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An important advance in algebraic geometry in the last ten years is the theory of
variation of geometric invarianttheory (VGIT) quotient; see [BP; DH; H1; T]. Sev-
eral authors have observed that VGIT has implications for birational geometry—
for example, it gives natural examples of Mori flips and contractions [DH; R2;
T]. In this paper we observe that the connection is quite fundamental: Mori the-
ory is, at an almost tautological level, an instance of VGIT; see (2.14). Here are
more details.

Given a projective variety, a natural problem is to understand the collec-
tion of all morphisms (with connected fibres) fraoxinto other projective varieties.
Ideally one would like to decompose each map into simple steps and parameter-
ize the possibilities, both for the maps and for the factorizations of each map.
An important insight, principally of Reid and Mori, is that the picture is often
simplified if one allows, in addition to morphismsnall modifications-that is,
rational maps that are isomorphisms in codimension 1. With this extension, a nat-
ural framework is the category of rational contractions. In many cases there is a
nice combinatorial parameterization given by a decomposition of a convex poly-
hedral cone, the cone of effective divis?f& (X ), into convex polyhedral cham-
bers, which we call Mori chambers. Instances of this structure have been studied
in various circumstances: The existence of such a parameterizing decomposition
for Calabi-Yau manifolds was conjectured by Morrison [M], motivated by ideas
in mirror symmetry. The conjecture was proven in dimension 3 by Kawamata
[Kaw]. Oda and Park [OP] study the decomposition for toric varieties, motivated
by questions in combinatorics. Shokurov studied such a decomposition for pa-
rameterizing log-minimal models. In geometric invariant theory there is a similar
combinatorial structure, a decomposition of hheample cone into GIT chambers
parameterizing GIT quotients; see [DH]. The main observation of this paper is
that whenever a good Mori chamber decomposition exists, it is in a natural way a
GIT decomposition.

The main goal of this paper is to study varietiésvith a good Mori chamber
decomposition (see Section 1 for the meaning of “good”). We call such varieties
Mori dream spacesThere turn out to be many examples, including quasi-smooth
projective toric (or, more generally, spherical) varieties, many GIT quotients, and
log Fano 3-folds. We will show that a Mori dream space is, in a natural way, a GIT
guotient of affine variety by a torus in a manner generalizing Cox’s construction
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[C] of toric varieties as quotients of affine space. Via the quotient description,
the chamber decomposition of the cone of divisors is naturally identified with the
decomposition of th&-ample cone from VGIT; see (2.9). In particulavery
rational contraction of a Mori dream space comes from GIT, and all possible fac-
torizations of a rational contraction (into other contractions) can be read off from
the chamber decomposition. See (2.3), (2.9), and (2.11).

OvEeRrvIEW. In Section 1 we define Mori chambers and Mori dream spaces. The
main theorems are proven in Section 2. In Section 3 we note connections with a
question of Fulton abou¥g ,,.
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1. Mori Equivalence

Throughout the papeN(X) indicates the Neron—Severi group of divisors, with
rational coefficients. We begin with a few definitions.

1.0. DeFiNITIONS.  Let f: X --» Y be a rational map between normal projec-
tive varieties. Let(p,q): W — X x Y be a resolution off with W projective
and p birational. We say thaf has connected fibres4fdoes. Iff is birational,
we call it abirational contractionif every p-exceptional divisor ig-exceptional.
For aQ-Cartier divisorD C Y, f*(D) is defined to be,(¢g*(D)). All of these are
independent of the resolutiokVarning: for rational maps, * is not, in general,
functorial.

It is useful to generalize the notion of rational contraction to the non-birational
case. Intuitively this should be a composition of a small modification (see (1.8))
and a morphism. Our definition is different; we do not want to assume at the out-
set the existence of small modifications, but in the cases we consider it will be
equivalent (seél.11)).

1.1. DerFiNiTION.  With notation as in (1.0), an effective divisBron W is called
g-fixedif no effective Cartier divisor whose support is contained in the support of
E is g-moving (see [Kaw]). That is, for every such divisbr the natural map

Oy = ¢.(O(D))

is an isomorphism. The mapis called acontractionif every p-exceptional divi-
sor isg-fixed. An effective divisolE C X is called f-fixedif any effective divisor
of W supported on the union of the strict transformiofvith the exceptional di-
visor of p is g-fixed.

One checks easily that for birational maps a divisor is fixed if and only if it is
exceptional.
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1.2. DeriNiTION.  For a line bundlel. on a schemeX, the section ringis the
graded ring
R(X,L) = @ HO(X, L®").
neN

We will often mix the notation of divisors and line bundles (e.qg., writhi§( X, D)
for Ho(X, O(D)) for a divisor D). We recall that the moving cone Mo¥) C
NEY(X) is the collection of (numerical classes of) divisors with no stable base
components.
If R(X, D) is finitely generated anf) is effective, then there is an induced ra-
tional map
fpo: X --+» Proj(R(X, D))

that is regular outside the stable base locug:Hf].

1.3. DeriNiTION (Mori Equivalence). LeD; and D, be twoQ-Cartier divisors

on X with finitely generated section rings. Then we gayandD, areMori equiv-
alentif the rational mapg), have the same Stein factorization—that is, if there is
an isomorphism between their images that makes the obvious triangular diagram
commutative. This occurs if and only if the rational mafyg, are the same for
somem > 0.

1.4. DerFINITION. Let X be a projective variety such that R, L) is finitely gen-
erated for all line bundles and PigX ) = N(X). By aMori chamberof N(X)
we mean the closure of an equivalence class whose interior is opet(in).

Contractions and finite generation turn out to be closely related.

15. LemmA. LetR = @, R, be anN-graded ring, finitely generated as an
algebra overRy. Then, for some: > 0, the natural map

Symk(Rm) - ka
is surjective for allk > 0.

Proof. Let Y := Proj(R). Then, for somen > 0, H(Y, Oy (km)) = Ry, for all
k > 0. The result follows. 0

1.6. Lemma. If a divisor D has a finitely generated section ring then, after re-
placing D by a positive multiple,fp is a contracting rational map and® =
fp(OQ)) + E for somef), fixed effective divisoE. Conversely, iff: X --» ¥
is a contracting rational map and = f}5(A) + E for A ample onY and E fixed
by £, thenD has a finitely generated section ring afid= f,,, for somemn > 0.

Proof. Suppose RX, D) is finitely generated. Leb = M + F be the canonical
decomposition oD into its moving and fixed components. After replacibdy
a multiple, by (1.5) we have that

sym, (H%(X, M)) — HO(X, kM)
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is surjective and
HOYX, kM) — HYX, kM + rF) (1.6.1)

is an isomorphism for ang, r > 0. By passing to the blowup of the scheme-
theoretic base locus ¢#7|, we may assume thatis regular and that? = f*(A)
for some ampled onY. Now F is f-fixed by (1.6.1).

Now consider the converse, with notation as in the statement.plet W
be a resolution as in (1.0). By negativity of contraction [Ko, 2.19]f*(A) =
q*(A)+ E’, whereE' is p-exceptional and effective. Thug(D) = ¢*(A)+ E”,
whereE” is effective andy-fixed. Thus RX, D) = R(W, p*(D)) = R(Y, A) is
finitely generated. We can chegk= f,,p after throwing away the base locus of
D, where the equality is familiar. O

1.7. Lemma. Letf: X --» Y andg: X --» Z be birational contractions. Sup-
pose f*(A) + E = g*(B) + F for A ample, B nef, E f-exceptional, andr
g-exceptional. Therf o g1: Z — Y is regular.

Proof. By negativity of contractions, we can pass to a resolution and assume that
f andg are regular. Now, by negativity of contractio,= F and sof*(A) =
g*(B). The result follows from the rigidity lemma (see e.qg. [K, 1.0]).

1.8. DerFiNITION. By asmallQ-factorial modificationSQM) of a projective va-
riety X we mean a contracting birational mgp X --» X', with X’ projective
andQ-factorial, such thaf is an isomorphism in codimension 1.

The most important examples of SQMs are “flips.”

1.9. DEFINITION. Letg: X — Y a small birational morphism, and 1€t be a
Q-Cartier divisor such that D is g-ample. By aD-flip of ¢ we mean a small
birational morphismy’: X’ — Y such that the strict transform dd on X’ is
Q-Cartier andy’-ample. We say the flip is of relative Picard numberd &ndq’
are of relative Picard number 1.

The D-flip, if it exists, is unique; in the case of relative Picard number 1, it is
independent oD (see e.g. [KoM]).

1.10. DeriNiTION (Mori Dream Space). We will call a normal projective variety

X aMori dream spacerovided the following hold:

(1) X is Q-factorial and Pi¢X)q = N1(X);

(2) Nef(X) is the affine hull of finitely many semi-ample line bundles; and

(3) there is a finite collection of SQMg : X --+ X; such that eaclX; satisfies
(2) and Moy X) is the union of thef*(Nef(X;)).

1.11. ProposITION. Let X be a Mori dream space. Then the following hold.

(1) Mori’s program can be carried out for any divisor axi. That is, the nec-
essary contractions and flips exist, any sequence terminates, and if at some point
the divisor becomes nef then at that point it becomes semi-ample.
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(2) The f; of (1.10)are the only SQMs aX. X; and X; in adjacent chambers
are related by a flip.NEX(X) is the affine hull of finitely many effective divisors.
There are finitely many birational contractiogs: X --» Y;, with Y; Mori dream
spaces, such that

NEXX) = | &7 (Nef(¥,)) x ex(g)

is a decomposition ofVE1(X) into closed convex chambers with disjoint interi-
ors. The coneg;(Nef(Y;)) x ex(g;) are precisely the Mori chambers HNEL(X).
They are in one-to-one correspondence with birational contraction$ béving
Q-factorial image.

(3) The chamberg;*(Nef(X;)), together with their faces, gives a fan with sup-
port Mov(X). The cones in the fan are in one-to-one correspondence with con-
tracting rational mapsg: X --» Y, with Y normal and projective via

[g: X --» Y] = [¢"(Nef(Y)) Cc Mov(X)].

Let D be an effective divisor oX.

(4) R(X, D) is finitely generated.

(5) After replacingD by a multiple, the canonical decompositibh= M + F
into moving and fixed part has the following properties. There is a Mori chamber
containingD, so thatifg;: X --» Y; is the corresponding birational contraction
of (2) then F has support the exceptional locusgfand M is the pullback of a
semi-ample line bundle or}.

Proof. These all follow from the definition and purely formal properties of Mori's
program. Here is a sketch of the proof.

Note that if f: X — Y is a small birational morphism thefi*(A) for A am-
ple is in the interior of MoyX). Thus, from(1.10.3) all the small contractions of
any X; have a flip that is given by anothéf;. Now let D be a divisor. If it is
nef then it is semi-ample by assumption, and Mori’s programZiderminates.

So we can assume it is not nef. Choose a general ample ditisoAmple(X)

and look at the intersection point of the line segma with the boundary of
Nef(X). This defines a-negative contraction. We can assume (by taking a big-
ger boundary wall) that it is of relative Picard nhumber 1. If it is small then we
can flip it; if it is not birational, the program stops. Hence we can assume that
it is a divisorial contraction of relative Picard numberfl; X — Y. ThusY is
Q-factorial. Becaus® — f*(f.(D)) is effective (since-D is f-ample), we can
replaceD by f*(f.(D)) and assume thd? is pulled back. Now we can work in
f*(Pic(Y)q) C Pic(X)q and induct on the Picard number Bf Eventually we
reduce to the case whahhas Picard number 1, ard is either the pullback of
ample, trivial, or anti-ample. This proves (1); (4) follows from (1).

Given an effective divisoD, running Mori's program forD yields a bira-
tional contraction (indeed, a composition of birational morphisms and flips each
of relative Picard number 13: X --» Y, with Y Q-factorial, such thatD =
g*(A) + E with A semi-ample an& effective with support the fulg-exceptional



336 Y1 Hu & SEAN KEEL

locus. Clearlyg*(A) and E are the moving and fixed part db; by (1.7),
g*(Nef(Y)) x ex(g) is a Mori chamber. This proves (5).

The contracting morphisms with domalfy are in one-to-one correspondence
with the faces of NefX;). Let g: X --» X’ be a contracting rational map, and
chooseX; so thatg*(A) C f*(Nef(X;)). It follows thatX; --» X’ is regular.
This proves (2), and (3) can be similarly proved. O

1.12. REMARK. Proposition 1.11(4) is a natural condition, especially in view of
(1.6). Unfortunately by itself it does not imply Mori dream space, or even that nef
divisors are semi-ample. For example, fetS — C be the projectivization of

the nonsplit extension aP¢ by itself for C an elliptic curve in characteristic 0.
Then the cone of effective divisors is 2-dimensional, with edgethe fibre ofp,
andC, the section with trivial normal bundle. Every effective divisor is nef, and
the only non—-semi-ample effective divisor is (a multiple 6f)R(S, C) is a poly-
nomial ring. Thus, all the section rings are finitely generated. However a natural
strengthening of condition (4) is indeed an equivalent characterization of a Mori
dream space; see (2.9).

2. Mori Theory and GIT

We refer to [DH] for basic notions from VGIT. We recall in particular that two
G-ample line bundles are called GIT-equivalent if they have the same semi-stable
locus (and thus in particular give the same GIT quotients). The equivalence classes
are always locally polyhedral (and, in the cases we consider, will always be poly-
hedral). We note one difference from the notation of [DH]: here, by a GIT cham-
ber we simply mean a top-dimensional GIT equivalence class (in [DH] the term
is reserved for equivalence classes for which the stable and semi-stable loci are
the same).

2.0. NotaTion. LetV be an affine variety over, and letG be a reductive group
acting onV. Let L be the trivial line bundle with the trivial induced action (i.e.,
the action is only on th& component). For each characee x(G), letU, =
VS(L,) with quotientg, : U, — U,//G = Q,. LetC := CS(V) N ker(f),
where f is the forgetful mapf : C%(V) — NSY(V). We denote the complement
of the semi-stable locus (i.e., the non—semi-stable locud)%L ).

2.0.1. Lemma. C is the affine hull of finitely many characters.
Proof. This is well known; see for example [DH,1.5] or [T, 2.3]. O

2.1. LemmA. Let f: U — Q be a geometric quotient by a reductive groGp
acting with finite stabilizers. IV is Q-factorial and if, for eachG-invariant
Cartier divisor D c U, Oy (mD) has a linearization for some > 0, thenQ is
Q-factorial.

If G is connected then the converse holds.
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Proof. First we consider the forward implication. L&’ c Q be an effective
Weil divisor. ReplacingD’ by a multiple, we may assume that the inverse image
D is Cartier and thay (D) has a linearization. Theb is the zero locus of a sec-
tion o on whichG acts by a character. Thus, if we adjust the linearization, then
o is an invariant section. The line bundle and the section descend, by Kempf’s
descent lemma, after taking multiples.

For the reverse direction, assur@es connected. By [V, Thm. 1], sinc@ is
Q-factorial, the composition

Pic(0)g 15 PIcS(U)q — PicU)g — AYU)q

is surjective. The first map is an isomorphism by the descent lemma, and the re-
sult follows. O

2.2. Lemma. With notation as in(2.0), let x be a character such that the quo-

tient Q, is projective. Consider the following conditions.

(1) VS(L,) = V3(L,) and the complemert™L,) c V has codimension at
least2.

(2) V has torsion class group.

(3) Q. is Q-factorial.

(4) Both of the maps

luy

X—>Ly v
x(G)g —
are isomorphisms.

We claim that(1) and (2) imply (3) and (4). If G is connected, the(t), (3),and
(4) together imply(2).

PIcS(U)g <% Pic(01)g

Proof. Assume (1) and (2). Then the second map in (4) is an isomorphism by
Kempf’s descent lemma, and the first map is injective by the codimension condi-
tion of (1). As any two linearizations of@-line bundle differ by a character, (2)
implies that the first map is surjective.

Assume (1), (3), and (4) and th@tis connected. Botly andU, have the same
class group, by the codimension assumption of {4)is Q-factorial by (2.1) and
so has torsion class group, by the first map in (4). O

2.3. THEOREM. Letx be a character such tha®, is projective. If conditions
(1)—(4)of Lemma 2.2 hold the@, is a Mori dream space. Moreover, the isomor-
phismy : x(G)g — N*(Q,) (induced by conditiori4)) identifiesNEX(Q,) with

C and, under this identification, Mori chambers are identified with GIT cham-
bers. Every contractiorf: O, --» Y (with Y normal and projectiveis induced

by GIT. ThatisY = Q, for some charactey, and f is the induced map.

2.3.1. REMARk. Theorem (2.3) has an obvious analog for quotients of a projec-
tive variety where we vary the linearization on powers of a fixed ample divisor.
For the proof, one passes to the cone over the variety and applies (2.3). We leave
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the details to the reader. We expect one could further generalize the proposition
to show that GIT quotients of Mori dream spaces are again Mori dream spaces.

Proof of Theorem 2.3.Pic(Q,) is finitely generated by condition (4) of Lemma
2.2 and thus we have part (1) of Definiti@i0. Everyline bundle onQ, is of
formy(Ly), andLy]Ux = qi(y(Ly)). By descent and the codimension condition,
we have canonical identifications

HOV,L,)® = HYU,, L,)® = H%Q,, ¥(L,)). (2.3.2)

Thusvy identifiesC with NEX(Q,).
By the GIT constructionLy|Uv = q;(L;,) for an ample line bundléf, on Q,,
and there are canonical identifications

HO(V,L)¢ = HOU,, L,)® = H%Q,, L)). (2.3.3)
By the codimension condition we also have the identifications
H°(U,, L))® = HU, N Uy, L)® = H%q.(U, N U, ¥(Ly).  (2.3.4)

(Note that, since, is a geometric quotieny, (U, N U,) is open and its inverse
image undey, is U, N U,.)

Every section ring orQ, is finitely generated (by Nagata's theorem), so Mori
equivalence is well-defined on the cone of divisors. Let

fy: O - Qy

be the induced rational map. By (2.3.2),= fy,) and, in particular, by (1.6) a
contraction. Further, by (1.6) we have

W(Ly) = [ (L) + E, (2.3.5)

for some effectivef,-exceptional divisolE,. Via ¢ we have both Mori and GIT
equivalence oWEY(Q,). Clearly GIT equivalence is finer: if the semi-stable loci
are the same, the associated contraction@ pfire the same. By the theory of
VGIT, the GIT chambers are finite polyhedral, the affine hulls of finitely many ef-
fective divisors. ThusVE(Q,) is a union of finitely many Mori chambers, each
finite polyhedral.

Now suppose that andz are general members of the same Mori chamber. We
will show they are in the same GIT chamber (thus showing that GIT and Mori
chambers are the same). By assumptforand f, are the same; they are bira-
tional because the corresponding divisors are large. By dimension considerations
(since the Mori equivalence class is maximal dimensiorfa))and E, have the
same support, the full divisorial exceptional locusfot= f,, and the number of
components of either is the relative Picard number @ad= Q, is Q-factorial.

We argue now thal/, = U,.

Of course, it is enough to shoW, C U,. Let z be a point ofU,. Then, by
the construction of GIT quotients, there is a sectior H°(V, L,)¢ such that
U‘UV = ¢;(0”) for a section

o'e H(Q,. L))
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that does not vanish at(z) € Q, = Q,. We claim that
Ly|, = 4Ly and of, =gi". (2.3.6)

This implieso(z) # 0 andz € U,. We can check (2.3.6) after removing any
codimension-2 subset frodi,. By (2.3.2) and (2.3.5)[); N U, andU, N U, are
equal in codimension 1: the complement of either is, up to codimension 1, the in-
verse image undey, of the divisorial exceptional locus of = f,. ThusU, and
U, are equal in codimension 1, and we can check (2.3.6) after restricttAgte,
(where it obviously holds).

Thus, the Mori and GIT chambers have the same interiors, and (up to closure)
each chamber is of fornf*(Ample(Q.)) x ex(f;) for linearizations; such that
Q. is Q-factorial. In particular (up to closure), the moving cone will be the union
of the (finitely many) chambers witlii small. To finish the proof we need only
show that, on thes@,, the nef cones are generated by finitely many semi-ample
line bundles. Let be such a character. Note that, sinfcés small, NEX(Q,) and
NEY(Q,) are canonically identified by*. LetC, C C be the closure of the GIT
chamber of; (which we know is the closure of the ample cone®f). Choose
y € dC,. By the VGIT theory there is an inclusidii, C U,. It follows that the
rational map

fzy = fy © fz_l: Q,--» Qy

is regular. By negativity of contraction, sing&L ) (being on the boundary of the
ample cone) is nef o@., the termk, in (2.3.5) is empty ane (Ly) = f;(L)).
SinceL, is ample andy;, is regulary(L,) is semi-ample orQ.. O

2.4. CoroLLARY. Let X be a projective geometric GIT quotient for the action
of an algebraic torus on an affine variety with torsion class group. If the nonsta-
ble locus has codimension at legsthenX is a Mori dream space satisfying the
conclusions of(2.3). Moreover, GIT quotients from linearizations in the interior
of Mori chambers are geometric quotierfi., the Mori chambers are chambers
in the sense ofDH]).

Suppose furthermore th&tis smooth. Then any rational contractionXfwith
Q-factorial image is a composition of weighted flips, weighted blowdowns, and
étale locally trivial (on the imaggfibrations of relative Picard numbérwith fibre
a quotient of weighted projective space by a finite abelian grdupparticular,
the image of any such a contraction has cyclic quotient singulatitieseed, the
factorization is obtained by the series @fecessarily codimensiet) wall cross-
ings connecting a general member of the ample cordéwfth a general member
of the chamber corresponding to the contraction.

The smooth case of (2.4) is obviously an optimal situation: the contractions are
parameterized in a nice combinatorial way, and each contraction is naturally fac-
tored into simple parts. We note that in general such a factorization is possible
only if one allows small modifications; there will be no such factorization if one
restricts themselves to morphisms. For example, there are birational morphisms
f: X — Y of relative Picard number 2 between smooth projective toric varieties
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that do not factor through any morphistn— Y’ of relative Picard number 1 with
Y’ Q-factorial.

Proof of Corollary 2.4.Except for the final claim of the first paragraph, everything
is immediate from (2.3) and the theory of VGIT (see [DH, 0.2.5] or [T, 5.6]). We
follow the notation of the proof of (2.3). Consider a linearizatioim the interior

of a Mori chamber. It is enough to show thgtis an isomorphism; then, for any
charactew, Lmv\U is pulled back fromQ, (for somem > 0). Thus the stabilizer

of any point ofU, is in the kernel ofnv for all v, so the stabilizer is finite. We
can check thag} is an isomorphism after removing codimension-2 subsets from
0, andU,. Thus we can restrict t0/, N U, and to the locus wherg; ™ is an iso-
morphlsm Here the quotient is geometric,ggais an isomorphism by Kempf's
descent lemma. ) O

Corollary 2.4 applies to any quasi-smooth projective toric varehy Cox’s con-
struction [C], which gives an essentially canonical way of writkig= X(A)

(for the fan A with support the latticev = N") as a GIT quotient of\", r =

#(A(1)) (whereA(k) is the collection ok-dimensional cones in the fan), By=

Hom(A,_1, G,,) satisfying conditions (1) and (2) of Lemma 2.2.

For ap-dimensional torug” acting on affine space, the GIT chambers are par-
ticularly simple: an action of” on A" is given byr charactersy; € x(T). The
T-ample cone is the affine hull of the characters, and the GIT chambers are the
affine hulls of all subsets gf independent characters (see e.g. [DH]). Combin-
ing this with Cox’s construction and (3.3) gives a simple algorithm for describing
the Mori chambers of any quasi-smooth projective toric variety. This description
was obtained by Oda and Park [OP] using Reid’s toric Mori’s program [R1]. The
factorization in (2.4) gives a cheap form of Morelli's factorization theorem [Mo],
“cheap” in that—even in factoring a birational map between smooth spaces—we
allow cyclic quotient singularities. The factorization does, however, have an im-
portant advantage over Morelli's: Morelli factors birational maps, but even to
factor a birational morphism he may have to blow up an indeterminate number
of times; in fact, there could be infinitely many such factorizations. On the other
hand, all possible factorizations into contractions are encoded in the chamber de-
composition of (2.4). We note that, by [BK], quasi-smooth projective spherical
varieties give further examples of Mori dream spaces.

NotaTiON. For a collection of line bundlesL,, ..., L, and a vector of integers
v=(ny,...,n.) €Z", welet

L' =L ®Ly"...@ L®".
2.5. DErFINITION.  For line bundled.,, ..., L, on X, let
R(X,Ly,...,L,) = @ HOX, LY).

veN”

2.6. DEFINITION.  Let X be a projective variety such that Rit)g = N(X).
By aCox ringfor X we mean the ring
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Cox(X) :=R(X, Lq,..., L))

for a choice of line bundlek, ..., L, that are a basis of Pi& ) and whose affine
hull containsNEX(X).

ReEMaRK. Rather than have choices as in (2.6), we would prefer to use

@ HOX, L).

LePic(X)

However, this does not have a well-defined ring structure (for an isomophism class
L the vector spac# (X, L) is determined only up to ascalar). Of course, Cox

as we have defined it depends on the choice of basis. If we chooskhases of

the torsion-free part of P{&) then the two rings are isomorphic. If we replace
the line bundles by positive powers, then the original Cox ring is a finite exten-
sion of the new Cox ring. Thus finite generation of the Cox ring, which for our
purposes will be the main issue, is independent of choice. For any toric variety,
Cox(X) is a polynomial ring, Cox’s [C] coordinate ring, whence the name.

2.7. LEMMA. Letoy, 0o € H9(X, L) be two sections of a nontorsion line bundle
whose zero divisors have no common component. Tden,) C Cox(X) is a
regular sequence.

Proof. Suppose: - 01 = b - 0. We can assume thatandb are homogeneous.
Thusa andb are sections of the same line bundfeanda ® o1 = b ® o». Let
A, B, D1, D, be the zero divisors aof, b, 01, o2. We have an equality of Weil
divisors

A+ Di=B+ Ds.

It follows thatA — D, = B — D, is effective and Cartier. Thus= a/o, = b/o1
is a regular section o ® L*; moreoverg = o, -d andb = o7 - d. O

2.8. LEmMa (Zariski). LetL,, ..., L, be semi-ample line bundles on a projec-
tive varietyY. ThenR(Y, L4, ..., Ly) is finitely generated, and there exists an inte-
germ > 0such that, for ang > 0and after replacing_; byLl@"’", the canonical
map

HO(Y, Ll)®n1 Q- ® HO(Y, Ld)®nd N HO(Y, L(n1 ..... nd))

is surjective for allz; > 0.

Proof. f P=P(L1®---®L,)thenRY, L4, ..., L,) = R(P, Op(1)), SO we re-
duce to a single semi-ample line bundle, where finite generation is a familiar result
due to Zariski. For soma > 0,

sym,(H°(P, O(m))) — H(P, O(km))

is surjective for allk. The second statement follows by considering the appropri-
ate graded piece. O
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2.9. ProposITION. Let X be aQ-factorial projective variety such that
Pic(X)g = N1(X).

ThenX is a Mori dream space if and only i€ox(X) is finitely generated.

If X is a Mori dream space thek is a GIT quotient ofV = speq¢Cox(X)) by
the torusG = Hom(N", G,,), wherer is the Picard number of(, satisfying the
conditions of(2.3). Moreover we may choose the Cox ring so tGaacts freely
on the semi-stable loci of any linearization in the interior of a Mori chamber.

Proof. Let R = Cox(X) = @, Ro-

Assume thatX is a Mori dream space. For each (closed) Mori chanmbec
NEYX), let Rc = @,. R, Since there are only finitely many chambers and
since any homogenous elementilies in someR ¢, to show thatr is finitely
generated it is enough to show th@¢ is finitely generated for eaofi. Choose

a chambelC and line bundled, ..., J; € C that generat€ (as a semi-group).
Expressing thd; as tensor products of the induces a surjection

R(X, J1, ..., Ja) = Rc,

so we need only show that(R, Js, ..., J;) is finitely generated. By part (2) of
Proposition 1.11, there is a contracting rational nfapX --» Y to a projective
Q-factorial normal varietyy such that eacll; = f*(A;)(E;) for A; semi-ample,

E; effective, andf exceptional. Hence, by the projection formula there is a natu-
ral identification

R(X, J1, ..., Ja) =R, A1, ..., Ag).

The latter is finitely generated by (2.8).
Now supposeR is finitely generated. Note that acts naturally orR, so

R = EB R,
vex(T)=N"
is the eigenspace decomposition for the action. Thus
H%V,L,)° =R,
and, forv = L € Pic(X), the ring of invariants is
R(V,L,)’ =R(X, L).

ThusX is the GIT quotient for any linearizatiane Ample(X) C x(G)q, and for
any linearizationv = L the induced rational maf --» Q, is fi.

Leth: R — C be a point ofV, and letv € NEX(X) be a linearization. By our
description of the invariantg; is L, semi-stable if and only ifi(R,,) # 0 for
somen > 0. For somen > 0 andvy, ..., vy With >~ v; = mv, suppose that

anl ® and - anv

is surjective for alk > 0. Then
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i=d
VS(Ly) = [ VS(Ly)).
i=1

It follows in particular from (2.8) that any ampiehas the same semi-stable locus,
sayU. Furthermorej € G, (the stablizer oh) if and only if AY = 1 for all v such
thath(R,) # 0. In particular,)\’ is torsion ifh is L, semi-stable. The ample cone
generate®N” = x(T) (as a group); thus, any semi-stable for an amplkehas fi-
nite stabilizer. Henc& is a geometric quotient df. Choose two sections, o,

of some ample line bundI& whose zero divisors have no common component.
Let I be the ideal of the non—semi-stable lodus(with reduced structure). Re-
call thatoy, o2 € I, so by (2.7) it follows that¢ has codimension at least 2. Thus
the quotientX satisfies the conditions of (2.3), Sbis a Mori dream space.

Now choose a Mori chambear and generating line bundles, ..., J;, with
associated contracting birational mgpas before. After replacing by a SQM
(which is again a Mori dream space with the same Cox ring), we may assume that
f is amorphism. One sees thats(L,) is constant fow in the interior ofC, and
that any point in this open set has finite stablizers, by using (2.8) exactly as in the
previous case of = Nef(X). The same argument shows that, after replacing the
L; by powers, the stabilizers are trivial. O

2.10. CoroLLARY. LetX be asmooth projective variety wiic(X )g = N 1(Xx).
ThenX is a toric variety if and only if it has a Cox ring that is a polynomial ring.

Proof. In the smooth toric case, CoX) is Cox’s homogeneous coordinate ring.
By (2.9), if Cox(X) is finitely generated the is a geometric GIT quotient of
spe¢Cox(X)) by a torus, and the quotient of an affine space by a torus is a toric
variety. O

The next proposition indicates that the birational contractions of a Mori dream
space are induced from toric geometry.

2.11. ProrosITION. Let X be a Mori dream space. Then there is an embedding
X C W into a quasi-smooth projective toric variety such that
(1) the restrictionPic(W)g — Pic(X)q is an isomorphism
(2) the isomorphism of1) induces an isomorphisBWEX(W) — NEX(X);
(3) every Mori chamber ok is a union of finitely many Mori chambers 8f;
and
(4) for every rational contractiory : X --» X’ there is toric rational contraction
f: W --» X', regular at the generic point of, such thatf = f|x.

Proof. LetR = Cox(X) = D, .n- Rv- By (2.9), R isfinitely generated ovetg =

k. Choose homogenous generators whose degrees (in the grading) are nontrivial
effective divisors. This defineskaalgebra surjectiom — R from a polynomial

ring A as well as a compatible action 6f= Hom(N", G,,) on A such thatd” =

k. Let A = spec¢A). We have an equivariant embeddilg= spe¢R) C A. Let

M, (resp.L,) be twistings by the characterc x(T') of the trivial line bundle o
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(resp.V). Following the notation of (2.0), we have th&tS(M,) NV = VS%(L,)

for anyv. Thus GIT equivalence oW is finer than GIT equivalence g Choose

v a general member of a Mori chamber of M&y). We claim that the quotient

W, = ASS(M,)// T satisfies the conditions of (2.3). As remarked in the proof of
(2.4) we need only check the codimension condition of Lemma 2.2(1). Suppose
A™Y(M,) has a divisorial component. By (2.9), satisfies the conditions of (2.3)
and so there is a nonconstant functipe O(A) on whichT acts by some char-
acter,y, whose restriction td is a unit. ButtherL, Pic®(U,) is trivial; hence

x is trivial. But thenj is a nonconstant invariant function, a contradiction. Thus
(2.3) applies taQ, andW,, and the result follows. O

There is a natural local (in the cone of divisors) generalizatiqf.®®) asollows.

2.12. DEFINITION. LetC ¢ NEY(X) be the affine hull of finitely many effective
divisors. We say thaf' is aMori dream regionprovided the following hold:

(1) there exists a finite collection of birational contractiofis X --» Y; such
thatC; := C N f*(Nef(Y;)) x ex(f;) is the affine hull of finitely many effec-
tive divisors;

(2) Cis the union of the”;; and

(3) any line bundle i f;).(C;) N Nef(Y;) is semi-ample.

Proposition 2.9 has the following analog.

2.13. THEOREM. Let X be a normal projective variety and l&t ¢ N(X) be

a rational polyhedral conéi.e., the affine hull of the classes of finitely many line
bundle3. ThenC N NEX(X) is a Mori dream region if and only if there are gen-
eratorsLy, ..., L, of C such thatR(X, L4, ..., L,) is finitely generated.

Proof. Analogous to that of (2.12). O

It is natural to expect that the region of the cone of divisors studied by Mori the-
ory is itself (at least locally) a Mori dream region. This leads to the following
conjecture, which by the ideas of the proof of (2.9) contains all the main conjec-
tures/theorems (e.g., cone and contraction theorems, existence of log flips, log
abundance) of Mori’s program.

2.14. CoNJECTURE. Let Aq,..., A, be a collection of boundaries such that
Kx + A; is Kawamata log terminal. Choose an integer such thatL; =
m(Kx + A;) are all Cartier. TherR(X, L, ..., L,) is finitely generated.

2.15. CoroLLARY. The conjecture holds in dimensi8ror less.

Proof. It is easy to check that the intersection of the affine hull of thewith
NEY(X) is a Mori dream region. O

2.16. CoroLLARY. LetX be alog Fanm-fold, withn < 3. ThenX is a Mori
dream space.
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Proof. Let Kx + A be KLT and anti-ample. Choose a basis ..., L, of Pic(X)
whose affine hull contain§E1(X). Choose: > 0sothatd; = L; — n(Kx + A)
isample foralk. Let A; = 1/nmD; + A for D; a general member ¢f:A4;|. Note
thatL; = n(Kx + A;) (in Pic(X)g) and thatA; is KLT for sufficiently largem.
Now apply (2.13). O

3. Connections withMy,

The original motivation for this paper was to try to understand the geometric mean-
ing of the cone of effective divisors in connection with questions of Fultaign,
the moduli space of stablepointed rational curves.

3.1. QuesTioN (Fulton). ISNEy(Mo,) (resp.NEX(M ,)) the affine hull of the
1-dimensional (resp. codimension-1) strata?

See [KM] for definitions, partial results, and an indication of the wide range of
contexts in whichV/, , naturally appears. The connection with GIT is as follows.
Consider the diagonal action 6f = SL, on then-fold product(P*)*". By the
Gelfand—Macpherson correspondence, the VGIT theory for this action is identified
with that of the torus” = G, on the Grassmanniai(2, m). For example, the
G-ample cones and their chamber decompositions are naturally identified, and the
corresponding GIT quotients are the same (in the first case we vary the line bun-
dle and the linearization on each is canonical; in the second case, the line bundle
is fixed and we vary the linearization by characters). Corollary 2.4 (see Remark
2.3.1) now applies. Thé&-ample cone and chamber decomposition are easy to
describe (see [DH]), and one obtains a complete description of the rational con-
tractions on any of the GIT quotients. By [Kaplo,, is the inverse limit of all
the GIT quotients.

3.2. QUEsTION. Is My, a Mori dream space?

One result of [KM] is that any extremal ray ofE (M ,) that can be contracted
by a map of relative Picard number 1 is generated by a stratum, so long as the ex-
ceptional locus of the map has dimension at least 2 (any stratum can be contracted,
and the exceptional locus of the contraction satisfies the dimension condition for
anyn > 9). By (1.12), if M, is a Mori dream space then any extremal ray of the
Mori cone is contracted by a map of relative Picard number 1. Thus, a positive
answer to (3.2) would nearly answer Fulton’s questionN@h (M_,).

There is a natural action of the symmetric grafjpon Mo ,, and it is natu-
ral to consider the, -equivariant geometry or (equivalently) the geometry of the
quotient My ,. This quotient is itself an important moduli space; for example,
Mo 242 C M, is the hyperelliptic locus.

Letk = [n/2]. Let B; C My, (k > i > 2) be the union of codimension-1 strata
whose generic point corresponds to a curve with two components and ekactly
marked points on one of the components. The analog of (3.12)1_391(1\710,,1) is



346 Y1 Hu & SEAN KEEL

proven in [KM]. In fact, NEX(M, ) is simplicial, generated by the (images of
the) B;. Furthermore, every moving divisor is big (and thus every rational con-
traction ofMo,,, is birational). In particular, by (2.9) it follows thaﬁlo,n is a Mori
dream space if and only if the ring

(&) HO(MO,,,, ZdiB,-)

(da, ...,dy)eNk—2

is finitely generated.
Observe that, by1.10), apositive answer to (3.2) would imply the following.

3.3. ImpLICATION. For eachk > i > 2 there exists a birational contraction
fi A;Io,n --+ Q;, whereQ; is Q-factorial of Picard numbed and where the ex-
ceptional divisors off; are exactly theB; with j = i. The moving cone o#f , is
simplicial, generated by pullbacks of ample classes fronhe

We know thatf, of (3.3) exists: it is the (regular) contraction to the GIT quotient
of SL, for the action on thath symmetric product of the standard representation
(i.e., the GIT quotient for unmarked points of#?).

We finish by giving a result that yields another connection betwdgp and
GIT. Though not directly related to the rest of the paper, we hope the reader will
find it of interest.

In [FM], Fulton and MacPherson construct a functorial compactificatipti
of the locus of distinct points in a smooth variety As we now indicateMo,n
occurs as a GIT quotient &[] by the natural action oG = SL, .

There is a proper birational morphisfit P[n] — (P1)*". Let E be an ef-
fective divisor, with support the full exceptional locus fifsuch that—FE is f-
ample (such ark exists for any proper birational morphism betwe@ifiactorial
varieties).

3.4. THEOREM. For each linearizatiorL e Pic®((P1)*") such that

(PHY*™M)3(L) = (PHY*")*(L) #

and for each sufficiently small> 0, the line bundlel” = f*(L)(—¢E) is ample
and
(PHaDL) = (PnDSL) = f7HEPYH*)X(L).

There is a canonical identification
(PYn])*(L")/G = Mo,n

and a commutative diagram

ELaSL) > (@Y

/| |

Mo,  — (PH*")(L)/G,
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whereg indicates the geometric quotient and where the varipase Kapranov's
blow-up expressions fa¥l, ,, realizing it as the inverse limit of all the GIT quo-
tients of (P1)*~.

Proof. We follow the notation of FM] for divisors onX[#] and that of [H3] for
the chamber decomposition for Pi¢P!)*"). For a subse§ C {1, 2,...,n}, let
15 be the linear functional on Pi¢(P1)*"):

ls(X1, ..., x,) = in — in.
ieS i¢S

For the first statement, see [H2]. We [Etbe the semi-stable locus for a lin-
earization on(PY)*” corresponding to a chamber, abd = f~1(U). Let the
corresponding quotients @ and Q’. By [FM, pp. 195, 212] there is a natural
G-equivariant surjectiof®*[n] — Mo, whereG acts trivially onM, ,. Hence
there is an induced proper birational morphigth— Mo ,. To prove this is an
isomorphism (both sides beiri@-factorial), it is enough to show that both sides
have the same Picard number:

p(Q) =pU") =pU)+ey =p(Q)+ ey,

whereey is the number off-exceptional divisors that meét’ or (equivalently)
the number of diagonala s that meetU and have S| > 2. We show first that
p(Q) is constant (i.e., independent of the chamber). It is enough to check two
chambers sharing the codimension-1 wWe{l. Let the two open sets lié andU-,
where we assume théh meetsAg and|S| < |S¢|. Note theU/ meet the same di-
visors D(T'), except that/; meetsD(S) (and notD(S¢)) while U; meetsD(S¢)
(and notD(S$)). If |S| > 2thenQ; --+» Q5 is a small modification, sp(Q1) =
p(Q2) andey, = ey,. SupposeS| = 2. ThenQ; --» Q> is a birational contrac-
tion with exceptional divisor (the image ofys. Thusp(Q1) = p(Q2) +1. On
the other handy, = ey, — 1, sinceD(S) is not exceptional (its image is diviso-
rial) whereasD(S¢) is exceptional.

Now we computep (Q') for the case of the chamber given by inequalities
Oforalll1¢ S. In this caseQ = P"~2 and thef-exceptional divisors that meet
U’ are precisely théd(S) with1¢ S andn — 2 > |S| > 3. Thus

p(Q) =2"" - (2) — 1= p(Mo,). O
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