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0. Introduction

The Gromov-Witten invariants @&? compute, roughly speaking, the number of
plane curves of given degr@eand genug containing the appropriate number of
general points. In recent years it has been discovered that these invariants are co-
herently linked together by the apparatus of quantum cohomology, which exposes
their structure ag andg are allowed to vary.

For nonsingularplane curves, however, these invariants do not carry much in-
formation: the set of nonsingular curves of a given degtég an open set of a
projective spac@@+3/2 so the corresponding invariant is simply 1. We can
consider a more refined question by fixing, as well as the deffard hence the
genusg = W), the moduli class io\, of the curve. What data determines
then the corresponding invariant? Can this invariant be effectively computed? Can
other enumerative invariants be computed for the set of nonsingular curves of given
degree and moduli class, such as the number of curves tangent to the appropriate
number of general lines?

In this paper we fully answer these questions as well as a natural generaliza-
tion of these questions &rbitrary (i.e., possibly singular, reducible, nonreduced)
plane curves of any degree. The group R&Lof projective linear transforma-
tions of P2 acts naturally on the spa@#“@+3/2 parameterizing plane curves of
degreed. Our main result is the computation of the degree of the closure in this
space of the orbit of an arbitrary plane curve (in characteristic 0). Somewhat sur-
prisingly, the enumerative geometers and the invariant theorists of the nineteenth
century do not seem to have worked on this question. The orbit closure of a curve
is a natural object of study, and its degree has a simple enumerative meaning: for a
reduced curve with finite stabilizer, it counts the number of translates of the curve
that contain eight given general points. For a nonsingular curve, this is the invari-
ant just mentioned. In this sense, therefore, this problem is an isotrivial version of
the problem of computing Gromov-Witten invariants.

The computation in this paper relies on our previous work on the subject, where
we have dealt with special curves: nonsingular curves were treated in [AF2]; plane
curves whose orbit has dimension less than dim Bpk= 8 are classified and
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studied in [AF3; AF4]. We have also determined in [AF5] timits of an arbi-
trary plane curve; these are the curves appearing in the boundary of the orbit, that
is, the complement of the orbit in its closure. In the terminology of [HM, p. 138],
this solves the “isotrivial flat completion problem” for plane curves.

Our previous enumerative computations relied on the explicit construction (by
means of a sequence of blow-ups overEieof 3 x 3 matrices) of smooth vari-
eties dominating the orbit closures. The case of an arbitrary curve appears to be
too complex for that approach, and we turn in this paper to a more direct study of
the projective normal cone of the base locus (scheme) of the rational map

]1])8 NN ]Ipd(d+3)/2

extending the map PGB) — P4@+3/2 which surjects onto the orbit of a given
curve. Our study of limits of curves in [AF5] allows us to express the degree of
the orbit closure of a curve in terms of enumerative information concerning curves
in the boundary of the orbit, also available from our previous computations.

For an arbitrary curve, this provides us implicitly with an algorithm computing
the degree of the orbit closure. We illustrate this algorithm in Sections 4 and 5 on
specific classes of curves. For example, a surprisingly simple formula can be ob-
tained to compute the effect on the degree due tioraduciblesingularity p of a
curve (see Theorem 5.1) in terms of the multiplicity of the curvg,dhe order of
contact with the tangent line to the branchpatand the Puiseux pairs describing
the singularity.

Of course, many questions remain about orbit closures regarding, for example,
their singularities (which curves have smooth orbit closure?—smooth orbit clo-
sures ofconfigurations of points if*! are classified in [AF1]) or other invariants
such as Euler characteristic, Poincaré polynomials, behavior in positive character-
istic, and so forth.

ACKNOWLEDGMENT. It is a pleasure to dedicate this paper to Bill Fulton. His
encouragement over the years for our collaboration was vital to its success. Much
of the work on this project was done during several joint visits at the University of
Chicago at his invitation.

1. The Problem, and the Approach

Let C be a curve of degregin the projective plan®? over an algebraically closed
field of characteristic 0; we may think @f as a point in the projective spaé =
P(H°(P?, O(d))), whereN = d(d + 3)/2. The standard action of PGB) on
P? induces a right action oR”" ; specifically, forp € PGL(3) we can consider the
translateof C by ¢: if C has equatioF(xq : x1 : x2) = 0, then its translat€ o ¢
has equation

F(p(xo:x1:x2) =0.

The actiony — C o ¢ defines a map
¢: PGL(3) — PV,
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whose image is what we call thieear orbit of C. Our aim is the computation of
the degree of the closure of this orbit, for an arbitrary plane carvia terms of
a description of the irreducible components and the singulariti€s of

Our general approach is based on compactifying B5to the spacé? of
3 x 3 matrices and then considering the rational map

P& - PV

determined by:. If é: V. — PV is a map resolving the indeterminacies of this
rational map, so that the diagram

1%
| N
I['DB _ < > ]P;N

commutes, then the orbit closure @fis the image of. In special but important
cases one can, in fact, construct and studpmsingularsuch varietyV by a suit-
able sequence of blow-ups along smooth centers Bfethis is carried out in
[AF2; AF3; AF4]. The work involved in the construction of an explicit resolution
of the orbit closure pays off in terms of a simpler intersection-theoretic setup, and
it opens the door to a more thorough study of the orbit closure.

However, such a construction is not available foraabitrary plane curveC.
This is an indication of the fact that singularities of a plane curve can be extremely
complicated, and that the orbit closure is highly sensitive to the local features of
a curve. To treat the general case, we resort then essentially to using the most
simple-minded (but highly singular) variety as above—we will letV be the
blow-up of P8 along the base schenseof the rational mag—and pay the price
of a more complicated intersection-theoretic setup and of a careful local study of
degenerations of. In the end we will be able to express the degree of the orbit
closure ofC in terms of enumerative information concerningliisits, that is, the
curves obtained as limits of translat€s ¢ asg approaches the base locuscof
This enumerative information has been obtained in our previous work; it relies on
the explicit resolution of the orbit closure of the limits.

In this section we describe our degeneration technique and the intersection the-
ory formula that we will use in the main computation. The degree of the orbit
closure is the intersection number

A [E V),
whereh denotes the hyperplane clas€i. Pulling back toV, we are then led to
consider the class 3
hdimE(V) N [‘7]
(following common practice, we omit evident pull-back notations); in fact, in order
not to fix from the start the dimension of the orbit©®f we consider the class
[V]

. A+ h+KRE+R3+ N[V,
O A+h+hr2+h3+--)N[V]
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and its push-forward t&2:

[V]

_— 2 PR 8
n*c(O(—h)) =Q+aH+aH +---)N[P7],

whereH is the hyperplane class IF® anda; is the degree of., (' N [V]). Itis
clear that
a; =0 fori>dimé&w)

and thatay, -, €quals the degree of the orbit closure multiplied by the degree of
the closure of the stabilizer @f in P8. We call this number the “predegree” of the
orbit closure ofC and call the whole class written above, which we think of as a
polynomial in H, the predegree polynomiadf (the orbit closure of Y.

Note that the “polynomials” appearing in this paper are therefore nothing but
classes in the Chow ring @?. In fact, it will be convenient to take rational co-
efficients so that our polynomials will live in the rif@[ #]/(H ). When manip-
ulating polynomials we will implicitly work in this ring; in particular, all opera-
tions are truncated t& 8. This allows us some convenient abuse of language; for
example,

(dH)?  (dH)® (dH)®
exp(dH) =1+ dH + 5 + 30 st T
with our conventions.

Our objective then becomes the followingompute the predegree polynomial
of an arbitrary plane curveC. The degree of the orbit closure of a cu@as re-
covered from its predegree polynomial by dividing the top nonzero coefficient by
the degree of the closure of the stabilizebfPredegree polynomials are a more
natural object of study, since they carry enumerative information independently of
the dimension of the orbit closure. The information in the predegree polynomial
is equivalent to the information in what we call thdjusted predegree polynomial
(a.p.p.)

- H? H®
JT*(Ch(O(h)) n [V]) =1+aH + 6127 + 613? + -

Computingadjustedpredegree polynomials often leads to simpler formulas, so
we focus on them in this paper. Adjusted predegree polynomials for curves with
small orbits (i.e., of dimensior: 8) are computed in [AF3; AF4].

We can analyze the situation in a more general context.VLBé any variety,
£ aline bundle or, and€ ¢ H%V, £) a nonzero linear system. These choices
determine a rational map

a: V --» PV =PEY).

Let S be the scheme-theoretic intersection of the sectior& iso that the base
locus ofe is the support off and (the closure of) the graghof « can be identi-
fied with the blow-upV of V along$. We let E be the exceptional divisor of the
blow-up, that is, the part of the graph owver
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E=gl——r=y———V xP¥

In other wordsE is a realization of the projective normal coneSah V. Let now
L denote the pull-back tb of the hyperplan~e class ih", and notice that if is
basepoint-free to begin with (sb= @) thenL = £ and the quantity correspond-
ing to the adjusted predegree polynomial is simply

7. (ch(£) N [V]) = ch(£) N[V] in (AV)e. (%)

The following proposition shows how to modify the fundamental class/4f [
in this formula to account for the base locfi®f «. The correction term will be
obtained from the cycle af,

[E] = ml[El] +---+ mr[Er]a

as foIIovys. We denote by the hyperplane class iB" and its pull-backs (e.g.,
h =ci(L)onl); write £ = c1(£) and let

1 N-
L,:Zk ( ) n.(h/ N[E;])
k>

+1 JHk —

(soapriorithel; might have nonzero termsin all dimensions from O to éfim 1).
Here is the main observation in this section.

ProrosiTiON 1.1.

o (Ch(L) N[V]) = ch(L) N ([V] = (miLa+---+m,L,) in (AV)g.
Proof. Note thath = ¢1(£) = ¢ — ¢, wheree is the class o and (as usual) we
omit obvious pull-back notations. Therefore

7. (ch(£) N[V]) = m.(exp(t — e) N [V]) = exp(e) N m.(exp(—e) N [V])
= exp(6) N ([V] — m.(1— exp(—e)) N[V]),

giving the correction term to the fundamental class as

(- exp—e) N [V] = =7, Y A0 [E],

5 (i+D!
that is, A
(h—0)'
—, Zg G " mlEd e mED.
The statement follows by expanding this expression. O

In our situationV = P8, £ = O(dH) (whered is the degree of the cun@), and
£ is the linear system corresponding to the rational map«. We note that the
support E| of E — P& x PV is described set-theoretically by
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|E| = {(o, X) e P® x PV : X is a limit of a(o (1))
for some curve germ(r) C P8 centered ab € S},

so that it records the behavior @fas one approaches its base loSusSinceE is
identified with the projective normal cone 8in P8, itis a scheme of pure dimen-
sion 7; invariably this will turn out to be reducible and nonreduced. Often chal-
lenging is the computation of the multiplicities; of the various components;

of E; for our specific problem, all this information can be found in [AF5] and will
be recalled in the next section. In Section 3 we will compute explicit expressions

E; = (e1h™H + - - -+ egh" ""H®) N[P8 x PV],
yielding

k .
_ (—d)*Tejq\ HFY
L"_Z(Z k= j)! )k+1'

k>0  j=0
According to Propositiod.1, the ap.p. can be computed by expanding
exp(dH) - 1 — (miLy+ - - +myLy)).

This will be our main tool in Sections 4 and 5.

ExampLELl.l. Asarillustration, we describe the componentgfor C a smooth
curve of degree@ > 2, with only ordinary flexes. Recall from [AF2] that in this
case the base locusconsists of the set of rank-1 matrices whose image is a point
of C. We will see (Section 2) thall' consists of one component dominatifigs
well as components dominating the set of matrices whose image is an inflection
point of C.

More precisely, the first component is supported on the I6eas P8 x PV:

G ={(0,C,) | iImo € C, andC, is the uniont U ¢ of a (d — 2)-fold line ¢
supported on ker and a nonsingular conie tangent to¢}.

Computing the class of this locus is a standard exercise in the enumerative geom-
etry of conics, and we obtain

[G] = 6dH°h"N =%+ 4d(5d — 9 HOh" >+ 6d(d — 2)(5d — 8)H 'h"~°
and the corresponding class
dH?® d(5d + 18)H® N d(9d +8)H’ B d?H8
20 360 420 60

in P8, The muiltiplicity of this component in the projective normal cone turns out
to be 2 (Fact 2(ii) in Section 2).
For each flexp on C we will also find a component of supported orF C
P8 x PV:
F ={(0,Cy) |iImo = p, andC,, is the union of a(d — 3)-fold line ¢
supported on ker and a cuspidal cubie with cuspidal tangent}.

L=
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Again the computation of the class of this locusPif x PV is not hard, and it
yields
H® H" 197H8®

F _

= T2~ 70 T 13440

in P8; the multiplicity of F in the projective normal cone will be found to be 3
(Fact 4(ii) in Section 2). Since a smooth curve of degtee 2 (and only ordinary
flexes) has 38(d — 2) flexes, the adjusted predegree polynomial of such a curve is,
according to Propositioh1,

exp(dH) - 1—2-Lg —3d(d —2)3-Lr)

2H2 3H3 4H4 5 H®
=1+4+dH +d°— +d®— +d*— + (d® - 12d)—
+dH +d° = +d o +d +( )5!
HS H
+(d®—97d% + 1624)F +(d" — 427d° + 156642 — 1488ar)7

H8
+ (d® —13724% + 799243 — 158791° + 1063873)§.

The coefficient ofH 8/8! reproduces the result of the computation in [AF2] for
d > 3. Also note that, fod = 2, this expression reduces to
14 2H + 4H? N 8H? N 16H* N 8HS
2 3! 41 517
the adjusted predegree polynomial for a smooth conic, in agreement with [AF3,
Sec. 4.2]. We note in passing that the expression doggeld the a.p.p. of aline
for d = 1; this is not surprising, since a line is not a curve with ordinary flexes.

2. Limits of Plane Curves: Summary of Results

In this section we recall the results from [AF5] that we need for the enumerative
computations in this paper.

As we saw in Section 1, we are interested in the structure of the projective nor-
mal coneE of the base schemgof the rational map

c: P8 -5 PV

extending the action of PGB) on a given plane curv€ of degreed. Now S C
P8 consists of all matrices whose image is contained;ifin particular,S has ex-
actly one component for each componentofMore precisely, if no component
of C is aline, then

IS| = P? x |C| C P? x P? C P?;

that is, S consists of rank-1 matrices with arbitrary kernel and image a point of
C. Every linear component of C contributes a 5-dimensional componentsto
consisting of thé?® of matrices of rank< 2 whose image is contained én
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We have realized set-theoretically as a subset of pure dimensionéof PV:
|E| = {(o, X) e P& x PV : X is alimit of ¢(o(2))
for some curve germ(r) C P8 centered at € S}.

We are interested in a description of the components of this locus, as well as the
multiplicities with which they appear ii. A given component may arise in sev-
eral ways according to the procedure described in this section; its multiplicity in
E will be understood to be the sum of all multiplicities listed in each case.

A first rough description of the components Bfcan be given in terms of the
locus onS they dominate as follows.

Fact 1. There is one component &f dominating each component §f(hence,
one for each component @), and components dominating I6&i P2:

{0 €P®| o is a rankd matrix with imagep € C},

wherep is either a flex or a singular point of’.

We call the first kind of components “global” and the second kind “local”.
Components are usually best described as orbit closures of specific elements
(o, C,) of P& x PN under the induced (right) action of P@). In each case;,
will be the limit obtained along a germ centeredratthus it will be clear a priori
that the given locus is a component Bf The results that follow provide an ex-
haustive list of all components @&f for a given curve and compute the multiplicity
with which each component appears. Of course, in each@aséll be a curve
with small linear orbit; these curves have been studied in [AF3] and [AF4], and
we use the terminology employed there.
Global components are easy to describe precisely.

Fact 2. (i) LetZ be a line appearing with multiplicity: in C, and letA be the
(d — m)-tuple of points cut out oA by the other components 6f. Then the com-
ponent ofE corresponding td is the orbit closure of

(o, Cy), whereo is a rank2 matrix with image? and C,, is a fan con-
sisting of (a) a star centered akero and reproducing projectively the
tuplex and (b) a residualm-fold line

with multiplicity m.
(i) LetC’ be a nonlinear component appearing with multiplicityn C. Then
the component of corresponding ta”’ is the closure of the locus

{(0, C,) e P& x PV | 5 is a rankd matrix with image a point o€’ and
C, consists of(a) a (d — 2m)-fold line supported okero and (b) an
m-fold smooth conic tangent tero}

with multiplicity 2m.

We call components as in part @@mponents of typednd call components as in
part (ii) components of type Il.
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Local components of are substantially harder to describe, since the germs of
curvess (1) in P8 giving rise to such components must be carefully tailored to the
local features of®. As shown in [AF5], only two kinds of germs must be consid-
ered, requiring separate discussions: one kind (1-parameter subgroups, or 1-PS for
short) accounts for limits with multiplicative stabilizer; the other will be respon-
sible for limits with additive stabilizer.

We start with the (simpler) case of 1-PS limits. Again, we first give a rough de-
scription of the situation.

Fact 3. Let p be either a flex or a singular point of. For each line in the
tangent cone t@ at p, there is a corresponding Newton polygon. The possible
components oF due tol-PS centered ap are indexed by sides of these New-
ton polygons further, an additional component is present if the tangent cone is
supported on at least three distinct lines.

To be more precise, suppose thpatas multiplicitym and denote by the tangent
cone toC at p (hence\ determines am-tuple in the pencil of lines through).

Fact 4(i). The component present exactly whes supported on three or more
distinct lines is the orbit closure of

(0, Cy), Whereo is a rankd matrix whose image ip andC, is a fan
consisting of(a) a star projectively equivalent td and (b) a residual
(d — m)-fold line supported okero

with multiplicitymA, whereA is the number of automorphisms bfas a tuple in
the pencil of lines througlp.

(The reason why this locus is not a componenkdf A is supported orx 2 lines
is simply that it is not big enough to be one: it is immediately checked that this
locus has dimension 7 if and only ifis supported or> 3 lines.) We call such
componentgomponents of type IIl.

To determine the components corresponding to adime the tangent cone,
choose coordinates : y : z) inP2 sothatp = (1:0: 0 and/ is the linez = 0;
then consider the Newton polygon for the curve, that is, the boundary of the con-
vex hull of the union of the positive quadrants with origin at the points) for
which the coefficient of 'y /z* in the equation fo€ is nonzero (see [BK, p. 380]).
Note that the part of the Newton polygon consisting of line segments with slope
strictly between-1 and 0 does not depend on the choice of coordinates. Consider

the 1-PS 1.0 0
o(t) = (0 tt O)
0 0 ¢

with1 < b < crelatively prime integers andb/c a slope of a side of the Newton
polygon forC.

Fact 4(ii). For each line¢ in the tangent cone of and for eachl-PS selected
by the foregoing procedure, there is a componghbf E supported on the orbit
closure of
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(0, Cy), WhereC, is the limit ast — 0 of C along the selectet+PS
o(t) and wheres = ¢ (0),

provided this locus has dimensi@nlf x7y”z4 l_[jzl(yc + a;x¢7z?) is the limit
obtained along th&-PSo (¢), then the contribution to the multiplicity &’ is

A
(Sbc +rb + qc)g,

where A is the number of components of the stabilizer of the limit &nsl the
degree of the map frorf’ to its image inP".

The limits appearing in this statement are among the curves with small orbit stud-
ied in [AF3]. The numbe$ is 1 unless: = 2 andg = ¢, in which case itis 2 (see
[AF5]). The numberA /5 can be computed directly in terms of the tuple} (see
[AF3, Lemma 3.1]). We will see in Section 3 that this factor is absorbed by other
terms in the computation of the contribution of such components.

We call components arising as in Fact 4@@mponents of type IV.

In order to visualize part of this somewhat complicated recipe, note that if
(Jo, ko) and (j1, k1) (with jo < ji) are vertices of a side of the Newton poly-
gon of C of slope strictly between-1 and 0, then the corresponding multiplicity
(provided that the locus specified in the statement has dimension 7) is

Jiko — jok1 A
S 8’
where S + 1 is the number of lattice points on the selected side. Also, note that
g =d — j1— ki, r = jo, andg = ky with these notations} = 2 exactly when
(jo, ko), (j1, k1), and(d, 0) lie on a line with slope-1/2. The tuple{«;} is de-
termined by the specific coefficients appearing along the side.

ExampLE 2.1. Suppose thaf has a general multiple point at by which we

mean an ordinary multiple point such that the tangent line to each branch inter-
sects that branch with multiplicity 2 at Letm be the multiplicity ofC at p. For

each line in the tangent cone, the Newton polygon contains exactly one side as in
the prescription given before, frotm — 1, 1) to m + 1, 0); each line then contrib-

utes a multiplicity of(m + 1) A/§ to the component consisting of the orbit closure

of
1 00
o= (O 0 0)
0O 0O

andC, is the curvex?=""1y"=1(y2 4 xz) = 0.

(o, Cy), Where

This component therefore appeardinwith multiplicity m(m +1)A/§. Note that
heres = 2 exactly when the curve has degreet 1. Also, if m > 3 then we find
one component supported on the orbit closure of
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(0, Cy), Whereo is a rank-1 matrix whose image jsandC, is a fan
consisting of (a) a translate of the tangent cong and (b) a residual
(d — m)-fold line supported on ker

with multiplicity m.

The real subtleties in the discussion occur in the next and last case, dealing with
limits with additive stabilizer. The componentsBfdetect an interaction between
different (formal) branches af sharing a tangent at a singular point. This phe-
nomenon does not occur with, for example, ordinary multiple points.

Consider a line in the tangent conedat p, and as before choose coordinates
sothatp = (1: 0: 0 and the line ig = 0. Letm be the multiplicity ofC at p. It
is well known (cf. [BK]) that there are: formal branches of at p, where nonre-
duced branches are counted according to their multiplicity. For a general choice
of y, these can be written as

2= =Y vy,

where f(y) is a power series with fractional exponedfs= Q, Ag < A1 < ---

Let B be the collection of allz branches of the curve at We then have a fi-
nite sequence of rational numbers- 1 determined as those number®r which
at least two of the branches tangentte- 0 agree modulg“, differ at y¢, and
satisfyrg < c¢. Call B, the collection of those branches.

Eachc determines a finite number of truncatiofiey): these are the truncations
aty¢ (excludingy®) of the branches iB,.. These truncations determine germs

1 0 0
o@t) = ( 1 rab 0 )
f(ta) f/(ta)tab 1ac

whereb = (¢ — Ag)/2 4+ 1 anda is the least positive integer clearing all denom-
inators in the exponents. We identify truncations if the corresponding germs are
equivalent after reparameterization, that is, after multiplication on the right by

1 0 0
(0 nab O >’
0 0 nae

with n a primitiveath root of unity.

To each such germ we associate two numbersdW. The numbet is defined
as the least positive integarsuch thatf(y#) has integer exponents. The weight
W is defined as follows. For each branghn B, let vg be the first exponent at
which g and f(y) differ, and letwg be the minimum ot andvg. ThenW is the
sumY wg.

Fact 5. Each germs(¢) contributes a component tB: the orbit closure of

(0, Cy), WhereC, is the limit of C along the gernw (1) and wherer =
o (0)
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with multiplicity ¢WA, where A is the number of components of the stabilizer
of C,.

The limits C, appearing in this statement consist of unions of quadritangent con-
ics, plus possibly a multiple of the distinguished tangent; these curves have been
studied in [AF3, Sec. 4.1]. For enumerative purposes, they can be described in
terms of the multiplicities; of the different conics and of the numhérof com-
ponents of their stabilizer. As in the case of 1-PS limits, this nunabeiill be
absorbed by other terms in the computation of the contribution to the predegree
of C.

We call the components identified in Fact@mponents of type V.

An example will clarify the procedure just described.

ExampLE 2.2. Consider the quartic given in coordinates by
(y?—x2)" =%
Expanding at the origin gives two formal branches
1=y2+£y¥2 4.,

with notation as before we have= 3, b = 22 4+ 1= % and f(y) = y2
Hence¢ = 1 and the weighW is 3 + 2 = 5, and the germ determined by the

truncation is
1 0 0
oty=|(t* > 0 ).
8 2¢9 (10

The corresponding component Bfis the orbit closure of

1 00
o:(O 0 0)
0 0O

andC, is the curve(y? — xz + x?)(y2 — xz — x?);

(o, Cy), where

one checksA = 4 and concludes that the multiplicity of this componentirs
1.5.4=20.

To close the section, we show that mdit singular points of (the support of) a
curve contribute components to the projective normal cone.

ExampLE 2.3. If £, £» are lines contained i@ (with any multiplicity) and if
p = £1N €y is not a point of the remainder of the curve, thedoesnot contribute
a component td.

Indeed, the tangent cone fbat p consists of only two lines, so there are no
components of type I1I; next, the Newton polygorpatvith respect to either line
has no sides of slope betweeti and 0, so there are no components of type 1V;
finally, the branches of at p only consist of lines, so they do not interact in the
sense of providing a truncation as in Fact 5.
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3. Contributions to the Adjusted Predegree Polynomial

The task in this section is to apply the results of [AF3; AF4] and obtain explicit
expressions for the contributions to the adjusted predegree polynomials of a curve
C due to the various possible components of the corresponding projective normal
coneE. Together with the description of the projective normal cone recalled in
Section 2, the results of this section yield a procedure computing the predegree
polynomial of any given plane curve in terms of the multiplicities of its compo-
nents and a description of its flexes and singular points.

Recall from Section 1 that we have expressed the adjusted predegree polyno-
mial (a.p.p.) of a curve as

exp(dH) - 1— (miL1+ - +miLy));

our objective here is to obtain explicit expressions for the different “correction”
terms—m; L; due to the various components of the projective normal cone de-
scribed in Section 2. The results will be used in Sections 4 and 5 to obtain explicit
expressions for contributions to the a.p.p. due to various features of a plane curve.
A correction term—m; L; yields anadditive contribution

exp(dH) - (—m;L;)

to the a.p.p. of a curve of degréeAll expressions-m; L; will have terms only of
degree 3 or higher il ; those corresponding tocal components will have terms
only of degree 6 or higher. Hence, the effect of a local correction term on the a.p.p.
of a curve can also be expressed astiplicative contributiorby (1—m; L;); we
will often prefer this alternative, since it does not involve the degree of the curve.
Also, sometimes we may list the effect of a component as a correction term to the
predegree of a curve, taking account of other effects such as the number of flexes
absorbed by a given singularity.

In Propositions 3.1-3.5 we will compute the correction terms; L; . As in
Section 2, we start with the global components.

3.1. Type-I Contributions

ProrosiTiON 3.1. Let ¢ be a line appearing with multiplicity: in C, and letr;
denote the multiplicities of the intersectionséWvith the rest ofC. Then the cor-
rection term due td is the antiderivativéw.r.t. H) with O constant term of

3 2172
m 2 rl-H
—= exp(~dH)H |'|(1+r,<H+ )

2
Explicitly:
<m3H3 m*H* N mSH®  m3(m3+ Y r2)HS
6 8 20 72
N m3(m4 +4m Zr? +3> ri4)H7

336
m3(m®+10m2Y_r2+15m Yy rft + GZriS)H8>

1920
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Proof. According to Fac®(i) in Section 2, the compone#y, of E corresponding
to ¢ is the orbit closure iiP® x PV of (o, C,), whereo has image andC, is a
fan consisting of am-fold line and a sta€. of lines with multiplicitiesry, o, ...
centered at ker. Denote by

[El] = (etHRY + -+ egHBAN ) N [P8 x PV
the class of this component, so that= H& 'hi~1. [E,].

Cram. Letpo+ B1H + --- + BsH® be the adjusted predegree polynomial of
C.. Then
0 if i <3
ol m¥2)i - Bi_s if i >3
To see this, consider the embedding
PV x P2 — PV,

whereP"" parameterizes plane curves of degiee m, P2 parameterizes lines,
and the embedding attachesmasfold line to a given curve of degreé— m. We
obtain an embedding

(P8 x PV') x P2 5 P8 x PV,

it is readily understood thak, = ((E; x P?), whereE; is the orbit closure of
(0, C.). Pulling back to(P® x PV") x P2, we see that; = 0 fori < 3 and

i — 1 o
& = m2<l R )H81h/z3 . [Ee/]
fori > 3, wherek’ is the hyperplane i?"'. Now note thatf, is the part of the
closure of the graph of the map
P8 - PV

(extending the action of PGB) on the starC) over theP® of matrices whose
image is a subset @&f By Remark 2.4 in [AF4],

HS W2 [E]]=( -3 Bi_a

and the claim follows.
The a.p.p. for a star is computed in [AF4, Thm. 2.5] as

2p?
Bo+B1H + -+ BsH® = {]—[<1+ rH + 5 )}5

i

where{-}5 denotes truncation t&/ °. Also, the multiplicity of this component of
E is m, according to Fac2(i) in Section 2. By the claim and Proposititii, the
correction term is therefore
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k .
(—d)* Ve (—d)* HiH
_mZ<Z k= ) >k+1 2 Z<Z rPi- 2>k+1’

k>0 N j=0 k>0

yielding the expressions given in the statement. O

ExampLE 3.1. The a.p.p. of a curve consisting of a union of lines with multiplic-
ity m; and no three meeting at a point is

m2H?
H(l—i—m;H + ’2 >

i

(by our notational convention, this expression stands for its truncatigff at

Indeed, by Example 2.3 there are no components diie to the points of inter-
section of such a configuration of lines; the only components are therefore those
corresponding to the lines themselves. Using Proposition 3.1, the total correction
term evaluates to

(Zm?H3 Zm;‘H4+Zm?H5 (Zm?)zH6

6 8 20 72
| ((Zm)(Tmf) —6 T m)H
336
(A5(mf)” + 16( - mf) (L mf) - SOZm?)HB)
1920 '

Applying Proposition 1.1 yields the expression given in the statement.

This computation reproduces results from Section 2 of [AF 4], where we discussed
a more general “multiplicativity” of adjusted predegree polynomials for configu-
rations of lines meeting transversally.

3.2. Type-Il Contributions

Next, we consider nonlinear componentsof

ProrosiTION 3.2. LetC’ be a component of of degreee > 1 appearing with
multiplicity m in C. Then the correction term due @ is
Do H® (5d +18m)H® N (9d +8m)ymH'  dm?H®
“"\ 20 360 420 60 )

Proof. According to Fact 2(ii), the corresponding componenitois the locus
E¢: of (o, C,), where the image of is a point ofC’ andC, consists of (a) a
(d — 2m)-fold line supported on ker and (b) ann-fold conic tangent to kes.
Let

[Ec'] = (e1HRY + -+ egHN ) N [P8 x PM];

thene; = H®'hi~1.[Ec]. To evaluate this, note tha is contained in
B x PV < P& x PV, whereB = P? x C’ is the set of rank-1 matrices with
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image onC’. Denote byk the pull-back toB of the hyperplane class from tii
factor and by¢ the pull-back of the restriction of the hyperplane class from the
other factor. Then we have

gi=(k+ 0¥ h ™ [Ec] = @8- ik h™t [Ec];

in particular,e; = 0 unless = 5, 6, or 7. The clasg splits E¢/ into e compo-
nents, each of which consists of poiits C,) with o constrained to have a fixed
image. Also note that intersecting byamounts to imposing a linear condition on
the distinguished tangent line @, ; therefore,s; = (8 — i)e times the number
(counted with multiplicity) of curve€’, throughi — 1 general points with tangent
line constrained to contain-# i general points, where= 5, 6, or 7.
For these values of the corresponding number of configurations (in case
2m) is computed by arguing as in [AF3, Prop. 4.1]:
R I
& =08-=1ie 6l 957
whereP(g) is the polynomial giving the degree for a curve suclCaswith dis-
tinguished tangent taken with multiplicigy. It equals the coefficient af/6! in
the a.p.p. foiIC, (computed in [AF3,Sec.4.2]:set=2, m=m =1 S =51 =
m, andr = g = 0 in the formulas given there) divided by 4, the degree of the
stabilizer. Hence

P@ |y o

P(§) = 12m°G + 30m*3>.
The same formula holds in the casge= 2m. This yields
[Ec'] = em®(6H5hN =4+ 4(5d — 9m) H®h" 3+ 6(5d — 8m)(d — 2m)H h"~2).

According to Fact 2(ii) in Section 2, this locus appear&iwith multiplicity 2m.
From this we obtain the stated correction term. O

ExampLE 3.2. IfC isreduced and irreducible, then the only component of type |1
considered in Proposition 3.2 is the one dominating the whole curve. Setting
d andm = lyields a correction term of
y H® (5d +18)H® N (9d+8H" dH®
20 360 420 60 )’
agreeing with the class2L ; used in Examplé.1.

3.3. Type-lll Contributions

Moving on to the correction terms due to local features of the curve, we first es-
tablish a technical lemma which will be used in the proofs of the statements that
follow and which explains a recurrent feature of the correction terms that we will
compute.

The components of typkl, IV, and V arising from local features of the curve
consist of orbit closures of points, C,) € P8 x PV, whereo is a rank-1 matrix
with a given image point and whetg, is a curve with a distinguished line that is
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supported on ker and has multiplicityy = d — p (wherep changes from case
to case). LetP(¢) denote the coefficient off 7 in the predegree polynomial for
such a curve; this is always a polynomial of degree at mostg2 Aso, lets be
the degree of the map from the component to its imageNnAs pointed out in
Section 2, this number is 1 in almost all cases.

LemMma 3.3.1. The corresponding contribution to the correction term is

_8<P”(—p>H6 P'(—p)H” P(—p)H8>

42 . 6! 7-7! 8!

Proof. Let E’ denote a component @ arising from a pointp of the curve, and
let

[E'] = (e1HhY + - - + g HBRV ") N [P® x PV]

be its class. Sinc&’ is the orbit closure of a poin, C,) € P& x PY with o a
rank-1 matrix with image, it follows thatE’ is contained ifP?2 x PY ¢ P8 x PV,
whereP? consists of all rank-1 matrices with imageIf k denotes the hyperplane
class inP?, pulling back toP? x P shows that

& = k8—ihi—l . [E,],

this gives immediately; = 0 unless = 6, 7, or 8. Observe that, under the iden-
tification of P? with rank-1 matricesr with fixed image, the clask imposes a
linear condition on the line ker. Now C, consists in each case of a curve with
a distinguished line supported on keappearing with multiplicityy = d — p in

our notation. LetP(3) = ag? + Bg + y be the polynomial i giving the coeffi-
cient of H7 in the predegree polynomial for such a curve. Using [AF3, Prop. 4.1],

we have _
P’(d — p)/42 if i =6,

% !l Pw@—py7r ifi="1
P — p) if i =8;
hence
[E/] — 2_aH6hN75+ Za(d_p) +'BH7hN76
42 7

+ (a(d — p)? + B(d — p) + y)HBRN .

Computing the corresponding correction term as prescribed in Section 1 gives the
stated expression. O

This observation explains why the degreef C doesnot appear explicitly in the
correction terms we will list. Note that a similar phenomenon also occurs in the
second formula in Proposition 3.1.

Let p be a singular point of. As recalled in Faci (i) of Section 2, a compo-
nent of type |11 of the projective normal cone is present if the tangent cofesto
p is supported orr 3 distinct lines.
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ProrosiTION 3.3. Lete; denote the elementary symmetric functions in the multi-
plicities of the distinct lines in the tangent conedat p (soe; = the multiplicity
of C at p). Then the correction term corresponding to this component is

( ) HS e H' €?HS
eq1(ezes €14 €5 24 28 64 .
Note that the expression given in this statement vanishes automatically if the tan-
gent cone is supported an 2 lines.

Proof. Using Fac# (i) andLemma 3.3.1, the main ingredient in the computation
is the polynomialP(g) expressing the degree for a fap with star projectively
equivalent to the tangent cone €bat p and residual-fold line. From [AF4,
Thm. 2.5(ii)], this polynomial is
_ 63072
P(q) =

(e2e3 — e1e4 — e5),

whereA is the number of automorphisms of the tuple determined by the lines in
the tangent cone as elements of the pencil of lines thrgugBy Lemma 3.3.1,
with g = d — e;, the correction term is

_ (e2e3 — e1e4 — e5) H_6 _ erH” n efH8
A 24 28 64

times the multiplicity with which the component appears in the projective normal
cone. By Fact (i) this multiplicity ise; A, and the statement follows. O

ExampLE 3.3. Ifthetangentcone consistsmflistinct reduced lines, then Propo-
sition 3.3 evaluates its corresponding correction term as

((3)(3) ()~ () (-5 + s )

that is,
H® mH' N m2H?8
720 840 1920 )°
As an illustration, consider a star dfreduced lines through a point. The point

will contribute as before, withh = d; also, according to Proposition 3.1, each line
contributes

_<H3 H* H° (+d —13HSE N A+4d -1%+3d-DHH'

—m?m — D (m — 2)(m? + 3m — 3)(

6 8 ' 20 72 336
(14 10(d — )3 +15(d — 1)* + 6(d — 1)5)H8)

1920

From the discussion of Section 2, we know that there are no other correction terms.
Putting everything together and using Proposition 1.1, the a.p.p. of this curve is
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dH® dH* dH® d%(d—3)(d®+3d?—-11d +12)H*
exp(dH)(l— 6 + 8 20 720
d3(2d* — 35d° +70d — 42)H"
+ 1680
d*(d* —16d?+30d —16)H®\
1920 >
that is,
d’H? dd-1)d+1DH® dd—-1D)d?*+d—-3)H*
1+ dH + + +
2 6 24
d(d—1)(d —2)(d? +3d —3)H?®
+ 120 '

Note that the polynomial detects that the orbit closure of this curve has dimension
< 5; of course the stated expression is the truncation

(e,

as prescribed by [AF4, Thm. 2.5(i)]. In fact, Propositions 3.1 and 3.3 suffice to
compute the a.p.p. for an arbitrary configuration of lines in the plane, recovering
Theorem 2.8 in [AF4].

3.4. Type-IV Contributions

Next, let p be a singular or inflection point of (the support @) and consider
a line ¢ of the tangent cone t@ at p. We have recalled in Fact 4(ii) that these
choices determine a Newton polygon and that there are components (of type V)
of the projective normal cone corresponding to the sides of this polygon of slope
strictly between-1 and O.

Consider then such a sid&, from (jo, ko) to (j1, k1) for jo < ji; let S +1be
the number of lattice points oB. Let yy, ..., ys be the coefficients ol of the
equation forC, and consider thé-tuple inPP! determined by the polynomial

vo&S + &5+ + ysn®s

lets; be the multiplicities of the points of this-tuple (so, e.g.5 = Y s;).
The sideX then determines the following expressions:

(i) R(2) = (jiko — joki), thatis, twice the area of the triangle with vertices at

(0,0), (jo, ko), and(j1, k1);
(ii) a polynomial

8
G(T) = < Z s; 6| 362, - +1922 5! 8l>,

and
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(iii) a polynomial L(X) given by
(6j5k5 + 3joj1kg + jikd + 3jgkoka
+ 4jo jikoks + 3jZkoky + jak? + 3jo jik? + 6j7 kf)—6
— (30j3k3 + 18/ j1k3 + 9jo j2k3 + 3j3k3 + 3072k + 12j0 j1k3 + 3j2kS
+123koks + 183 jikoks + 18jo jikoky + 123k ks + 182 k3 ks
+ 18jo jakk1 + 9jTkgka + Bjgk? + 98 jak? + 18jo jE kT + 30j7k]

+ 9jdkok? + 180 jikok? 4 18j2kok? + 3jok3 + 12jo j1ks + 30j2k3 )

+ (90jgk2 + 6073 j1k2 + 36j2 j2k3 + 18j0 jk2 + 6, k3 + 18073 kS
+90j5 jik§ + 36jo jTkg + 9jtkg + 90j5kg + 30jo jakg + 6j7kg
+ 30jgkoks + 483 jikoks + 547 jkoks + 48jo jikoks + 30j;koks
+ 903k ky + 108j3 jikky + 8Ljo j2k5 k1 + 36j7k5 k1 + 60j3k ks
+ 48jo jikgks + 18j7 kiky + 6ok  + 185 ikt + 36j§ jTki + 60jo jik7
+ 90jk2 4 36j3kok? + 81j2 jikok? 4+ 1080 j2kok? + 90j3kok?
+ 36] k2 k1 + 54]0]1k kl + 36] k2 k1 + 9] kl + 36]0 ]1k1 + 90]0]1 k1
+ 180i3k; + 18j2kok? + 48jo jikok? + 60j2koks + 6j3k; + 30jo juki
+ saoJ'f/cf)I;—l8

The polynomial in (iii) is symmetric in the vertices &f, unfortunately, we do not
have a more intrinsic interpretation for it.

ProrosiTiON 3.4. The correction term due to the selected lihin the tangent
conetoC atpis

=Y R(ENL(E) — G(D)).
P

Proof. This follows from Lemma 3.3.1 and Fact 4(ii). Using the notation of
Fact 4(ii), for each sid&& we need the coefficient of the term of degree 7 in
the predegree polynomial for limit curvés, with equation
S
xl?yrzq l_l(yc + Oljxcszb),
j=1
where
oS + & 4+ ysn® = vo [€ —am).

These are precisely the curves studied in [AF3]; the predegree polynomial for such
curves is computed in Theorem 1.1 of [AF3]. In our situation, we have
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r=jo, q=ki, g=d—(j1+k)
(hence we use = j; + k1 when applying Lemma 3.3.1), and
ko — k1 Ji— Jo.

’ Cc = k]
S S
applying Lemma 3.3.1to the polynomialgrobtained from [AF3, Thiml.1]yields
the expression

b=

S8LE GZ
-2 (L) - G2,

whereA denotes the number of components of the stabiliz&f,0énds is as in
Lemma 3.3.1.
According to Fact 4(ii), the contribution to the multiplicity of this component

due toX is
A jiko — jok1 A A
Sb b — = - = R(Z)—;
(Sbc+r +616)5 R 5 ( )S(S

the correction term is therefore as stated. O

ExampLE 3.4. Suppose is ak-flex of C, that is, a nonsingular point af at
which C and its tangent liné meet with multiplicityk. (For example, an ordinary
inflection point ofC is a 3-flex in this terminology.) The Newton polygon‘atas
only one sidex with slope betweenr-1 and 0, with verticeg0, 1) and(k, 0). We
haveS = 1, and the expressions just given evaluate to
4H% 36H7 192H°%

6 7 8
k2H®  (BkZ2+3k3HH'  (6k%®+ 93 +6kHHSE

o 71 * 8l ’
giving a correction term of

Kk —2) (k+2H® (k*+3k+6)H’ (2k>+ 7k? + 16k + 32)H?®

720 1680 13440 '

Fork = 3, this recovers the term used in Examplé.1.

R(Z) =k, G(2) =

L(Z) =

The analysis presented up to this point suffices to compute the predegree of an
arbitrary plane curve with ordinary multiple points; this case is analyzed in Sec-
tion 4.

3.5. Type-V Contributions

We are left with the case of components of the projective normal £oofetype V
arising from the interaction of different formal branches with the same tangent line
at a pointp of C. As pointed out in Section 2, contributions corresponding to these
components arise from truncations of power series with fractional exponents rep-
resenting the different branches: roughly, a contribution arises when two branches
agree up to a certain exponenbut differ at that exponent. Truncating there de-
termines a germa(¢), centered at = o(0), and a limitC,; the corresponding
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component consists of the orbit closure(ef C,). Further, the germ determines
two numberd andW (see Fact 5 in Section 2).

The limits C,, obtained by this procedure consist of unions of 4-tangent conics
and a multiple of the distinguished tangent that is supported on.Réfe lets;
denote the multiplicities with which the conics appearcin and we writeS =

Z Si.
ProrosiTioN 3.5. With notation as before, the corresponding correction term is

4(S° =3, s?)H®  36(S° - sP)HT 192" -, s/)H®
—ew< o - = + 8l )

Proof. This is obtained from Lemma 3.3.1 and Fact 5 in Section 2, using the pro-
cedure applied in Propositions 3.3 and 3.4. The main ingredient is the predegree
of the curve<’,, which is given in [AF3, Sec. 4.1]. O

ExampLE 3.5. As an illustration, we take the origih : 0 : Q) in the curve

(y? —x2)? =y*%.
As seen in Example 2.2, only one truncation needs to be considered for this point;
the corresponding limit is a pair of distinct conics and, moreofet,1 andW =
5. With notation as before we hawe = s, = 1 and so, according to Proposi-
tion 3.5, the corresponding correction term is

H® 31H' N 3H®

6 70 5
Applying Propositioril.1, this yields a contribution to the a.p.p. of
5H® N A7H’ N 17H®

6 42 21

in particular, the contribution due to this limit to the predegree of the curve is

b}

17
—8! — = -5.6528
21

This example belongs to a class of singular points that can be realized on a quartic
curve and are analytically isomorphic to the singulatty= y* with k = 5 (as in

this example), 6, 7, or 8. The corresponding contribution to the predegree of the
quartic turns out to be-k - 6528 in all cases (cf. Example 5.4).

REMARK. As an immediate application of the results just obtained, we can mea-
sure the effect on the contribution of a pomtue to taking a “multiple” of the
curve on whichp lies.

If C hasidealF(x : y : z)) andm is a positive integer, we letC denote the
curve with ideal(F™). Let p € C, and assume that the contribution pto the
a.p.p. ofC is K(H).

CrLamM. Underthe assumptionsjustlisted, the contributioptdmC is K(mH ).
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Proof. This follows from the homogeneity of the various correction terms. The
effect of replacingC by mC is that of replacing; by m'e; in correction terms of
type 11l and of replacing j;, k;) by (mj;, mk;), W by mW, andS, >"s2, 3 s,
Yos/bymS, m®Y s? m®Y 58 m’Y s! (respectively) in correction terms of
type IV and V. The claim follows. O

A similar homogeneity holds for global correction terms as well, so thAt i)
is the a.p.p. of a curv€ then P(mH) is the a.p.p. of its multiple:C. This can
also be deduced by considering the ngfy?+3/2 — pmdmd+3/2 defined by
C — mC, a projection of thenth Veronese embedding.

3.6. Summary

The results obtained in this section, together with the discussion in Section 2, give
an algorithm to compute the adjusted predegree polynomial of an arbitrary plane
curve. This will be illustrated in Sections 4 and 5 by applying it to several classes
of curves.

For reference we list here the contributions to the predegree of a curve (with
orbit of dimension 8) due to its features. Each of these is obtained by applying
Proposition 1.1 to the results obtained in Propositions 3.1-3.5, obtaining corre-
sponding additive contributions to the a.p.p. and then reading the coefficient of
H¥8!.

Assume that” has degred. The predegree of its orbit closure is obtained then
by subtracting various contributions fraffi, indexed according to the correspond-
ing type as follows.

(1) Aline appearing inC with multiplicity m meeting the rest of the curve along
a (d — m)-tuple of points with multiplicities; gives a contribution of

m(d*(10d2 — 15dm + 6m?) + 10284 — 48dm + 21m*) ((d — m)* = Y rf)

— 45(8d — 7m)((d —m)* — Zr;‘) + 126((d Y rf)).

(1Y A component of” of degreez > 1 and appearing with multiplicity: con-
tributes
16dem®(7d® — 18dm + 12m?).

Pointsp € C may contribute different terms.
(111) Let ¢; be the elementary symmetric functions in the multiplicities of the
distinct lines in the tangent coneat p. Then the corresponding contribution is

30e1(e2e3 — e1ea — €5)(28d% — 48des + 21ef).

(In particular, no such contribution is present if the tangent cone consist®f
distinct lines.)

(V) Let ¢ be a line of the tangent cone 6fat p, and letX denote the sides of
slope strictly between-1 and 0 of the corresponding Newton polygon. With no-
tation as in Proposition 3.4, the contribution due to e2dk obtained by adding
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d —M(UZZ*‘F_18dzsi6+lzzsi7)
an

(jrko — jok1)(90jgk§ + 180j5ks + 90j5kg + 60j5k5 j1+ 90j5ks jr+ 30jokg ja
+ 36j3k3 j2 4 36jok3 j2 + 6kg j2 4 18jok3 j2 + 9k3 j2 + 6k3 j;!
— 240i3k2d — 2402k3d — 144j2k2 j1d — 96jok3 jrd
— 72jok2 j2d — 24k3 j2d — 24k2 j3d + 168j2k2d?
+ 84jok2 jrd? + 28k2 j2d? + 30jdkoky+ 90j3k2 k1 + 60j2k 3k,
+ 48j3ko jik1 + 1085 k3 jik1 + 48jok3 jiki+ 54jsko jik1
+ 81jok2 j2ky + 18k 3 j2ky + 48joko ks + 36k2 3Ky + 30k ks
— 96j3kodky — 1442 k3 dky — 184j2ko jadky — 144jok3 jrdks
— 1440k jidky — T2k3 j2dky — 96k jidks + 84jikod?ky
+ 112joko jrd?k1+ 84ko jfd? ki + 6jgkT + 36j5koks
+ 36j2k3k? + 18] j1k? + 81j2ko jak? + S4jokZ jik?
+ 36j3 j2k? + 108joko jk? + 36k3 j2k? + 60j0 k2
+ 90k jik? 4 90j,'k? — 24j3dk? — 72j2kodk? — T2j3 j1dk?
— 144joko j1dk? — 14470 j2dk? — 144ko j2dk? — 240i3dk?
+ 28j3d%k? + 84jo j1d?k? + 168j2dk? + 9j3k3 + 18j5kok?
+ 3672 j1k3 + 48joko jak? + 90jo j2k3 + 60ko j2k; + 18073k
— 24jbdk; — 96jo jrdk; — 240j7dks + 6j§ ki + 30jo jiky
+ 902k7).
(V) Finally, there are contributions from truncations (as explained in Fact 5 of
Section 2 and Proposition 3.5). A truncation determines two nunthé&rsas well
as germs whose limit§,, consist of unions of 4-tangent conics and a multiple of

the distinguished tangent line. Letdenote the multiplicities of the conics @, ,
and writeS = ) s;. Then the contribution of the germ is

ow(192(57 = Y s7) — 2884 (50 = Y sf) +1120%(55 - 3" 57)).
4. Ordinary Multiple Points; Multiplicativity of
Adjusted Predegree Polynomials

In this section we give an illustration of the results in Section 3 by obtaining ex-
plicit expressions for contributions accounting for ordinary multiple points. We
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say thatp is anordinary multiple pointfor C if C has nonsingular branches with
distinct tangent directions at; in particular, we allow branches to have flexes
of arbitrary order atp or to be (reduced) lines. We also discuss to what extent
adjusted predegree polynomials are multiplicative with respect to union of trans-
versal curves.

4.1. Ordinary Multiple Points

It is clear that ordinary multiple points do not contribute components of type V,
since there is only one branch along any direction of the tangent cone. The con-
tribution of an ordinary multiple point is therefore due to 1-PS germs, that is, to
components of type Ill and IV.

ProrosiTioN 4.1. Let p be an ordinary multiple point o€ of multiplicity m.
For all lines ¢ tangent to a nonlinear branch of at p, letr, be the intersection
multiplicity of £ and C at p. Then the multiplicative contribution to the adjusted
predegree polynomial of” due top is given by
) ) H® mH" m?H®
(l— m(m — (m — 2)(m* + 3m — 3)<ﬁ ~ 840 + 1920>)
HG
. l—[<1— re(2—3r; + rK2 —12m + 3rom + sz)ﬁ
£

+ 3re(=12+ 2rg — 2r2 +r2 +10m — 8rym
H7
+ 3r€2m — 20m? + 6r,m? + 10m3)7

— 3r(—64+ 2r€2 — 3r£3 + 2r€4 + 10r;m — 12r52m + 6r€3m + 30m?

H8
— 30rlm2 + 12;'e2m2 — 60m° + 20r/5m3 + 30m4)§),

where the[ ] is over all lines¢ tangent to nonlinear branches @f at p.

Note that linear branches do not appear directly in this formula, although they have
impact on the contribution by affecting and the intersection multiplicities.

Proof. The first factor is the contribution of typH, as inExample 3.3. According
to Fact 4(ii) in Section 2, the other contributions frgnare due to the individual
tangent lines to the branches. Lébe a line in the tangent cone @at p, and
consider the branch @ tangent to? at p. We note the following.

(i) Ifthe branchis aline, theAdoes not contribute to the a.p.p.; indeed, the cor-
responding Newton polygon has no sides of slope strictly betwdesnd 0.

(i) If the branch is not a line and has intersection multipliditwith ¢, then the
corresponding Newton polygon has exactly one side of slope strictly between
—1 and 0; this side has verticéa — 1, 1) and(r,, 0), wherer, =m — 1+ k
is the intersection multiplicity of andC at p.
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Applying Proposition 3.4 gives the contribution of type IV duetim terms of
m andr,: this is the factor corresponding #an the statement. O

To state the result differently, lef be the elementary symmetric functions in the
intersection multiplicities o with the tangent lines to the nonlinear branches to
C at p. Then the multiplicative contribution gf to the a.p.p. of” is

<1+ (—2e1 + 3ef — ef — 6ey + 3e1enr — 3e3 + 12e1m — 3efm + 6eom + 6m?
HG
— 6eym? — 15m3 + 10m* — me)ﬁ
+ (—36e1 + 62 — 663 + 3ef — 12¢5 + 181 — 12e%¢; 4 6e5 — 18e3
+ 12¢1e3 — 12¢4 + 30eym — 24e2m + Qeim + 48eym — 2Teream
+ 27eam — 60eym? + 18¢2m? — 36e,m? — 36m> + 30eym> + 90m*
H7
— 60m® +6m")—
7!
+ (192¢1 — 63 + 9ef — 6e; + 18e1ep — 36e2e; + 30eie, + 18¢3 — 30ese3
— 18e3 + 36¢1e3 — 30e2e3 4 30eze3 — 36e4 + 30e1e4 — 30e5 — 30e2m
+ 36e3m — 18¢fm + 60e,m — 108e1eom + T2eie,m — 36e5m
+ 108e3m — 72e1e3m + 72e4m — 90em? + QOefm2 — SGefmz

— 180e,m? 4 108e1em? — 108e3m? 4 180eym® — 60e2m> + 120e,m®

H8
+126m* — 90eym* — 315m° + 210m°® — 2Jm8)§>.

ExampLE 4.1. Suppose is an ordinarynodesuch that both branches 6f at
p intersect the respective tangent lines with multiplicity exactly 2.atThen p
contributes

H® 101H7 25HS®

6 + 280 64
tothe a.p.p. (setr = 2, e1 = 3+ 3, ¢2 = 3-3 andez = ¢4 = ¢5 = 0 in the
previous formula). Since “absorbs” six ordinary inflection points, the adjusted

predegree polynomial for an irreducible curve of degtee 3 with n such nodes
and only ordinary flexes is

H®> (5d+18H® (94+8H' dJdH®
H) - (1-24( 2 - -
eXP(dH) ( (20 360 | 420 60 ))
HS 3H7 197H8\*-2-6n H® 101H7 25H3\"
(- (1= L
( 2 T 70 4480) ( >

1

6 280 64
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(The term following the exponential is the contribution as in Example 3.2; the next
term accounts for the flexes, obtained by setting 3 in Example 3.4.) The pre-
degree of such a curve is therefore

d® —13724* + 799243 — 1587912 + 106381 — 24n(35d° — 174d + 213).

For instance, the degree of the orbit closure of a quartic of this kind is 14280
1848; the predegree of the orbit closure of a rational plane curve of this kind is

d® —17924* + 113401° — 255392 + 224824 — 5112

ExaMPLE 4.2. Letp be an ordinary multiple point of multiplicityz such that
each branch is smooth, nonlinear, and without an inflection poipt ahen p
contributes
1 mms+m?+m+16)HS
B 6!
n 3(2m® + 2m* + 2m3 + 37m? + 16m + 1) H’
7!
21(m® + m5 + m* + 21m® + 13m? + 17m + 9)H8)"'<’”1>

8!

Using that such a poirt absorbs 3:(m — 1) flexes, one then sees that the contri-
bution to the predegree of a curve of degiedue to such a point is

— m(m — 1)(21m® — 48dm® + 21m® + 28d°m* — 48dm* + 21m* + 28d4°m®

— 48dm> + 441m> + 28d°*m? — 888dm? + 273m? + 448d°m

— 384dm + 357m — 126Qd? + 49204 — 5130).
For instance, a general quartic curve with a triple point has predegree

14280— 3-2-1890= 294Q
ExampLE 4.3. Abiflecnodds an ordinary node at which both branches have an
ordinary inflection point; its contribution is
H® 88H" 15H®

1- 2
3 T 105 14

(setm =2,e1 =4+ 4, e; =4-4, andes = e4 = es = 0 in the formula just
given). Using that such a point absorbs eight flexes, we get that a biflecnode cor-
rects the predegree for a curve of degidsy

—24(1404°% — 832d + 1209.

For instance, the quartic with equation
x%y? +x%7%2 +y%%2=0

has three biflecnodes and 24 automorphisms; hence, its orbit closure has degree

14280 32904 — 232 As it happens, this orbit closure is isomorphic to the moduli
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space of semistable vector bundles®mof rank 2 with Chern classes = —1
andc,; = 3, as Hulek proved [Hu]. It follows that the corresponding Donaldson
invariant ofP? equals 232, in agreement with [KL].

ExaMmPLE 4.4. Suppose that is an ordinary node for which one branch ikre
and the other branch intersects its tangent line with multiplicigt p. Then p
contributes

_ (kA Dk A2+ H | 3k + DK+ 7h? + 20 + 23 HT
6! 7!
_ S+ Dk + 32k + 5k + 1D H®
8!

(usem =2, e1 =k +1 ey = e3 = e4 = es = 0 in the formula just given). For
k = 2, the contribution is

1

H® 101H' 25H%

“ 12" se0 128"

of course, this is the square root (modi§) of the contribution for a node given
in Example 4.1.

1

4.2. Multiplicativity of Adjusted Predegree Polynomials

It is natural to ask whether the predegree information behaves well with respect
to unions of curves. This is another advantage of adjusted predegree polynomi-
als over other ways to assemble this enumerative information: adjusted predegree
polynomials are multiplicative under unions of curves, up to correction terms in-
dependent of the degree(!), accounting for the ways in which the curves meet. No
such structure is visible at the level of degrees or predegrees alone.

As a representative example, we &t and C, be arbitraryreducedcurves
that meettransversallyat nonsingular points, and we further assume that such
points are not inflection points for either curve. L@t (resp.L;) be the union
of the nonlinear (resp. linear) components®f Let I = #(C; N C,) andJ =
#((C{N L2) U (C4N Ly)).

ProposiTION 4.2. Let Pc,(H), Pc,(H) be the adjusted predegree polynomials
of C1, C,. Then the adjusted predegree polynomial of their urios C,U C is

Pc(H) = Pc,(H) - Pc,(H)
L H® 11H7 311H%\' H® N 7HT 1308\’
9 40 960 24 60 80 /-
Proof. The main remark is that the components of the projective normal cone for
C1 U C, arise from features of';, C, and from the points of intersection of the
two curves; an analysis of the components leads to the formula of the statement.
We go through this analysis here as a template for similar computations.
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As pointed out in Example 2.3, the intersection of two lines does not contribute
components. Using the formulas given in Examples 4.1-4.4 to evaluate the con-
tribution of the transversal intersections of (a) two curves at a nonflex point and
(b) a line and a curve at a nonflex point, we can write
Pc(H) = exp((d1+d2)H)(1+ Ly (C) + L1, (C) + Ly (C) + L1,(C))

H® 101H7 25H8\*'*/
-1+ L C)A+L C 1- — — ,
1+ Liocal(C1)) A+ Liocal( 2))( 7 + 560 128 )

whered; = degC; and where thd.  denote the various correction terms; for
example,Loca(C1) stands for the term arising from all local feature<Gaf It is
crucial here to recall (cf. Lemma 3.3.1) that such local terms do not depend on
other features of the curve; so the contribution of a local term is the same whether
viewed inC; or in C. (This is not the case for “global” terms!) With the same
notation we can write
Pc,(H) = exp(d;H)(1+ L¢/(Ci) + L1, (Ci)) L+ Liocal(Ci))
and so the ratidPc (H)/Pc,(H ) Pc,(H ) is expressed by
A+ Lej(C) + Lry(C) + Ly (C) + L, (C))
1+ L¢j(Cr) + L, (C1) A+ Ly (C2) + L1,(C2))
( HS 101H7 25H8>2’+’

1= T 560 " 128
Finally, we note that in evaluating this term we may assume that each line meets
the rest ofC transversally at noninflection points: indeed, the terms arising from
special positions of the lines can be evaluated locally, so they can be incorporated
in the L ocq terms. All the terms in this expression can then be evaluated very sim-
ply by Propositions 3.1 and 3.2, giving the stated result. O

ExampLE 4.5. If bothC; andC, are unions of lines, then multiplicativity holds
“on the nose” because= J = 0 in that case. In fact, this holds for nonreduced
configurations of lines as well (cf. [AF4, Cor. 2.7]).

ExampLE 4.6. The union of a general curve of degreed > 2 and a general
transversal line has adjusted predegree polynomial

oty (14 14+ H2) . (1= HS  THT _18HEN
< 2 24 " 60 80 )’

whereP-(H) is the adjusted predegree polynomial of a general curve (computed
in Examplel.1). Ford = 2, this yields
1+3H+9i2+ 13H3+3H“+7i5+£h(6+H—7
2 3 5 60 60’
which reveals that the union of a conic and a transversal line has orbit closure of
dimension 7 and degr%é!71 = 21 This agrees, of course, with the naive combina-
torial count, since the orbit of the union of a conic and a transversal line is in fact
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the set of all such curves; the degree is then the number of curves through seven
general points—that |s{;) = 21 (the line must contain two of the points, and the
conic is then determined by the other five).

Combinatorics would not suffice to compute, for example, the degree for the union
ofageneratubicand a general transversal line; according to the formula just given,
this is 8568. Note that these computations do depend on whether the intersection
points are inflection points for the branches. Using the formula given in Exam-
ple 4.4, one obtains that the predegree of the union of a general cubic and a general
transversal linghrough a flexof the cubic is 8040.

ExampLE 4.7. The union of two transversal conics has a.p.p. given by

<1+2H+2H2+4—m+2i4+H—5)2- <1— LA i 311H8)4

3 3 ' 15 9 ' 40 960

32H3 32H* 122HS5 64HS 41HT  41HS
3 773 T35 T3 T30 240

=1+ 4H +8H?* +

hence predegree 6888.

The reader will have no difficulties adapting the argument in the proof of Proposi-
tion 4.2 to compute terms accounting for other kinds of intersections. For example,
a point of simple tangency of a line with a curve gives a correction term

H® 7H" 13H®

6 T 15 20

to the polynomial of the union of the curve and the line. (Note that this is the fourth
power, modulaH °, of the contribution for a point of transversal intersection of a
line with a curve; we don't have a conceptual explanation for this phenomenon.)
Thus, the adjusted predegree polynomial for the union of a smooth conic and a
tangent line is

, 4H® 2H* HS° H? H® 7H" 13H®
H2H+2H 4 ——+——+— | | I+ H+— |- (1-—+

3 3 '15 2 6 15 20
9H?2 13H3 7HS 7HS
—14+3H + — Y+ 4 .

+8H + -+ + =+ 35

the orbit closure has dimension 6 and degfggz 42, as expected.

5. Irreducible Singularities

Our last and most substantial example illustrating the algorithm implicitly de-
scribed in Sections 2 and 3 will be the computation of the contribution to the
adjusted predegree polynomial due to an arbitrary irreducible singujaiity a
curveC.

Itis well known thatC can be described at such a point byAtsseux expansion
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7= (antn + .. .+)aelt61 + - +aerter’
y=1",

where:m = the multiplicity of C at p; n = the intersection multiplicity ot and
the tangentline = O atp; all exponents are positive integers, with< n < e; <

- < e,; and the coefficients,, of the essential terms are nonzero. An exponent
(or the corresponding term in the expansiongssentialf it is not a multiple of
the greatest common divisor afand the exponents preceding it; thein the ex-
pansion collects all nonessential terms. The teym will be essential if and only
if n is not a multiple ofxn; note thate; = » in that case.

We also need the numbers

di = ng(ma €1, ..., ei);

thusdy = m andd, = 1. Note that we allow for the possibility ot = 1 andr =
0; that is, there may beo essential terms in the expansion.

We will see that the contribution gf to the a.p.p. foC depend®nlyonm, n,
and the essential exponests..., e,.

An alternative terminology to describe the same information is thRuigeux
pairs. the singularity is described by the pdin, n) and byr Puiseux pairs
(mq, ny), ..., (m,, n,), where

di=mji1---m;,
{ e = }’l,'d,'.
Thus, for example, a nonsingular inflection point of orklés described byl, k)
and has no Puiseux pai(s = 0, no essential exponenigy = 1 = m); an or-
dinary cuspy” = z™ (m, n coprime) is described byn, n); (m, n) and haone
Puiseux pail(r = 1, e; = n, dg = m, di = 1). The next formula given implies
that the correction due te depends only om, n, and the Puiseux pairs ¢fat p.
This result is most easily stated in terms of the numbgende;. We let

a?b? 4
A+ ak)3A+bk)3 A+ k)31 +2k)3
wherek is an indeterminate; sep = n ande, .1, = 0 for convenience.

P(a,b) =

TueoreMm 5.1.  With notation as before, the contribution pto the adjusted pre-
degree polynomial o€ is

4 k?H® kH'" H®
1- mnp(m,n)+Z;(¢,~+1—ej)djp(dj,2dj)- TR T Ty X
i

where{-}, denotes the coefficient bf in the expansion of the term within braces.

Before proving this formula, we illustrate it with a few explicit examples. For
these we will need the number of flexes absorbed by the singularity; remarkably,
this number can be expressed by a formula somewhat analogous to the one given
in Theorem 5.1:
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Bmn — 2m — 2n) + 3Z(ej+1 —ej)d; =1
Jj=0
(cf. [BK, Sec. 9.1, Thm. 2]; [O, Sec. 2]). The correction term that would be due
to the flexes absorbed hyif p were not present is, according to Theorem 5.1,

1-— {((3mn —2m — 2n) + 3Z(ej+1 —ej)(d; — 1))3P(1, 3)

j=0
k2H® N kH' N H®
6! 7! 8 /|,
ExampLE 5.1. A nonsingular point has no Puiseux pairs &mgn) = (1, k),

wherek = the order of contact with the tangent line. By Theorem 5.1, its contri-
bution is

1-— {kP(L k) - (szﬁ]iY + H—8>}
6! 70 " 8/,
1 k(k —2)(k+2)H®
720
k(k —2)(k* 4+ 3k +6)H"  k(k — 2)(2k® + 7k? 4 16k + 32)H®
1680 - 13440 ’

in agreement with Example 3.4. Note that this contribution is automatically trivial
if £ = 2, that s, if the point is not an inflection point far.

Assume next thap has exactly one Puiseux pdifiq, n1). With notation as be-
fore, necessarilyny = m with dg = m, dy = 1, eg = n, e1 = n3, ande, = 0.
According to Theorem 5.1, the contribution pfis

m(@m*(ny — n) + m?n® — 4n)H®

! 6!
3mA2m5(ny — n) + m3n® + m?n* —12n)H”’
+ 7!
3m(64m®(ny — n) + 2m*n® + 3m3n* + 2m?n® — 64n,)H?®

8!
ExampLE 5.2. For an ordinarym, n)-cusp we find
mn(m?n? —4HH®  3mnm3n?+m?n® —12)H’
- +
6! 7!
3mn(2m*n? + 3m3n® + 2m?n* — 64)H®
8!

For instance, an ordinari2, 3)-cusp contributes
4H° N 3H" 19H®

15 5 28 ’
using that such a cusp absorbs eight flexes, we obtain that an ordinary cusp cor-
rects the predegree of a curve of degiee 3 by

1

1—
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—72(284% — 144d + 183).

Thus, a generic cuspidal quartic has predegree 1428060 = 1032Q and so
forth. Note that, for a cuspidaubic,this gives a “predegree” of 216 216 = 0,
this is because cuspidal cubics have small orbits. According to the formulas given
previously, the a.p.p. of a cuspidal cubic is
1t 3H 4 9H? N 9K N 27H* N 69H ° N 3H® N H'
2 2 8 40 8 70’
yielding a degree ofl> = 24 as expected.

ExampLE 5.3 (Characteristic Numbers). An enumerative problem that has re-
ceived a good deal of attention both in the nineteenth century and in the recent
past is that of computing theharacteristic numbersf various families of plane
curves—thatis, the number of curves belonging to the family that contain a collec-
tion of general points and are tangent to a collection of general lines. In general,
this problem is surprisingly challenging, even for curves of very low degree.

We note here that the top characteristic number of the (family of curves param-
eterized by the) orbit closure @ is the degree of the orbit closure of the dual
curveCY; hence, the results of this paper allow us (in principle) to compute the
top characteristic number of the orbit closure of an arbitrary curve—that is, the
number of translates of the curve that are tangent to a maximal number of general
lines.

For example, consider the orbit closure of a nonsingular cubic aGrw«he
closure of the set of cubic curves with a givgsinvariant. Its top characteristic
number is the degree of the orbit closure of a sextic with nine cusps; now Exam-
ple 5.2 allows us to compute the predegree of this orbit closure:

predegree of a general sexticcontributions from 9 cusps
= 1119960- 9 - 23544= 908064

Forj # 0, 1728 the stabilizer of” consists of 18 elements; thus, there R8> =
50,448 cubics with fixedj-invariant# 0, 1728 and tangent to eight lines in gen-
eral position. Forj = 0 (resp.j = 1728, the extra automorphisms ¢f correct
this number t0°%® = 16,816 and2%® = 25224 respectively. These results
agree with the more direct computations in [A].

Similarly, the number of nodal cubics tangent to eight lines in general position
is the degree of the orbit closure of the dual of a nodal cubic, that is, a quartic with
three cusps:

14280— 3- 3960
6

Of course, this also agrees with the classical result (see e.g. [S]).

It is curious to observe that the dual of a nodal cubic can also be interpreted as
a sextic consisting of a quartic with three cusps and a double bitangent line, in the
sense that this is what the dual of a nonsingular cabiegenerates to &S de-
generates to a nodal cubic. Arguing as in Section 4 to account for the contribution
of the double line, we compute that the predegree of the orbit closure of such a

= 400
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sextic is 302668; since the stabilizer of a nodal cubic has six elements, this gives
50,448 as the top characteristic number of a nodal cubic. This number counts the
400 curves tangent to eight lines as well as contributions from curves whose node
is on one of the lines; that this number agrees with the characteristic number for
cubics withj < oo was already observed in [A, end of Sec. 3].

Apart from these and a few other instances (e.g. conics or cuspidal cubics), the
characteristic numbers that can be obtained by applying the results in this paper
are, to our knowledge, new. For example, so is the number 406,758,744 of non-
singularquarticswith fixed general modulus and tangent to eight lines in general
position.

ExampLE 5.4. The quartic curves
2 —x0?=y% (P -x2)?=y7°

have a singularity &l : 0 : 0) described bym, n) = (2, 4) and Puiseux pait2, k)

for k = 5, 7 (respectively). Using the formula just given and that these points ab-
sorb X flexes, we find that these singularities correct the predegree of the quartics
on which they lie by—178%.

These singularities are analytically isomorphicfo= y* (cf. Example 3.5).
Remarkably, the same correction term applies for quartics with a point analyti-
cally isomorphic taz? = y* also in the nonirreducible casks= 4, 6, 8 (as may
be computed explicitly using Propositions 3.4 and 3.5). Fet 8, the corre-
sponding quartic i$y? — xz)? = z* (i.e., the union of two quadritangent conics;
cf. [AF3, Sec. 4.1]). The formula gives 142801785- 8 = 0, as expected since
unions of quadritangent conics have small orbits.

The casé = 4 can also be analyzed by the same method, and it gives a cor-
rection of —1785- 4 = —714Q Thus, a general tacnodal quartic has predegree
14280— 7140 = 7140 or precisely half the predegree of a general quartic. This
latter fact can also be explained conceptually by studying the behavior of the pre-
degree along families of curves, but we will not pursue this approach here.

Proof of Theorem 5.1The formula given in the theorem is obtained by evaluat-
ing explicitly the contributions of type IV and V, using Proposition 3.4 and 3.5.
The main subtlety lies in the fact that both these contributions are affected by
whether or nok is an essential exponent; as we will see, the amounts by which
they are affected precisely compensate each other, so that both cases lead to the
same formula.

We consider contributions of type IV first. Let = gcd(m, n), and letm’ =
m/d’ andn’ = n/d’'. Then the only 1-PS germ giving a contribution is

1 0 O
(O "0 )
0 0

(yn _ >l<xn'—m’zm’)d,xd—n — O,

corresponding to the side in the Newton polygon joining vertifes:) and(n, 0).
Using Proposition 3.4, this gives a contribution of

yielding a limit

’
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1 (m?n® —4d'"*YH®  3m3n? + m?n® —12d"5)H"
- 6! - 71
4 3(2m*n? + 3m3ns + 2m?n* — 64d’6)H8>
8! ’

which is checked to equal

{ <k2H6 kH” H8>}
1— imn(P(m,n) — P(m,2m)) -
2

6 7 8
(m*—d'"H®  (m®>—d"®)H’ N (m® —d'®)H®
—mn - .
180 140 210

Hered’ = m if n is a multiple ofm (in which case the last summand vanishes),
whereas!’ = di = gcd(m, e1) if n = e is essential.

Moving on to the component of type V, the data describing the singularity deter-
mines the structure of the formal branches of the curye &chematically, they
are grouped as shown in Figure 1nlfs not essential, them = dg branches will
run parallel from the beginning of the expansion up to the first essential exponent
eq; if n is essential then the branching starts immediatety-ate;. In both cases,
ate; the branches divide intéy /d; groups ofd; parallel branches each;at each
set ofd; branches splits intd; /d, groups ofd, parallel branches, and so on. At
the last essential exponent the splitting produces: distinct simple branches.

dy

|
%

Figure 1

—
m% [ XX ]

This gives us the data needed to apply Proposition 3.5. Notethatelds a
truncation (in the sense of Fact 5 of SectioroB)y if n is not an essential expo-
nent: ifn = e, is essential then the expansion startg;adnd, in particulare; is
not greater than the first exponent.nlis not essential then the truncationeat
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contributes (in the terminology of Proposition 3.5) a term with- 1, W = ¢4,
S =m, ands; = d1, giving
(m*—dHH®  (m®—d)H"  (m®—dP)HB\
M\ T 180 140 210 )

if n is essential then there is no such contribution. Adding this to the contribution
of type IV computed previously, we obtain roth cases

{ <k2H6 kH' H8>}
1— {mn(P(m,n) — P(m,2m)) - + —+ — — Ky,
2

6! 7! 8!
where

(m*—dHH® mS—d)H" (m®—dPH®
K1 =meq —
180 140 210
The contribution due to truncationgt(j > 2) is given by Proposition 3.5, set-
ting £ = m/d;_1 (the least integer such thétey/m), ..., £(ej—1/m) are integers),

= e e;

W=> (d1- d)— +dj1~

1 m m
(keeping track of the exponents at which formal branches start differing§ and

d;_1, s; = d;. If K; denotes this (additive) contribution, one checks by induction
that if there are- Puiseux pairs (so that. = 1) then

: : k’H® kH? H®
> K= {Zej(djlp(djl, 2d;_1) — d;P(d;, 2d, ))( +—= ﬁ)L
j=2 j=2

(note: this equality does not holddf is not assumed to equal 1!). The whole con-
tribution is therefore given by

k2H® kH7

and the formula given in the statement is obtained by rearranging this sum.

Formulas forreduciblesingularities can be obtained by using Propositions 3.3,
3.4, and 3.5. Unfortunately, we haven't been able to find a simple statement in the
style of Theorem 5.1 and encompassing the most general case.

As a final comment, we note that a formula in the style of Theorem 5.1 can be
concocted to account for some “global” terms as well. For example, the predegree
of the orbit closure of a reduced curve of degiiegnd (for simplicity) including
only points “of type(¢™, t")" (i.e., points described by the pain, n) as before,
with no Puiseux pairs) is in fact given by

o 4r
1+ k)3 + 2k)3
m2n? 4
+ ) mm < A+ mPA+nk® A1+ 2k)3>:| }2’

peC of type(s™, 1)

— {(1+dk)8[
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provided that the orbit closure has dimension 8. This formula should be compared
with the formula for the predegree of the orbit closure aftuple of points irP*
(cf. [AF1]), which can be written as

3 3 d = - :
e-lora e ¥ (gt ol

peC of type(t™)

(if the orbit closure has dimension 3), where a point “of typ®)” is simply a
point of multiplicity m in thed-tuple.

It is tempting to view these two formulas as shadows of a very general—but as
yet mysterious—theorem on degrees of orbit closures of hypersurfaces in projec-
tive space.
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