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0. Introduction

0.1. LetA be a not necessarily commutative algebra over a commutative ring
k, and letd: A — M be a derivation into am-A-module. In this article we
construct noncommutative-algebras/® = A, J, ..., depending onl, that are
A-A-modules, with natural inclusion® — J”" for n > 1 and with naturak-
algebra homomorphisms: J* — J"~% The algebrad” fit into exact sequences
mean g 2 et 0, wherei” is induced by the multiplication ori”; the
sequence is short exact whahis flat overA.

When M is free we show tha/” has a second natural structure as an alge-
bra under a multiplication, thshuffleproduct. Denote/” with this product
by Jehue We show that/g, « has a subalgebréf,,, of symmetric elements, de-

shu
pending on the choice of basis &f, and we have natural exact sequences 0

(memys: L g Dot o,

When A is commutative we show that" always has a shuffle product, which
coincides with the aforementioned product whnis free. In the commutative
case we define, for evekylinear mapp: M — /\2 M such thatpd = 0, a subal-
gebraJ; of J§, 4 we also give natural conditions fdj) to be equal ta/g,,, when
M is a freeA-module.

Finally, we show that the theory globalizes.

0.2. LetX be a Riemann surface. For each integer O there is a natural lo-
cally freeOx-moduleJy of rankn 41, called thebundle ofn-jets,with a natural
C-linear map

§: 0x — j}?

The bundle, with the mag, is characterized by the following property: Associ-
ated with each parameteion an open subsét of X is anOy-basisey, ¢, .. ., &,
of 7¢|,,. in terms of whichs |, is given by theTaylor expansion,

8(f) = feo+ (dffdx)er+ -+ (@"f/dx")e,. (0.2.1)

More classically, the coefficients are taken with denominatiyi$) (d'f/dx").
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The jet bundle7y may be constructed by gluing local pieces as follows. )L et
be a second parameter bin Clearly, then, forf € Ox (U) there is an equation

(f.dffdy.....d"fldy") = (f.df/dx, ....d" f/dx")T (x,y)

with a matrix7 (x, y) whose coefficients are polynomials in the derivativegdy’
fori = 1,...,n. Itis easily verified that the matriceB(x, y) satisfy the cocy-
cle conditions:T'(x, x) = 1 and, ifz is a third parameter oty, thenT'(x, z) =
T(x, y)T(y, z). These properties suffice to defigg and the ma, first locally
on trivial open subsets and then globally by gluing the local pieces.

It is easy to see that the jet bundlg$ come with a sequence of surjections,

1 1 0
RN )’(” - Jg = = Ty —> Jyx = Ox.

Forn =1, we have the decomposition
Ix=0x®Qy,  8f)=f+df,
whereQ}, is module of differentials and is the global differential,
d: Ox — Q%. (0.2.2)

The construction is well known and is easily generalized to other types of
manifolds.

There are several other constructions of jets—for example, the principal parts
Py defined for any scheme or any analytic spaceln analytic geometry it is
more usual to start with the modulemth-order differential operator®iffy, re-

lated to the principal parts BRiffy = Hom(Py, Ox), and define jets to be the
moduleHom (Diffy, Ox). WhenX is smooth, the two definitions coincide.

0.3. Itis a fundamental observation, made by Gatto [G1], that the construction
of jets depends only on the derivatidrof (0.2.2) in the following sense. Le&f
be any variety, and let

d: Ox > M (0.3.1)

be any derivation into an invertibl@x-module M. Then there is an analogous
construction leading to a globally defined locally free rank+ 1) module 7" =
J .4 and aC-linear map

6. OX — j'/(q/l,d.

To construct we associate with each basidor M|, over an open se/ the
derivationD, : Oy — Oy defined by the equation

df = (De f)e.

Define j/('A,d|U as the free®y-module on a basisc, ..., ¢,) ands: Oy —
~7/\’4,d|y by the expansion, analogous to (0.2.1),

8(f) = feo+ (Deflert -+ (D f)en. (0.3.2)

Let n be a second basis favt
is an equation

y» Saye = un for a unitu of Ox (U). Then there
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(fs Dyfsoos Dy f) = (f. Do f, ..., DL )T (e, 1)

with a matrix7 (e, n) whose coefficients are polynomials in the derivatipEsu)
fori =0,...,n—1 Againthe cocyle conditions are verified, and the bu@@gd
together withs is obtained by gluing the local pieces.

0.4. The theory presented in Section 0.1, when applied to the caseXvizea
scheme and: Ox — M is a derivation into an arbitrar§®x-module, will give an
intrinsic definition of the modules™ = JY, ,. A technical advantage of the ap-
proach (as compared to the constructions sketched in Sections 0.2 and 0.3) is that
the intrinsic definition avoids the tedious verification of the cocycle relations. Our
main construction in Section 1.6 is conceptual and simple, and it allows natural
proofs of the properties of the sheay@$. However, the most important feature

of the intrinsic definition is that it throws additional light on the propertieg 6f

For instance, it becomes clear that:

(1) J"is, in a natural way, a noncommutative algebra over the ground field,;

(2) J" containsOy as a subalgebra;

(3) the maps: Ox — J" is a map of algebras;

(4) there is a natural imbeddingt — 7", and whenM is locally free then the
Ox-modules7" are free. IfM is invertible with basig over an open seft,
then the base elementsconsidered in (0.3.2) are the powers In particu-
lar, in (0.2.1) we have that = (dx)'.

Let us emphasize that the algelfa is necessarily noncommutative: in a com-
mutative algebra, the equation (0.3.2), with= ¢’ ands(fg) = §(f)8(g), would
contradict the Leibniz rule for the higher derivatives of a product.

0.5. The construction of jet bundles from a derivation (0.3.1) arose in the study
of Weierstrass points for families of curves. In earlier work [LT1], [LT2], [LT3]
we have shown how Weierstrass points for a fanily> S can be defined in a
natural way from aVronski systeron the family. Such a system consists of maps
between locally fre€@y-modules. For smooth families the relative principal parts
give rise to a Wronski system. In constructing a Wronski system, Gatto was led
to the construction of jet bundles as just described for a smooth curve; this was
extended to smooth families by Gatto and Ponza [GP]. In both cases, the construc-
tion is performed for the global relative differentials analogous to (0.2.2) and in
characteristic zero. In these cases, as indicated above and proved below, the mod-
ule of jets is isomorphic to the module of principal parts.

The importance of the construction of Gatto and Ponza comes from its use to
families that are not smooth but where there is a natural derivdti@®y — wx/s
into an invertibleDx-module. In such cases the principal parts are not locally free,
but the construction gives locally free jets. Gatto [G2] used the construction for a
Gorenstein curve with the composit® — wy,s of the global differential with
the natural mam}(/s — wy/s into thedualizing sheafsketching in [G3] such a
construction in the case of families of stable curves. Our construction allows us
to construct Wronski systems whenever we have a derivatid?y — M into
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a locally freeOx-module. It therefore makes possible the definition and study of
Weierstrass points under very general conditions.

A natural homomorphisn®% ¢ — wx/s was constructed by Buchweitz and
Greuel [BG, Thm. (4.2.4)] for a flat family of germs of reduced curves over the
complex numbers. It also exists for flat families that are locally complete inter-
sections. We do not know whether such a map exists for any flat family of curves
in any characteristic.

In arbitrary characteristic, Esteves [E1] constructed Wronski systems for flat
families that are locally complete intersections. For families of Gorenstein curves
with a simultaneous resolution by a smooth family, yet another construction of
Wronski systems was given in [LT2].

The jets constructed here give a Wronski system for a family of Gorenstein
curvesand a ma@}(/s — wyx/s into the invertible dualizing sheafy,s. However,
in positive characteristic, the construction is not satisfactory in the sense that it
does not give the principal parts even in the case whé&ha single smooth curve.

It would be interesting to know the kind of extra information needed, in addition
to the mapQ}(/S — wyys, for a satisfactory construction of Wronski systems.

1. Jets

In this section we present the construction of the algebra of/jetssociated to a
derivationd: A — M from a not necessarily commutative algeldraver a com-
mutative ringk, into an A-A-moduleM. By truncation we obtain the algebras of
n-truncated jetd" = J; , that are the main objects of study in the article. We es-
tablish the main properties of these jets. In particular, we prove that they fit into
exact sequences similar to the well-known exact sequences for principal parts.

1.1. Setup. Let A be a not necessarily commutative algebra over a commuta-
tive ground ringk. Moreover, letM be anA-A-module—that is, &-module on
which A acts from the left and from the right, so that the two actions commute
and extend the given action bf We fix a derivation

d: A— M,

ak-linear map such that(fg) = f(dg) + (df)g. Throughout, linearity is with

respect to the ground ririg The dependence dnis often omitted in the notation.
We use the convention that atgebra,with no further specification, is/aalgebra

with unit.

1.2. DeFINITION. An A-A-algebraFE is an A-A-module with ak-bilinear prod-
uct,x ® y — x - y, which is associative and lef-linear in the first factor and
right A-linear in the second:

(fx)-y=fx-y), x-(yH=&-nf 1.2.1)

Note that, in contrast to the convention useddalgebras, we do not require an
A-A-algebra to have a unit, nor do we require the product tatalanced—that
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is, we do not require that- (fy) = (xf) - y. Let E be anA-A-algebra. A deriva-
tion D: A — E is calledbalancedif

x-(fy)=&f)-y+x-Df -y. 1.2.2)

1.3. NoTE. Let E be anA-A-algebra with a unit . Then E is a k-algebra.
Moreover, the equation® f) := f1g and«(f) := 1g f define maps of alge-
brass,: A — E. There is a unique balanced derivatify: A — E determined
by the equationiz (f) = flg — 1g f = 8(f) — «(f). The structure oft as an
A-A-module is determined by the mapand: by the equationgx = §(f) -x and
xf = x - u(f), respectively.

On the other hand, takekaalgebraFE with a pair of algebra homomorphisms
8,1. A — E; then, with the structure of aA-A-module determined by the equa-
tions fx = 8(f) - x andxf = x - 1«(f), we have thatF is an A-A-algebra. The
unique balanced derivatiafy, is given bydg (f) = §(f) — «(f).

1.4. AcTiONS ON A-A-ALGEBRAS. Let E be anA-A-algebra andd: A — E a
balanced derivation. We define new left and right actiong oh E as follows:

(f) - x = fx—Df -x,
x-8(f) =xf +x-Df.

We will indicate with the notatiopE (resp.Es) thatE is considered as aftrA-
module via the left actiom and the original right action (resp., with the original
left action and the right actio). The new left action ofA on, E will also be writ-
tenf . -x :=u(f)- x.

The productE ® .E — ,E is left A-linear in the first factor and right-linear
in the second. Itis also balanced; thatds,(f - y) = (xf) - y.

1.5. ApjuNcTIoN OF A UNIT. Let E be anA-A-algebra and: A — E a bal-
anced derivation. Since the product,@his balanced, the direct sum

E:=A®,E, (1.5.1)

becomes @&-algebra under the product, x) - (g, y) = (fg, f-y+xg+x-y).
The maps(f) = (f, 0) ands(f) := (f, Df) are both maps of algebras— E.
We shall identifyf € A with ((f) € E.

We have thatt is augmentecbver A by the algebra mapf, x) — f. Iden-
tify the augmentation ideal witlE via the mapx — (0, x). The augmenta-
tion mapE — A is split by the map: A — E, and the resulting decomposi-
tion E = ((A) @ E corresponds to the decomposition (1.5.1). Similarly, there is a
decomposition

E=38A)SE. (1.5.2)

1.6. THE ALGEBRA OF JETS. We shall construct an algebya= J, = Jj; 4 asso-
ciated to the derivatiod.

Consider the tensor algebfa= T, M of M overk. Let R be the ideal gener-
ated by the differences fay’, 0" e M andf € A,
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0 Q fo"' -0 fR0 -0 Qdf @w”. (1.6.2)

The terms in (1.6.1) are of degrees 2, 2, and 3. HéRds a nhonhomogeneous
ideal contained irf-, and thus, in particular, is contained in the positive (Jart
of T. Clearly, the positive parT, is an A-A-algebra and the ide& is an A-A-
submodule. Let

Jp =T /R

be the residue class algebrafofby the idealR . ThenJ, is anA-A-algebra, and
the natural mafg’, — J, is a homomorphism of-A-algebras. Clearly, this map
restricts to am-A-linear embedding of the degree-1 part,

M—)J+.

We will identify an element € M with its image inJ... Under this identification,
the following equation holds id, for f € A andx, ye J, :

x-(fy)=0Gf)-y+x-df -y.

In other words, the given derivatiehinduces a balanced derivatidn A — J,.

We letJ = J; = Ju.4 be the algebra obtained frotty by adjoining a unit as
in Section 1.5. Thé-algebraJ is called thealgebra of jets associated th We
have two injections of algebrass: A — J, and we shall identifyf € A with its
imaget(f) in J. The algebraJ comes with an augmentation that is splitisnd
8, and the splitting/ = ((A) & J, corresponds to the splitting= A & ,J used
in the adjunction of a unit. Hence, every jethas a unique decompositign=
@o + ¢4, With o € A andg, € J;. The termgp, is called theconstant ternof ¢.
Under the embedding @ into J, we have

8(f) = f +df.

The algebra/ has two structures as a leftmodule, via and vias; likewise, it
has two structures as a rightmodule. On the ideal, , the structures are given
by the equations

f)-x=f-x=fx—df -x. x-u(f)=xf,

8(f)-x=fx, x-8(f)=xf+x-df.

Note the distinction betweefix and f - x. Note also that the decompositiosis=
A @ JyandJ = 8(A) @ J,. are decompositions of-A-modules,

J=A0 (), Js=584) (J1)s. (16.2)

1.7. THE UNIVERSAL ProPERTY. It follows from the construction of jets in Sec-
tion 1.6 and Note 1.3 that th&-A-algebraJ,, as well as the algebra = Jy, 4,
have the following universal properties.

Let E be anA-A-algebra. Then any-A-linear mapyx: M — E such that
xd: A — E is a balanced derivation factors uniquely through a mapg-af-
algebras/, — E.

Let E be ak-algebra with a pair of maps of algebrés (z: A — E, and let
E have theA-A-module structure given by to the left and g to the right. Then



The Algebra of Jets 399

any A-A-linear mapy : M — E such thatyd = 8¢ — (g factors uniquely through
a map ofk-algebras/ — E commuting with the map& and:.

1.8. ProrosiTION. Multiplication in the A-A-algebra J.. induces aJ-A-linear
injection (J,)s ®4 M — J, that gives rise to a decomposition &f into A-A-
submodules,

Jy=MB[(J)s @4 M]. (1.8.1)

In addition, multiplication inJ induces a/-A-isomorphism/; @4 M = J,.

Proof. The A-A-moduleT, = T, M is the direct sum of the degree-1 piete=
M andTs, = Ty ® M. As noted previously, the ide& definingJ, is contained
in T>». Hence, ifK := T-,/R is the residue class module of theA-moduleT,
moduloR, we obtain the decomposition

I, =M®K.

Multiplication in J.. induces a surjectioll, ® M — K, which factors through
(J1)s ®4 M sinced is balanced. The composition

Too=T, QM — J, @M — (J,)s @4 M

vanishes on the ide& . Hence we obtain aninvergé = 752 /R — (J1)s ®a M
to the map(J,)s ®4 M — K, which is therefore injective, and we have obtained
the splitting (1.8.1).

To see that the multiplicatiols ®4 M — J, is an isomorphism, we use the de-
composition (1.6.2) to obtain a decompositiin= §(A) & (J;)s of A-A-modules;
then we use the decomposition (1.8.1) on the target. O

1.9. TRuNcATED JETS. For each integer > 0 we define the-algebra ofn-
truncated jets/" = Jy; ,, as the residue algebra éfmodulo the(n + 1)th power
of the augmentation idedl, ,

Jh = J/(J+)n+1.

The algebra" becomes ad-augmented-algebra with augmentation ide&l =
J./(J4)™ and with maps of algebrass: A — J" obtained as the composi-
tions oft, §: A — J with the residue class map— J".

Forn > 1, we have surjective maps #falgebras,

r" —
Jr gL

commuting with the mapsands$, and we haved-A-linear inclusions,
M — J",

commuting with the surjections'.

The algebra/” is universal in the following sense. L&tbe ak-algebra with a
pair of maps of algebrak:, (g : A — E, and letE have theA-A-module structure
given bydg to the left and g to the right. Then any-A-linear mapy : M — E
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such thatyd = 8 — tx and x(M)"+! = 0 factors uniquely through a map of
k-algebras/" — E commuting with the map& and..

We have thab,:: A — J" split the augmentation oi”. Identifying f € A
with ((f) € J", we obtain the decompositions dafA-modules /" = A @ (J})
and(J")s = 8(A) & (J})s.

We have that/® = A, and the mapM — J° is the zero map. In the following,
we fixn > 1

1.10. ProrosiTION. Multiplication in the A-A-algebraJ/} induces a/"-A-linear
injection (Jfl)(; ®4 M — J}, and there is a decomposition df! into A-A-
submodules,

T =M [(J{™hs ® M].

In addition, multiplication inJ” induces aI”-A-isomorphisrnlg“‘1 QaM=JL.
Proof. The assertions follow easily from (1.8). O

1.11. CoroLLARY. Multiplicationin J” induces a natural mag' : M®4" — j».
The map” is left A-linear with respect to both left structures gri and right A-
linear with respect to both right structures dri. The following sequence is exact

mean Lyogn I -1, (1.11.1)
andi” is injective ifM is left A-flat.

Proof. The kernel of the surjection’: J" — J"~1is additively generated by all
products of: elements of1. It follows that there is an exact sequence,

M > J"— ]t 0,

where the tensor produst ®" is overk. We have that' - (fo”) = (0'f) - " +
o' -df - " in J", and the product of + 1 elements oM vanishes in/”. It fol-
lows that the map/®" — J factors throughf ®4" and that the resulting map
i": M®" — J"is left A-linear when the target is considered as tenodule
J". The map” is trivially left A-linear for the original structure afi*. Similarly,
the map” is right A-linear for both structures o®”.

To prove the last part of the corollary, we note that the ridp is the com-
position

M®An Q4 M i"®al an Q4 M — Jn+l.

It follows from Propositioril.10that the right map is injective. WheM is left
A-flat, it follows by induction om that the left map is injective. Hence the last
assertion of the corollary holds. O

1.12. Note. It follows from Corollary 1.11 that whei is a finitely generated
A-A-module the same is true fdr', and whenM is a left flatA-module the same
is true forJ".

1.13. Note. Let A°P be the opposite algebra and PP be theA°P-A°P-module
obtained by viewing the given left and rigitmodule structures oM as a right
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and left A°°-module structures. View as a derivatiolA°® — M°P, denoted
d°P. Let (%P, §°P; A°P — JOP be the maps of algebras defined 8% := § and
8% := . Finally, lety : M — J be the map((w) = —w. Thenx(df) = —df =
t(f) —38(f) = §°P(f) — °P(f), and x: M°P — J°P has the linearity proper-
ties required for applying the universal property. As a consequence, we obtain the
isomorphism
Juop gon = (Jyy, )P (1.13.1)

and a similar isomorphism for thetruncated jets. In the commutative case we
have that/°f = d, so the isomorphism may be viewed as an anti-involution of the
algebra of jets.

In particular, assume that is right A-flat. ThenM°F is left A°P-flat. Hence
(J™)OP s left A°P-flat with respect to its two lefd°P-structures. Hencé” is right
A-flat with respect to its two righti-structures.

1.14. DEFINITION. Let L be a leftA-module. Define the module df-twisted
jetsJ"(L) = Jy; ,(L) as the tensor product

J'L) = J] ®, L.

1.15. Note. Note that/"(L) is a left/"-module and in particular, via the inclu-
sion:: A — J", aleft A-module. From the algebra homomorphi8mA — J,
we obtain a homomorphism

Sp=8QL:L— J'L).
Clearly,
8. (fx) =38(f) - L(x).
From the exact sequence in Corollary 1.11 we obtain the exact sequence
M®" @4 L — J'(L) — J"YL) - 0;
it is left exact if M is right A-flat.

1.16. NoTte. The formation of jets commutes with scalar extensions as follows.
Letk — k' be a homomorphism of commutative rings, and formihalgebra
A= AQk'. ThenM’' == M ®; k' isanA’-A’-module and!’ :=d ® lis a
derivation,
d: A - M.

From the universal property, we obtain isomorphisms of noncommutative alge-
bras:

Ty = Ty g ®K'.

2. Jets on Free Modules

In this section we study the jels’' = J;; , whenM is free and of finite rank over
the not necessarily commutative algeldrawe describe explicitly a basis for”
in terms of a given basis, ..., ¢, of M. Relative to the basis, ..., ¢, we define
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a shuffle product or” that makes/” into a commutative algebrél, 4, and we
define symmetric elements with respect to the basis and show they form a subal-
gebraJg, of Jg,+ We show that the shuffle product is independent of the choice
of basis, wheread],, depends on the basis. The main tool used in the study of the
shuffle product and symmetric elements will be the partial derivatives introduced
in Section 2.3.

2.1. SEtupr. Keep the setup of Section 1. We shall call thet-moduleM free
of rankr if it has abasiszy, .. ., &,; that is, the elements are central (i.es; f =
fe; forall f € A) and every elemend of M has an expansion

w=¢efi+--+ef

with uniquely determined coefficients € A. With respect to the basis, let
D;: A — A be the derivation induced k¥ and theith coordinate projection;
that is, theD; are defined by the equation M,

df = erDyf + -+ + 6D, f.

2.2. ProPoOSITION. Assume thaty, ..., ¢, is a basis forM as anA-A-module.
For any sequence = (ay, ..., ;) of indices withl < «; < r, form the following
product inJ”" and the composition of derivations an

Eq = Eqy " Eays Dy i= Dy, - Dy,.

Then, for all sequences = («ay, ..., a,) of lengthr = £(«) at mostn, the set

of productse, is a free A-basis with respect to any of the fodractions onJ".
Moreover, forf € A, we have the following equation iff':

5(f) =Y Do(f) " ta- (2.2.1)

Proof. The assertions are proved by inductionanWe have that the products
g in J"71 for £(a) < n, form a basis of/"~* by the induction hypothesis, and
the natural basis a7 ®, - - - ®4 M is mapped by the majd of Corollary 1.11 to
the products, in J" for £(a) = n. The first assertion thus follows from Corol-
lary 1.11.

To prove equation (2.2.1) we note that, under the identificatjos: S @a M
of Propositionl.10, we have; D; f = (D, f)e; = 8(D;f) ® ;. Hence,

S(fy=f+df =f+) eDif =f+ Y 8Dif) ®¢.

Obviously, the formula now follows by applying the induction hypothesis to the

element$(D; f) e J" L O
2.3. PArRTIAL DERIVATION. Assume that thd-A-moduleM is free with a given
basises, ..., .. Fori = 1,...,r, define thepartial derivationd; = 9;' as the
composition

9,0 J"T > Jfrl: $ QM — J",
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where the first map is the projection corresponding to the decompositith=
A® ij*l, the identification is that of Propositidnl0, and théast map is induced
by theith coordinate projection. In other words, under the identificatibhs =
A® Jrand ™ = J7 @4 M, we have

=90+ Y g ®e,

wheregg € A is the constant term af.
Note the following equation fap, v in J"+%:

0i(p - ) = dip - 8(Yo) +re - 9, (2.3.2)
whererg = r"*1p e J" is the restriction ofp € J"**. Indeed,

¢ Yo =povo+ ) (3¢ 8(10)) ®&;
and

0D WY ®e =Y (re-di) e,
S0 (2.3.1) follows from the resulting expressiongory = ¢-yo+¢ ), 3;¥ ®¢;.
Forw =), ¢ fi in M, we have thatr = ), 5(f;) ® & and thusd;w = 8(f;).

It follows from (2.3.1) that

0i(p - w) =ro-5(f). (2.3.2)
In particular,

3i(8(f)) = di(df) = (D f). (2.3.3)

2.4. DEFINITION. Letey, ..., g, be a basis for tha-A-moduleM. The products
&, for £(a) < n form a basis forJ" as a leftA-module. Define, relative to the
basises, ..., &, ashuffle multiplicatioron the basis elements @f' by

B ¥ Ef 1= E &y,
v

where the sum is over all shufflgsof the two sets of indiceg andg. Extend the
product to all of/” so that the elements df commute with the base elements
thatis,f x e, = €4 * f = f - &4. In particular, thenf x g = fg for f, g € A.

Note that the base elements commute with respect to the shuffle product and com-
mute with the elements oA, but the shuffle product is only commutative when

A is commutative. Note also that theh power ofe; with respect to the shuffle
product is given by the equation

g =vle/,
wheres! is the power with respect to the original multiplication.r.

Clearly, with the shuffle product/” is an algebra (denoteff}, ;) with unit 1
corresponding to the empty product of base elements. The restrictivhsire

maps of algebragiit — J& . Moreover, is a map of algebrag — JZ .
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The maps); are derivations with respect to the shuffle product, that is,

il xY) = 0,0 x1rfr +ro x 0,9, (2.4.2)

whererg = r"+lp € J2 « is the restriction ofy € J4!1. Indeed, it follows from

(2.3.1) that,(f - ) = f - 9;(). Henced; is a left A-linear map J"** — ,J".

It therefore suffices to prove (2.4.1) whenand ¢ are the base elements =

€qy - Eq, ANdeg = €5, - - - £p,, respectively. Then the formula (2.4.1) is easily

checked by dividing into classes according to whetherther 8, are equal to.
We also have the equation

@-8(f) =g *x5(f). (2.4.2)

Indeed, the two sides have the same constant tegm,f. Hence it suffices to
prove that the two sides become equal unijeiVe proceed by induction om.
By (2.3.1) and (2.4.1), we have

di(p - 8(f)) = di(e) - 8(f) +re - 9;(5f),
di(p *8(f)) = 0i(@) * 8(f) +ro + 0;(8f).

By (2.3.3), we have that;(8(f)) = 8(D;f). It follows from the induction hy-
pothesis that (2.4.2) holds far — 1. Henced;(¢) - 8(f) = 9;(¢) * §(f) and
re - 0;(D;f) = re * d(D;f). Consequently, it follows from (2.4.3) that
9;(p - 8(f)) = 9;(p x 8(f)), as we wanted to prove.

Sinces: A — J" is a map of algebras, it follows from (2.4.2) théais a map
of algebrass: A — JJ -

(2.4.3)

2.5. ProposiTiON.  The shuffle productif” is independent of the choice of basis.

Proof. Consider a second basis ..., &, of M and the corresponding derivations
D, ando,. If (u;,) is the transition matrix, then we have the equations

§p= E Eilljp, Di= E uipr.
i p

Note that that;, belong to the center of, as is seen by expanding the equation
f&, = &,f inthe basisy, ..., .. Thusu = u;, as an element of " is in the
center ofJg, 4 We obtain thas(«) is in the center off};, . Indeed, by (2.2.1) it
suffices to prove thab;u is in the center ofi. However, applyD; to the equation
fu = fu, and use«(D; ) = (D; f)u to deduce thatD;u) f = f(D;u).
The equation iy "+,
OxU =@*x, (2.5.1)

where the left term is the product with respect to the second basis, will be proved
by induction orw.
Note first that, forp € J"*+1,

0—po= (@) ®EF =) (B,(¢) - 5u;p)) ;.
r iL.p
Hence,
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Do = (@) Suip) = 3p(p) F8uip).
p p

Sinced(u;,) is inthe center ofig, ¢, we have thad; =} 6(u;p) * d,. Therefore,
sinceép is a derivation with respect to the operafoiit follows that; is a deriva-
tion with respect tc.

In equation (2.5.1) the two sides have the same constant term. Hence, it suffices
to prove that the two sides of (2.5.1) yield the same result ufide3inced; is a
derivation with respect to the produetsind# both, the equality follows from the
induction hypothesis. O

2.6. DEFINITION. The base elementg, defined from a given basis @, may
be grouped according to the lendtk= £(«), and the symmetric groufy acts on
the base elements, with ¢£(a) = [ by permuting the indice&xy, ..., «;). Call a
jetin J" symmetriavith respect to the given basis if its degrepart is symmetric
under the action of; for all /.

Note that the different permutations@f ..., 1, ...,r, ..., r), where the number
appears; times and where; + - - - + v, = [, correspond bijectively to the terms
in the shuffle producty® * - - - x &!r.

Note that if ¢1,..., ¢ IS basis for theA-A-module M, then the tensors
g0, ® - - - ® &4, fOrm a basis for thet-A-moduleM ®4". Accordingly, the symmet-
ric groups, acts linearly onv ®4", Itis easily seen that the action is independent
of the choice of basis; ift is commutative then the action is the usual action ob-
tained by permuting the factors of the tensor product. We denot&fify")5 the
A-A-submodule of invariant tensors.

2.7. ProposiTION.  The subsety, of jets that are symmetric with respect to a
given basig, ..., ¢, for M is a freeA-module having as basis the set of all shuf-
fle products,

e =gt % xg, (2.7.2)
for exponents = (vy, ..., v,) with |[v| < n. In particular, J&m is the subalgebra
of J&,. 9enerated by the elemem;é.

Moreover, we have an exact sequence
0 Mems Logr I gnio, (2.7.2)

Proof. An element)_ , f, - &, is symmetric if and only if, for any and any per-
mutationp of o, we havef, = fz. In other words, the sums_; ¢4, where the
sum is over all different permutations of a given sequence, form asfreasis for
Jom: The latter sums are exactly the elements of the form1g. Itfollows from
the equation? « e/ = ("1")e; ™" that g, is a subalgebra aff,q.

The sums) ;ep, ® - ® gp,, Where the sum is over all different permuta-
tionsg = (B, ..., B,) of a given sequence = («y, ..., «,), form a basis for the

A-module(M ®4m)S» \We have that
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i"(Z% ® "'®8ﬁn) =D &
5 5

The exact sequence (2.7.2) thus follows from Proposition 1.11. O

2.8. CoroLLARY. Anelemenk in J" is symmetric if and only ib; A is symmet-
ric for all i and 9;0;A = 9;9;A for all i, j.

Proof. We use the description of ., from Proposition 2.7, along with the obvi-
ous equation

'l if i =jandv >0,

di(e}) = { / .

0 otherwise
Sinced; is an A-derivation with respect to the shuffle product, we obtain from
this equation an obvious formula for the valuedpbn an element™) of the form
(2.7.1). Itfollows thatd; mapsJg, surjectively onto]s”ygql and thaw; d;» = 9;9;1
whenx is symmetric.

Assume conversely thafi € JS”y;nl and thaw;d;A = 9;9;1. As 9, is symmet-

ric, there is an element € J&ym such that, A = 9, u. By subtractingu from A,
we may assume thatA = 0. Again, d,_1) is symmetric and, by commutation,
9,9,_1A = 0. Therefore, na! occurs ind,_11. Hence there is a symmetric ele-
menty, in which noe? occurs, such thaft,_;1 = 9,_1. By subtractingu from
A, we may assume thati = 0 fori = r — 1, r. Proceed by descending induc-
tion oni to show, by subtracting symmetric elements fronthat we may assume
9;A = O for alli. Thena is a constant and hengds symmetric. O

2.9. Note. We note that the symmetric palf ,, depends on the choice of basis
€1, ..., &. Obviously, forn = 1 we have thatly,,, = J*. In general, fon > 2 we
do not have thad/, as a submodule aof”, is contained in]s"ym. For instance, it

follows from (2.2.1) thatlf is symmetric if and only ifD; D; f = D; D; f.

In Section 4 we consider conditions under which the algeljais independent
of the choice of basis.

Whenr = 1, we have that/g,,, = J".

3. The Shuffle Product

In this section we study the case whéns commutative and/ is an A-module.

We show that, in this case, the shuffle product on the tensor algeBfarmduces

a shuffle product od” that makes itinto a commutative algebigq, . WhenM is

free, this shuffle product is the same as the shuffle product defined in Section 2 for
free modules over not necessarily commutative rings. We show that the formation
of J4,,# commutes with localization irt. This is a quite delicate property. We
also show how our constructions and results of the first three sections globalize.

3.1. SETuP. In the rest of the paper we consider the commutative case exclu-
sively; that is,A is assumed to be a commutative algebra &hid an A-module.
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Denote by« the shuffle product in the tensor algelffa= T, M. The shuffle
product of two tensor products is the sum of all tensor products obtained as shuffles
of the two sets of factors. The algelfFavith the shuffle product is a commutative
algebra with unit.

3.2. LEmma. Modulo the idealR in T = T; M definingJ., the following three
expressions, foy € A andx, y € T, andz € T, are congruent to zero

eo:= fx —xf+df xx—df -x —x-df,
er:=[yf-x—y-fx+y-df -x]x*z,
er:= f(xxz)—df - (x*xz) — (fx)xz+ df - x) xz.

Proof. Clearly, we may assume that the elements, 7z are tensor products of
elements ofV/, and in particular homogeneous element§ of

Let us first observe that, for the shuffle produetv of two tensors of the form
u=w- u andv = 7 - v wherew, T € M, we have

uxv=w-Wxv)+m7-WUxv). (3.2.1)

Indeed, (3.2.1) follows by separating the terms in the shuffle product according as
o or i is the first factor.

The assertion fogg is proved by induction on the degreexaf The expression
vanishes if the degree is 1. If the degree is larger than 1,ithenw - x” with x’ €
T.. Apply the observation to the shuffle produbt « x = (df - 1) * (w - x’). It
follows that

eo=fo-x'—w-xX'f+ow-df xx')—w-x"-df.

Sincefw = wf, itfollows that fo - x' = w - fx' —w-df -x'. Henceeg = w - g,
wheree is the expression obtained by replacindpy x’ in eg. Thuseg = 0 by
induction.

The assertion foe; is proved by induction on the sum of the degrees ahd
zZ.Withw :=yf-x—y- fx+y-df -x, we have that; = w - z. The assertion
holds if the degree aof is zero, sincav € R. Assume that the degree pfs pos-
itive, and writez = 7 - 7’ with = € M. If the degree ofy is greater than 1, write
y=w-y withy eT,. Thenw = w - w’, wherew’ is the expression obtained
from w by replacingy by y’. By the observation,

er=(w-w)x(@-2)=w-(Wx*xz)+m-(w=z).

By the induction hypothesis, we have thatx z = 0 andw * 7z’ = 0, hencee; =

0. If y is of degree 1, say = w € M, thenw is not a common factor of the three
terms inw. However, applying the observation to each of the three terms, it fol-
lows that

e1=w-(x*z)—w-(fx*x2)+w-(df -x)*x2)+m- - (w=z).

The last term is congruent to 0 by the induction hypothesis. The sum of the re-
maining terms is of the form - e, and therefore (as we shall prove) is congruent
to zero. Thug; = 0.
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Finally, the assertion for the expressignis proved by induction on the degree
of z. Clearly, the expression vanishes when the degree is 0, that is,anhdn If
the degree is positive, then= n - 7’ with 7 € M. Write x = w - x’, and apply the
observation to the shuffle productsx * z) and fx * x. It follows that

fx*z)— fxsxz=fo-(x*7)—w- (fx*z7).
Again, by the observation, it follows that

df -x)xz=df - (x*2)+m-(df -x)*2").
Consequently,

e2=fr-(xx2) =7 (frx) +m-[@df -0 2],

In the first term on the right, use thftr = =f andnf -y=n - fy —nw -df - y.
Hencee, = 7 - ¢}, wheree), is the expression obtained by replacinigy z” in ex.
Thuse, = 0 by induction. O

3.3. ProrosiTion. The shuffle product in T, induces a shuffle product on the
quotientJ;. under whichJ, is a commutative algebra without unit. The shuffle
product inJ, extends uniquely to a shuffle productinsuch that/ becomes a
commutative algebra, denotdgh¢, and the two maps §: A — J become maps
of commutative algebrag — Jsnyi. FOr f € A and ¢ € J, the extension is de-
termined by

fro=uf)-o=[-¢ (CRCKY

and we have thai(f) x ¢ = ¢ - 8(f).

Proof. Since the expressions of the foenin Lemma (3.2) are congruent to zero,
it follows that the idealR of T definingJ, is also an ideal with respect to the
shuffle product orf. Hence the quotienf, = T, /R, with the induced shuffle
product, is a commutative algebra without unit.

Because expressions of the foegwvanish inJ.., we have the following equa-
tionin J, for f € Aandy € J;:

fe—df - +df xo=9f +¢-df.
Sincefo —df -9 = f-pandef + ¢ -df = ¢ -5(f), it follows that

fro+df xo=¢- -8(f). (3.3.2)
Similarly, since expressions of the forp vanish inJ,, for y € J, we obtain
(f-o)xy=[f-(px*y). (3.3.3)

It follows from (3.3.3) that shuffle multiplication i/, is A-bilinear when
J, is considered as tha-module,J,. Hence the suny = A & ,J, becomes
a commutativeA-algebra with unit under the product, ¢) = (g,y) = (fg,
f-y+g- -9+ ¢=y). Clearly, (3.3.1) holds with this definition of the shuffle
product inJ. Moreover, it follows from (3.3.2) that, fap € J.,

3(f)xo=9-3(f). (3.3.4)
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Hence the last equation of Proposition 3.3 holds whedelongs toJ,., and it
holds trivially wheng is in A. Hence it holds for alp € J. In particular, since the
equation holds fop = §(g), it follows thats is a homomorphism of commuta-
tive algebras: A — Jshus O

3.4. Note. Obviously, the ideal/,)"** defining the truncated jet’ is an ideal
with respect to the shuffle product. Heng€ has the structure of a commutative
algebra, denoted?, 4, and the restrictions are maps of algebidss — Jinf-

It should be clear that, i#/ is a freeA-module of finite rank, then the product in
J4ui 1S equal to the shuffle product defined relative to a basis in (2.4). In particu-
lar, in this case it follows that the partial derivatives define derivatipngy, « —

Tt

3.5. LocaLizaTION. Let S be a multiplicative subset of the algebrad. Con-
sider the induced derivation

ds: S7A - 57M.

Indicate with the subscrigtthe algebras of jets and corresponding maps associated
to the derivationds. In particular, then,J§ = Js"_lM,dS is an algebra and we
have two maps of algebras, s: S~*A — JJ'. By the universal property of,
we obtain a map of algebras

I g (3.5.1)

that commutes in the obvious sense with the maps S—4 andM — S~M.
View the target of (3.5.1) as a left—*A-module viacs: S™A — J¢. Then we
obtain an induced lef§ ~*A-linear homomorphism,

0" STA®L J" — Y (3.5.2)

obviously,o" is right A-linear when the source and the target are considered as
right A-modules vias.

3.6. ProposiTION. The mapr” of (3.5.2)is an isomorphism af ~A-modules.
With respect to the shuffle product, it is an isomorphism of commutative algebras

S71A ®a et = (J&)shufr.

Proof. Obviously, when the jets are considered with the shuffle product, the map
(3.5.1) and the map" are maps of commutative algebras. We prove, by induction
on the degrea, thato” is an isomorphism.

In degreen + 1, we have the exact sequence given by the decomposition in
Propositionl.10,

0= Jl@aM > J" 5 Ao (3.6.1)
Here j is the inclusion obtained from the isomorphigt!); ®4 M = ij*l of

Propositionl.10, and- is the augmentation map. Note that the ma@dr are
left A-linear whenJ" andJ"+! are considered as left-modules via.
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Consider the following diagram:

0 — ST IO M —> SR, JH s 5714 0
a”@lMl G“H.J( H
0—> UMM s Ji LIRS 0.

The top row is obtain by tensoring (3.6.1) from the left$y*A. In particular, the
top row is exact. The map is induced by the multiplication ids"“. Clearly, the
diagram is commutative.

In the source of the may', the factor(J{'); is a right A-module vias and
8: A — (J§) is the restriction toA of 4 S7A - J§'. Hence, for the source of
j’ we have a canonical identification

(JDs @ M = (J{)sg @4 M = (J§)ss ®s-14 S AR M = (J§ )5, ®s-14 S M.

Under this identification, the bottom row of the diagram becomes the sequence
(3.6.1) for the derivatiods. In particular, the bottom row is exact. Consequently,
since we may assume by induction thdt® 1, is an isomorphism, it follows that
o"*Lis an isomorphism. Hence we have proved the proposition. O

3.7. Note. Clearly the isomorphisrfi.13.1) is aisomorphism of commutative
algebras when the jets are considered with the shuffle product. Similarly, the for-
mation of twisted jets commutes with the scalar extension.

3.8. GLoBALIZATION. Given the localization property in Proposition 3.6, it is
immediate to globalize the construction as follows. Kebe aY-scheme. Fix a
guasi-cohereny-module M and anOy-linear derivation of sheaves,

d:Ox—>M.

Then, associated with, there are sheaveg® = Oy, J% ... of Oy-algebras orX
andmaps”™: 7" — J"lofalgebras. There are two maps of algebrdsOy —
J" commuting with the maps”. The maps and$ give rise to fourOx-module
structures oy ", two structures 7" and; 7" obtained by left multiplication via
¢ ands plus two right structures’” and.7,* obtained by right multiplication by
ands.

Forn > 1, there is a natural inclusion of sheavk$ — 7" that isOy-linear
as amapM — ;J" and as a magM — J,". Under any of the four structures
J" is a quasi-cohererx-module, and it is locally of finite type iM is.

Multiplication in 7" induces a natural maif: M®ox" — 7", which is left
Ox-linear with respect to both left structures and right linear with respect to both
right structures oy . The sequence

MEoxn L gn I gn=1_, g (3.8.1)

is exact and” is injective if M is flat overQOy.
For eactOx-moduleL there is a module of-twisted jets7"(£) = J;' Qo L.
Then7"(L) is aleft7"-module and in particular, via the inclusiarOx — 7",
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a leftOx-module. From the algebra homomorphin®xy — 7 we obtain a ho-
momorphisms.: £ — J7"(L), and from the exact sequence (3.8.1) we obtain an
exact sequence

MPX" @0, L — T(L) — J"HL) — 0,

which is left exact wheoM is flat.

The noncommutative algebra" has a second natural product calledshaffle
product,under which it is a commutative algebra (denoté§l ;). For the shuf-
fle product the mapsandé$ are maps of sheaves of commutative algebras, and the
structures of a®x-module on7g, « defined via the mapsands are equal to.7"
andJ,", respectively.

The formation of jets commutes in the obvious sense with base chidngeY.

4. Symmetric Jets

In this section we continue the study of jets in the commutative case. A key role
is played by the notion of a flat extension of the given derivatiom — M; see
Section 4.1. Given a flat extensign M — /\2M of d, we define a subalgebra

J, of Jgu WhenM is free there is a canonical extensipnassociated to a basis

&1, ..., 0f M.

Assume in particular that the basis has the fatm, ..., dx, and that the as-
sociated partial derivatived/ dx1, ..., 3/, commute. We prove in this case that
the extensiorp, is the unique flat extension af. Moreover, we prove that the
subalgebra/; is equal to the subalgebrlg“ym (considered in Definition 2.6 and
Proposition 2 7) of jets that are symmetric with respect to the basis. In particular,
the subalgebrdy,, is independent of the choice of basis.

We also show under suitable hypotheses\pthat the symmetric jets fit into
exact sequences similar to those obtained for the truncated jets.

4.1. Setup. Keep the setup of Section 3.1. Form the exterior sq;A»ﬁrM of M
as anA-module. We will say that &-linear mapyp: M — A\’ M is anextension
of the given derivatiol: A — M if, for f € A andw € M,

p(fo) = fe(w) +df ANo. (4.11)
The extension will be calleflat if od = 0. Equivalently,e is flat if
@(fdg) =df ndg. (4.1.2)

In particular, if M is generated as af-module by elements of the fordyg, then
d has at most one flat extension.

4.2. NoTe. Lety be anextension af. Then, as is well known, there is a unique
sequence of-linear maps,

0 1 2
AL ME NS NM— -, 4.2.1)
suchthat!® = d, d* = ¢, and
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AP Av) =dPm Av+ (=D)Pa AdTy

forr € A’ M andv € A\? M. The mapd” is determined by the equation
A" (1A - Awy) = Z(-l)“al A AQ@D) A A Wy
i=1

Moreover,gp is flat if and only if the sequence is a complex.

4.3. REMARK. The universal derivatiod = d;: A — SZ}W has a unique flat
extension. Indeed, thelinear mapA @, A — Q} , given by f ® ¢ — fdg

is surjective, and its kernel is the additive subgroup generated by elements of the
special formf ® ¢gh — fg ® h — fh ® g. Hence it suffices to note that the map
A®A - NQL, given by the right side of (4.1.2) (i.ef, ® g > df A dg)
vanishes on elements of the special form.

4.4. LEMMA. Assume thatM is a free A-module with basis, ..., s,. Let
Qs M — /\2 M be the additive map determined by the equations

(pa(fgi) de/\&‘,' fori=1...,r

Theng, is an extension of as well as the unique extension with the elements
in the kernel. Moreover, the extensipp is flat if and only if the derivation®;
associated with the basis, ..., &, commute.

Proof. The assertions are easily proved. O

4.5. ProposITION. Consider a second basis, ..., & given by a transition ma-
trix (u;p):
g‘p = Zaiui,,.
i

Then the following conditions are equivalent

(1) 9z = @e;
(ii) @:(&,) =0 forall p;
(lll) Dj(uip) = D,'(I/tjp) forall i, J, P-

Proof. By Lemma 4.4¢; is the unique extension wi, in the kernel. Hence as-
sertion (i) is equivalent to assertion (ii). Obviously, assertion (ii) is equivalent to
assertion (iii). 0

4.6. CoroLLARY. (A) Assume that conditiofiii) of Proposition 4.5 holds. Then
the corresponding condition holds for the derivatioﬁ§ and the inverse of the
matrix (u;,). Moreover, theD; commute if and only if thé,, commute.

(B) Assume thal is generated as an-module by elements of the forimand
that the derivation®); associated with the basis commute. Then the derivations
D,, associated with the basts commute if and only if conditioiii) of Proposi-
tion 4.5 holds.
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(C) Assume thaM has a basis of the forwx;, ..., dx, for elementsy, ..., x,
in A. Then the following conditions are equivalent
(i) there exists a flat extension &f
(i) the derivationsd/ox;, ..., 3/dx, associated with the basigxy, ..., dx,
commute.
In particular, if M has a basisy, ..., ¢, such that the corresponding; commute,
then(ii) holds for any basis of the forah;, ..., dx,.

Proof. Assume the condition in (A). Then condition (i) of Proposition 4.5 holds.
Hence condition (iii) of Proposition 4.5 holds for tlﬁp and the inverse of the
matrix (u;,), since condition (i) of Proposition 4.5 is symmetriciande. By the
same argument, since tlie commute if and only ifp, is flat (by Lemma 4.4), it
follows that theD; commute if and only if theD, commute.

Assume the first condition in (B). Then, as noted in Section 4.1, there is at most
one flat extension af. Assume in addition the second condition in (B). Then it
follows from Lemma 4.4 thap, is the unique flat extension. Hence, by Lemma
4.4, the[),, commute if and only if condition (i) of Proposition 4.5 holds—that is,
if and only if condition (iii) of Proposition 4.5 holds.

Assume the condition in (C), and ley, be the extension determined by the
basisdx;. If there is a flat extension of d (i.e., if opd = 0), it follows that the
dx; belong to the kernel ap. Hence, by the uniqueness in Lemma 44+ ¢ ;.
Thusgy, is flat and, again by Lemma 4.4, thgox; commute.

Conversely, if thed/dx; commute, then it follows thap,, is flat. Hence the
conditions (i) and (ii) in (C) are equivalent. The last assertion in (C) follows from
the equivalence of (i) and (ii) because, by Lemma 4.4, we havepthafflat. O

4.7. DEFINITION.  Lety be a flat extension ef. Denote byJ/; the A-subalgebra
of the shuffle algebrdl;, ; generated by all powers’, wherew" is the power
with respect to the original multiplication if” for all w in M that are in the kernel
of .

Note thatdf € J;, because is a flat extension. Hend& /) = f +df belongs
to J;'. Thus we may view ands as maps of commutative algebras,

L8 A T

The elements of ; will be calledsymmetriavith respect tap. If M is generated
as anA-module by elements of the fordy, then we observed in Section 4.1 that
there is at most one flat extension and hence at most one algebra of symmetric jets.
It follows from Corollary 4.6(C) that ifM has a basis of the formix, ..., dx,
such that the corresponding derivatialy®x; commute, then there is a unique
subalgebra of symmetric jets, denotgfl, o, Similarly, by Remark 4.3, when
the given derivation is the universal Kahler derivatibnA — Q}Vk, there is a
unique subalgebra of symmetric jets, denalgd ¢ .

4.8. ProprosITION. Assume thad/ is free with a basig, ..., &, such that the
corresponding derivation®; commute. Then the subalgebra of jets that are sym-
metric with respect to the corresponding extensigns equal to the subalgebra
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J&m Of jets, defined in Definition 2.6, that are symmetric with respect to the basis
1, ..., &. In particular, the subalgebra has as freebasis the set of all products,

e =gtk xg) (4.8.1)

r

for all multi-indicesv = (vy, ..., v,) with |v| < n.

Proof. The products form ar-basis for/g ., by Proposition 2.7, andg, < J;.
because; is in the kernel ofp,. As theD commute it follows from (2 2.1) that
8(f) belongs to/, g

To show equality we must prove that, for anyin the kernel ofp,., the power
"’ belongs o/ m: Write w = 11+ --- + & f,. ThenD;(f;) = D;(f;), since
@:(w) =0

The proof is by induction om. The assertion is obvious for = 0. In the in-
ductive step we assume that™ e Jom for all n. As observed in Note 3.4, we
have the partial derivatiorss : J2, « — J& % and, by Corollary 2.8, it suffices to
prove thatd;(w") € JS”ym1 and thatd; 9;(") = 9;9;(»"). By (2.3.1), (2.3.2), and
(2.4.2), we have

3i(w") = 0L 9i(w) = 0L 8(f) = 0L 8(f). (4.8.2)
Sinces(f) € J4, for any f € A and sincev’~* € J2.! by the induction hypoth-

esis, it follows thab; (w") € Js'g,;}. Moreover, since); is a derivation with respect
to the shuffle product ang} (5(f)) = §(D;f) by (2.3.3), it follows from (4.8.2)
that

39i(@") = 8; (0"t 8(f) = 0 2% 8(f;) * 8(f;) + 0 "t 8(D; f).

Since D;(fj) = D;(f;) we have thaw;d;(«»") = 9;9;(»"), and the proof is
complete. O

4.9. CoroLLARY. Under the conditions of Proposition 4.8, there is an exact
sequence
0— (M®mS — gr _ gr-1_, 0, (4.9.1)

sym > Ysym

Proof. Clearly, the restriction/g,,, — JS"ym1 is surjective. It follows from the
exact sequence (1.9.1) that the kernel is the intersection®f* andJg,,. Hence
Proposition 4.8 implies that the intersection is the fAemodule generated by all
productse™, where|v| = n. The intersection is thus the part 8f®4" that is

invariant under the symmetric group S O

4.10. Note. The corollary applies in particular when it is possible to choose for
M abasis of formixy, ..., dx, such that the corresponding derivati@sx; com-
mute. In this case there is a unique algeljjg, ., of symmetric jets.

Note also that the zero map may by taken as an extensidrif@itherd = 0
(the trivial case) oy’\2 M =0 (e.g.,ifM is free and of rank 1). In the first case, we
have that/ = TyM andJ" is the truncated tensor algehfd = Ty M-,; more-
over, if M is free then]s’;m is the subalgebra of symmetric tensorgjM<,. In
the second case, all jets are symmetuig;, = J".
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4.11. ComPARISON WITH PRrINcIPAL PARTs. Consider the A-A-linear map
A® A — ,J; defined by

f®g— f-3(g) = f*3(g);
the equality f - 8(g) = f * 8(g) holds by (3.3.1). Forf € A, let A(f) =
1 f — f®L Then
A(f) = 8(f) — f=df.

Now, with respect to the shuffle produdt},  is a commutative algebra. Hence
the mapf ® g — f *8(g) is a homomorphism of algebras® A — J4 « that
vanishes on any product an+ 1 elements of the form(f). Therefore, it in-
duces a map of algebras from the algebratbforder principal part#’, to the

algebraJy; , with the shuffle product
Pl = Jehutr- (4.111)

Note that the powe(Af)” in P}, is mapped to the shuffle powedf)*” =
v! (df)”. If ¢ is any flat extension af, thens maps into the corresponding algebra
; hence (4.11)maps intoJ;. In particular, whent is the universal derivation
d dax into the module of Kahler differential®}, ,, we obtain a canonical map
of algebras:
Pl = Ti e syme (4.11.2)

Assume thad/ is a freeA-module of finite rank and that contains the field of ra-
tional numbers. Then the canonical homomorphig#®a™)S» — Sym: M is an
isomorphism. Assume thaf has a basis of the forahx, ..., dx,. Then(dx;)" is
the image of1/v!)(Ax;)". Therefore, since th&ix;)” generate the algebrglym
of symmetric jets by Proposition 2.7, it follows that the image of{4)tontains
Joym: Conversely, if the partial derivativﬁax, commute, thed(f) is symmet-
ric and it follows that (4.1.1) maps intoJg,,; hence the image of (4.11) isequal
10 Jgym-

Assume in particular thaﬂzA/k has a free basis of the fordx;, ..., dx,. Then
the map (4.11.2) induces an isomorphiggh, — J;; o,m- In fact, there is a com-
mutative diagram

Ser‘('QA/k — PA"/k — PA”/;l — 0

| l |

n—1
0 — San'QA/k — JA/ksym — Lkeym — 0,

where the top row is the usual exact sequence of principal parts (cf. [Gr]) and the
bottom row is obtained from (2.7.2); the two vertical right maps are obtained from
(4.11.2). 1t follows by induction om that the map (4.11.2) is an isomorphism in
this case. In particular, we obtain the well-known result that, over the ratiohals,
is differentially smooth ovek whenQ}W is free.

Note thatA x} is mapped to! (dx;)". In particular, in positive characteristic
the image vanishes when> p. In positive characteristic, then, the map (4.11.2)
is in general neither injective nor surjective.
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