamental cycleXaff.. The Chevalley formula for
OG(n) is
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O, T = E Ous

W<

which is free of multiplicities.
Let K = C. As in Section 2, we study families of Schubert varieties de-

fined by flagsF. (s) of isotropic subspaces osculating a real rational normal curve

y . C — V aty(s). With our given form(-, -) and basigy, ..., e2,11, One choice

for areal rational normal curye whose flags of osculating subspaces are isotropic

is "

2
y(s) = (Ls,%,...,—,

n!

sn+1 Sﬂ+2 SZn
- , o (D7 >
(n+D!" (n+2)! 2n)!
THEOREM 3.2. The familyy — A! of simple Schubert varietiegF,(s) is
multiplicity-free and respects the Bruhat decompositionQsb(») induced by
the flagF,(0).
Any collection of these families of simple Schubert varieties is in general posi-
tion.

We omit the proof of this theorem, which is nearly identical to the proof of
Theorem 2.1. By Theorethl, wededuce the following corollary.

CoroLLARY 3.3. Leti € SP(n). Then there exist real numbess ..., s, such
that

X FE(ONYF(sy)N---NYF(s)) (11)

is transverse and consists only of real points.

By Theorem 3.2 and the Chevalley formula, for a strict partitioand general
complex numberss, ..., s, the intersection (11) is transverse and consists of
degA) points, where de@.) is the number of chains in the Bruhat order frora-0
Otoa.

As in Section 2, we may ask how much freedom we have to select the real num-
bersss, ..., s, of Corollary 3.3 so that all the points of the intersection (11) are
real. Whem = 3 andi = 1 (Figure 2 shows thail| = 6 and degl) = 2), the
discriminant of a polynomial formulation of this problem is

2 2 2
Z(swl - Swz) (Sws - Su)4) (Sws - Swe) s
weSg

which vanishes only when four of the coincide. In particular, this implies that
the number of real solutions does not depend upon the choice gf fivben the
s; are distinct). Hence both solutions are always real. When4 andx = 1 we
have checked that, for each of the 1,001 choices,of ., s1o chosen from

{1,2,3,5,7,10,11,13 15,16, 17, 23 29, 31},

there are twelvé= degi)) solutions, and all are real.
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4. The Lagrangian Grassmannian

The Lagrangian GrassmanniahG (n) is the space of all Lagrangian (maximal
isotropic) subspaces in azdimensional vector spadé equipped with a nonde-
generate alternating forfn, -). Such Lagrangian subspaces have dimensidn
contrast to the flag manifolds ~and orthogonal Grassmannian O3, we show

that there may be no real solutions for the enumerative problems we consider. We
may assume that has aK-basises, ..., ez,, for which our form is

n
< E Xi€i, E }’jej)= E XiYon+1—i — YiX2n+1—i-
i=1

An isotropic flag is a complete flag of V such thatF, is Lagrangian and, for
everyi > n, F; is the annihilator off,,_;; that is,(F2,_;, F;) = 0. An isotropic
flag induces a Bruhat decomposition

LG(n) = [ X;F.

indexed by strict partitiond € SP(n). The Schubert varietX; F. is the closure

of the Schubert celX; F. and has dimensioji|. The Bruhat order is given (as for

0OG(n)) by componentwise comparison of sequences. Although théx®énd

LG (n) have identical Bruhat decompositions, they are very different spaces.
The unique simple Schubert variety of (@ is

YF,:= {H eLG(n) | HN F, # {0}}.

ThusYF, is the set-theoretic intersection of (@) with the simple Schubert va-
riety TF, of the ordinary Grassmannian @ of n-dimensional subspaces 6f
This is generically transverse. As with @&, the strict partition indexing’F,
isn,n —1,...,2. The Bruhat decomposition of the Lagrangian Grassmannian is
related to that of the ordinary Grassmannian in the same way as that of the orthog-
onal Grassmannian (see Lemma 3.1).

Let K = C. We study families of Schubert varieties defined by isotropic flags
F.(s) osculating a real rational normal curge C — V at y(s). With our
given form (-, -) and basisy, ..., e2,, one choice fory whose osculating flags
are isotropic is

S2 s Sn+1 sn+2 1 s2n—1

Let T be the cohomology class dual to the fundamental cyclBmf and let
o; be the class dual to the fundamental cycl&Xgf,. The Chevalley formula for

LG(n)is
O\ T = Z m;fo’[l.v

<A




Some Real and Unreal Enumerative Geometry for Flag Manifolds 587

where the multiplicityn) is either 2 or 1, depending (respectively) upon whether
or not the sequencesandu have the same length. Figure 3 shows the multiplic-
ity posets for the enumerative problem in [ and LG(3) given by the simple
Schubert varietie¥F,(s).

321 = 1
32\2
31
. RN
21 = 1 21 3
AN N
3° 3’
1 1
S a
=0 P =0

Figure 3 The multiplicity posets L@2) and LG(3)

As in Sections 2 and 3, the family — A! whose fibers are the simple Schu-
bert varietiesYF,(s) respects the Bruhat decomposition of (43, and any col-
lection is in general position. From the Chevalley formula, we see that it is not
multiplicity-free.

THEOREM 4.1. The family) — Al of simple Schubert varietigéF, (s) respects
the Bruhat decomposition dfG (n) induced by the flag.(0).
Any collection of families of simple Schubert varieties is in general position.

The proof of Theorem 4.1, like that of Theorem 3.2, is virtually identical to that
of Theorem 2.1; hence, we omit it.

Since the family) is not multiplicity-free, we do not have analogs of Corol-
laries 2.2 and 3.3 showing that all solutions may be real. When- 1, every
chain (3) in the multiplicity poset contains the covet 12, which has multiplic-
ity 2 and so is even. Thus the refined statement of Theorem 1.5 does not guarantee
any real solutions. We show that there may be no real solutions.

THEOREM 4.2. Let A be a strict partition withjA| = r > 1 Then there exist real
numbersy, ..., s, such that the intersection

XpF(O)NYF(s1) N--- N YF(sy) (13)
is 0-dimensional and has no real points.
When|A| is 0 or 1, the degreédegA)) of the intersection (13) is 1 and so its only
point is real. For all othek, deg) is even. Thus we cannot deduce that the in-

tersection is transverse even for generic complex numbers, s;,. However,
the intersection has been transverse in every case we have computed.
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Proof. We induct on the dimensign| of X, F,(0) with the initial case ofi| = 2
proven in Example 4.3 (to follow). Suppose we have construgted., s,_1 € R
having the properties that: (a) for apy the intersection

YF.(s1) N--- N YE(s,-1) N X, F.(0)

is proper; and (b) whef| = r — 1, itis (necessarily) 0-dimensional, has degree
deg ), and no real points.
Let A be a strict partition withx| = r. Then the cycle

YE(sp) N+ NYE(s,_) N Y _ m} X, F.0)

<A

is 0-dimensional, has degree deg and no real points. Since the famiKF, (s)
respects the Bruhat decomposition given by the H4Q), we have

lim (YE(s) N X, E(0) = ) | m{ X, F.(0).
n<

Hence there is somg > 0 such that, if O< s, < ¢, then the intersection (13)
has dimension 0, degree d&g, and no real points.

Sets, = min{g; : |A| = r}. Since it is an open condition (in the usual topol-
ogy) on(sy, ..., s») € R” for the intersection (13) to be proper with no real points
and since there are finitely many strict partitions, we may (if necessary) choose
a nearbyr-tuple of points such that the intersection (13) is proper for every strict

partitiona. O

ExampLE 4.3. When|A| = 2, we necessarily have = 2 and
XoF, ={H elLG(n) | F,_o C H C F,.2 and dim(H N F,) > n — 1},

which is the image of a simple Schubert varigy, = X,G. of LG(2) under an
inclusion LG(2) < LG(n). Since F,,, annihilatesF,_,, the alternating form
(-, -y induces an alternating form on the 4-dimensional sgéce= F, ,/F,_2,
and the flagF, likewise induces an isotropic flag. in W. The inverse image in
F,., of a Lagrangian subspace ®f is a Lagrangian subspace Bfcontained in
Foo. Ifweletg: LG(2) < LG(n) be the induced map, thetL F, = ¢(X2G.).

Consider this map for the isotropic flagyoo) of subspaces osculating the point
at infinity of y. Then(f1, f2, f3, fa) := (ea—1, €n, €n11, €412) Provide a basis for
W. An explicit calculation using the rational curye(12) shows that the flag in-
duced onW is G, (c0), wheregG, (s) is the flag of subspaces osculating the rational
normal curvey in W and wherep X (YF,(s)) = YG.(s) for s € R. We describe
the intersection

X,F.(00) N YE.(s) N YE,(t) = ¢(X2G.(00) N YG.(s) N YG.(t))

whens and: are distinct real numbers.
The Lagrangian subspac®(s) is the row space of the matrix

1 s s%2 —5%6
01 = —s%/2 |
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The flagG.(c0) is (fa) C {fa, f3) C (fa, f3, f2) C W. A Lagrangian subspace
in the Schubert celk5G.(oc0) is the row space of the matrix

1 x 0 vy
0 0 1 —x/
wherex andy are inC. In this way,C? gives coordinates for the Schubert cell.

The condition for a Lagrangian subspallec X5G.(c0) to meetGa(s), which
locally defines the intersectiaXi, G.(c0) N YG.(s), is

1 s s%2 —sY6
0 1 N —S2/2 2 2 3

det 1 x 0 y =—y+sx°—xs°+s5Y3=0.
0 0 1 —x

If we call this polynomialg(s), then the polynomial systeg(s) = g(t) = O de-
scribes the intersectioki,G.(c0) N YG.(s) N YG.(t). Whens # ¢, the solutions
are

s+t V=3
= T+ (s —t)—
X 5 (s ) 6
2t 4 512 =3
y = % + (s2t — stz)T,

which are not real fos, r € R.

To see that this gives the initial case of Theorem 4.2 we observe that, by
reparameterizing the rational normal curve, we may move any three points to
any other three points; thus it is no loss to Us&-,(co) in place of X, F,(0).

As before, we ask how much freedom we have to select the real numbers
s1, ..., s, of Theorem 4.2 so that no points in the intersection (11) are real. When
n = 2 andss, s, s3 are distinct and real, no point in (11) is real. This is a conse-
guence of Example 4.3 because, whes 2, we haveX,F, = YF,. Whenn = 3
andx = 1 we have checked that, for each of the 924 choices,of ., se chosen
from

{1,2,34,5,6,11, 12,13 17,19, 23},

there are 16= degi)) solutions and none are real.

5. Schubert Induction for General Schubert Varieties?

The results in Sections 2, 3, and 4 involve only codimension-1 Schubert varieties
because we cannot show that families of general Schubert varieties given by flags
osculating a rational normal curve respect the Bruhat decomposition or that any
collection is in general position. Eisenbud and Harris [6, Thm. 8.1; 7] proved this
for families 2, F,(s) of arbitrary Schubert varieties on Grassmannians. Their re-
sult should extend to all flag manifolds. We make a precise conjecture for flag
varieties of the classical groups.

LetV be avector space aid -) abilinear form or, and seG := Aut(V, (-, -)).
We suppose that, -) is either:
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(1) identically zero, so tha¥ is a general linear group;
(2) nondegenerate and symmetric, so tias an orthogonal group; or
(3) nondegenerate and alternating, so thas a symplectic group.

For the orthogonal case, we suppose thidbas a basis for whick:, -) has the
form (10) whenV has odd dimension and the same form with.1_; replacing
yant2—i WhenV has even dimension. This last requirement ensures that the real
flag manifolds ofG are nonempty. Ley be a real rational normal curve ¥
whose flags of osculating subspadeéés) for s € y are isotropic (cases (2) and

(3) just listed).

Let P be a parabolic subgroup 6f. Given a point Gz y, the isotropic flagr, (0)
induces a Bruhat decomposition of the flag manif@}tP indexed byw € W/Wp,
whereW is the Weyl group ofG andW; is the parabolic subgroup associated to
P. Forw e W/Wp, let X,, — y be the family of Schubert varietigs, F,(s).

CoNJECTURE 5.1. For anyw € W/Wp, the familyX,, — y respects the Bruhat
decomposition of5/P given by the flagr.(0) and any collection of these families
is in general position.

If this conjecture were true then, for anyw € W/ Wp, we would have
im (X, () 0 Xu) = D mi, X

v<w

These coefficients:;, , are the structure constants for the cohomology ring of
G/P with respect to its integral basis of Schubert classes. There are few formulas
known for these structure constants, and it is an open problem to give a combina-
torial formula for these coefficients. Much of what is known may be found in [1;
2; 27; 28; 31]. An explicit proof of Conjecture 5.1 may shed light on this important
problem.

One class of coefficients for which a formula is known is wiagt® is the par-
tial flag manifold Fly andu is the index of a special Schubert class. For these,
the coefficient is either 0 or 1[22; 31]. A consequence of Conjecture 5.1 would be
that any enumerative problem on a partial flag manifolgddiven by these special
Schubert classes may have all solutions be real, generalizing the result of [35].
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