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Boundary Values and Mapping Degree

EDpGAR LEE STOUT

Introduction

This note is an addendum to the paper of Alexander and Wermer [2], in which the
authors relate the theory of linking numbers to the question of finding an analytic
variety bounded by a given real, odd-dimensional submanifo{d"of

We give a characterization of the boundary values of holomorphic functions on
certain domains it©" in similar terms. In fact, the work of Alexander and Wer-
mer contains such a characterizationhe case of functions of clags'. It seems
that the methods used in [2] require this degree of smoothness, but we have found
that it is possible to obtain a result that characterizestminuoudunctions that
are boundary values of holomorphic functions that is entirely in the spirit of [2].
Specifically, we shall prove the following result.

MaIN THEOREM.  LetQ be a bounded domain i@i¥ with boundary of clas$’?,
and assume tha® has a Stein neighborhood basis. A continuous funcfiam
bQ is of the formF|bQ for a functionF € ¥(Q) that is holomorphic o2 if and
only if the following condition is met.

(x) With Iy the graph{(z, f(2)) : z € b2}, a compact subset oVt if Q is
a C"N-valued holomorphic map defined on a neighborhoodk C with
0710) N Ty = @, then the degree of the ma&®2 — CV \ {0} given byz
0(z, f(2)) is nonnegative.

Recall that a closed sé in CV is said to have a Stein neighborhood basis if it is
the intersection of a sequence of domains of holomorphgnif E is the clo-
sure of a strictly pseudoconvex domain or a polydis€ih then it has a Stein
neighborhood basis.

The case of the main theorem in whighis of class#* is contained in [2] as a
very special case of the main results of that paper.

The main theorem seems to be new, even in the setting of classical function
theory, where a version of the result is the following. Detienote the open unit
disc in the complex plane.

CoroLLARY. A continuous functiorf on bU extends holomorphically through
U if and only if, for each polynomigb(z) = p(z1, z2) in two complex variables
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such that, withyr; ,(¢) = p(¢, f(0)), if ¥y, is zero-free orbU then the change
in argument aroundU of the functionyy, , is nonnegative.

In particular, if the functiory” is smooth then the condition is that (wighandy ,
as in the corollary) the integrgl/27i) [, (dVry,,/¥y.,) be nonnegative.

The proof of the Main Theorem proceeds by induction on dimension. The case
of planar domains is based on some results on polynomial convexity; the higher-
dimensional case depends on a suitable slicing argument. The arguments make
systematic use of the Bochner—Matrtinelli kernels.

We preface the proof with a section that assembles some information on degree
theory.

1. Degree Theory

Our discussion draws essentially on the theory of the degree of mappings. We will
restrict attention to the theory of the degree of mappings from sets in manifolds to
Euclidean spaces.
Fix an oriented smooth manifold” of dimensionN. To each triple( f, 22, y)
consisting of a relatively compact open $ktn .4, a continuous mag from Q
into RY, and a pointy e RV \ f(bQ), there is assigned an integé(f, 22, v), the
degree off. The functiond has the following properties:
(d1) d(id, 2, y) =1if ye Q;
(d2) d(f, Q,y) = d(f, Q1,y) + d(f, 22, y) whenever; and2, are disjoint
open subsets & such thaty ¢ £(Q \ (21U 22));
(d3) d(h(t,-), 2, y(t))isindependent afe [0, 1] wheneveh: [0,1] x Q — RV
is continuous, ang: [0, 1] — RY is continuous and satisfiggt) ¢ h(z, bR2)
forall 7 €0, 1];
(d4) given(f, 2, y) and(g, 2, y) as before, iff|,, = g|,,, thend(f, 2, y) =
d(g,2,); .
(d5) if 21 C 2 (21 open), theni(f, 2, y) = d(f, 2, y) if y ¢ f(Q\ Q).
Property (d4) implies that one can assign a degre¢ t€, y) when the continu-
ous mapf toR" is defined only ob 2 and satisfies the condition thatt ().
Degree theory in the form that we shall need is developed in [3] and [17]. An
axiomatic development (for maps froRd" to itself) is given in [4].
If @ is a domain in the plane with boundary a finite collection of mutually dis-
joint simple closed curves and jf e (), then

1 1

d(f, Q, O) = —Apa |ng = —Apo Arg f
2mi 2r

Given a bounded domai@ in .4 with smooth boundary, if : bQ — R\ {0} is

a smooth map then the degree is given by an integral formula,

1
d(f,,0) = / f*z,
Sn-1Jre
with Sy_1 = 27¥/2/T'(N/2) (the area of the unit sphefd’ ~in R") and witht
the form given by
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1 ¢ _ .
T = W;(—l)lv 1xjdx1/\~-~/\[j] A ANdxy,

where the expressiory] indicates the omission of th¢th term; see [17]. The

(N — Dth de Rham cohomology group with complex coefficient®df\ {0} is

isomorphic taC and so, if¢ is any closed smoottiv — 1)-form onRY \ {0} that

is not exact, then

d(f, ,0) =c(®) fro
bQ

for a constant () that depends only on the forth not on the domai® or on the
map f. The constant (%) is determined by the condition that the fotm- ¢(%) 9

be exact. Giver?, we can determine() by takings2 to be the unit ball ilRY and
f the identity map. It follows that(®%) is determined by the equatiari) ™ =

Jow 2.

It will be convenientto use the following notation:df= (g1, ..., g.) isavector
of complex-valued functions @, thenw(g) = w (g1, ..., &) = dgiA---Adg,
and

®'(8) = ' (81 ... 8) = P (D Tgidgi A A[jI A Adg,.
j=1

In particular, withg; = z; this yieldsw (z) = dzi A - - - A dz,. Similarly,

©'(D) =Y (D Zdz A AT A AdE,
j=1

Recall that the Bochner—Martinelli kerngly is the (N, N — 1)-form on C¥
defined by

1\V _ _
By = (—) 12172V 3|z|% A (80]z/H)N 1
27i

_2N - -
=cnlz| ™0 (Z1, .o IN) A0 (21, -y 2N

wherecy denotes the constagt 1) Y2NN =D —1)1 /(27i)N. This formis closed
andd-closed orCV \ {0}. Itis not exact. The Bochner—Martinelli kernel gives an
integral formula: IfQ is a bounded domain i@" with smooth boundary, and if
g is a function holomorphic on a neighborhoodf then

By — g(0) if 0eQ,
ST lo ifogd.
As follows from the preceding remarks, the Bochner—Matrtinelli kernel can be
used to compute the degree of certain map& ¥ Given a bounded domaif?

in CN with smooth boundary and given a smooth maphbQ2 — CV \ {0}, the
degree off is given by

d(f,2,00= [ f*Bwn.
b
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2. A Theorem in the Plane

For X a compact subset @, we shall useZ(X) to denote the uniform closure
in the space’(X) of complex-valued, continuous functions &nof the space of
rational functions orC that have no poles oX. For a given selX, this space
may or may not coincide with the spaggX) of functions that are continuous
on X and holomorphic on its interior. (For a systematic discussion of the ques-
tion of the equality ofZ(X) and A(X) for compactaX in the plane, see [7] and
[18].) We shall also use the notation that, for a closedset CV, 2; is the
space of functions defined and holomorphic on a neighborho&dof in CN+L,
The neighborhood depends on the particular function; it is not assumed to be a
product set.

The result to be established in this section is the following.

THEOREM. Let 2 be a bounded connected open sefirAssume that each point
of bQ is a peak point for the algebr#(Q). If f € €(bR2), then there is a func-
tion F that is continuous o and holomorphic orf2 with F}m = fifand only

if the following condition holds.

(1) For everyp € 24 such that for no; € b2 does the quantityy, ,(¢) =
p(¢, f(©)) vanish, the degree of the map— v ,(¢) frombQ to C \ {0} is
nonnegative.

The theorem applies in particular to all domafagor which 52 consists of a fi-

nite number of mutually disjoint simple closed curves. (No regularity is required
in this case beyond that imposed by the condition of being a simple closed curve;
in particular, each of the curves might have locally finite area.) The condition is
satisfied also by certain infinitely connected domains—for example, one obtained
by excising from the open unit disc the union of countably many mutually disjoint
closed subdiscs whose centers cluster only on the unit circle. Other (more exotic)
examples can be found in [7] and [18].

Proof. We assume, as we can without loss of generality, that the origin lies in the
domaing2.

Itis evident that, in the geometric situation of the theorenf, & % (Q) is holo-
morphic inQ and if p € 24 has the property thag, , does not vanish oa,
then the degree af — vy ,(¢) from b2 to C \ {0} is nonnegative. LeR2, €
2 be a domain with smooth boundary and with, zero-free orf2 \ €2,. Then
d(Wyp, 2,0) =dWy.p, Q,, 0) by property (d5) of the mapping degree. However,
sincey, , is holomorphic inQ, it follows thatd (v, ,, 22,, 0) is the nonnegative
integer(1/2mi)Ayq, Arg vy, .

Denote byl the graphly = {(z, f(2)) : z € bQ2}. By 25(Iy) we denote the
uniform closure irg (Iy) of the (restrictions td} of the elements of the) algebra
24. This is auniform algebraon the sef?.

We denote the hull of the s&f with respect to the algebedg, by 25 —hull Ty,

By definition, a pointz € @ x C is notin 2¢ — hull I if and only if there exists
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aq € 2g with g(z) = 1> supplq|. The set2g — hull Ty is a compact set; it is
the spectrum (or maximal ideal space) of the algeBgATy).

Definey, m2: C?> — C to be the projections given by (z1, z2) = z1 and
m2(z1, 22) = z2, respectively. ThebQ C 71(24 — hullTy) C .

We begin by showing that the sets — hull I is not contained inr (b Q).
Suppose itis. Leb, = inf{l/|z]| : z € bR}, and leth € €(b2) be the function
given byh(zy, z2) = 1/z1. Because2g — hull T} is the spectrum of the algebra
24(Iy), we have thatr1(2g — hull T}) is the spectrum of the elemem| N of the
algebra2g (Iy). Consequently, if € &'(w1(2g—hullT})), theng o 1 € QQ(I}-).
As each point obQ is a peak point foZ2(b<2), it follows thatZ (bQ2) = € (bS2)
(see [7, p. 543]), whence there is a functipa 24 with |g(z) — h(z)| < %50 for
all z e I'y. As maps fronT} to C \ {0}, the functions; andi are homotopic. Con-
sequently, the degrees of the maps> ¢ (¢, f(¢)) and¢ — h(¢, f(¢)) from b2
to C \ {0} are the same. However, the former degree is nonnegative (by hypothe-
sis), and the latter is-1, a contradiction. Thusyi(2g — hullT}) must meet the
connected open s&. The maximum principle then implies thai(2 — hull T)
containsQ.

Next, the set2q — hull Ty) N 7, 1(b2) coincides with the sefy. To see this,
supposez’ to be a point in((2g — hullTy) N nfl(bfz)) \ Ty. There is then a
regular Borel probability measuge on I’y with frf gdu = q(z°) forallg € 2.
(The measure is eepresenting measuffer the pointz® with respect to the alge-
bra2g(Iy).) Because each point 6f2 is a peak point forz (), the measure
is supported on the sétz7} x C) N TI}. This set is a singleton, fdr; is a graph.
It follows that is a point mass, wheneg must lie inTy—a contradiction.

We shall show thatr; carries2g — hull T injectively ontoQ. In order to do
this, we use the notion ehaximum-modulus algebréSee [1] and [13].) Set/ =
{f 125 —hullTy\ I} : f e 25(Ty)}, an algebra of continuous, complex-valued
functions on the locally compact spake= 2 —hull Ty \T. Letp = n1| v+ Then
(#, X, 2, p) is a maximum-modulus algebra dhover Q with projectionp in
the sense of [1].

Introduce the functiod: 2 — [0, co) by

8(¢) = diameterr, (7, 1(¢) N 2 — hull Ty).

The compactness &g — hull Ty implies the boundedness of the functirThe
functioné tends to 0 abS2. Otherwise, there is a sequengg};>, of points inQ2
with ¢ — bQ ask — oo and with diametejtznfl(g) > n for some positive;
and allk. If &, — ¢, € b2, thenmy carries two distinct points dfy onto the point
¢,. However, the mafmr; is injective overy.

According to [1, Thm. 11.7], the function logis subharmonic of2. As it
tends to—oco at b2, it must be identically-oc on Q. That is, 1 is injective on
25 — hullTy. Thus, there is a continuous functigh: @ — C whose graph is
2q — hullTy; F agrees withf onbQ.

The theory of maximum-modulus algebras implies thais holomorphic on
Q. To see this, we can invoke the general theory of maximum-modulus algebras
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as given in [1]. Alternatively, we can appeal to Rudin’s treatment [13] of local
maximum-modulus algebras. If we s&t= {p € €(Q2) : ¢(z) = f(z, F(2)) for
somef € & and allz € 2}, then is alocal maximum-modulus algebm the
sense of [13]. It contains the identity map—namely, the map 71(z, F(z))—Ss0
each element of% is holomorphic orf2. In particular, sinceF(z) = m2(z, F(2)),

we find thatF is holomorphic, as we wished to show. The theorem is provédl.

REMARK. By construction, the functiod is holomorphic or2 and continuous
on . Nothing we have done implies thate Z(2).

REMARK. The hypothesis in the preceding theorem that each poibfolbe a
peak point for the algebr@(2) cannot be completely abandoned. lebe the
closed interva[—3,1] and letQ = U\ I; thus,bQ = bU U I. Let f: bU — C
be given by

z if zebU,

f(Z)z{o if zel.

The functionf is not the boundary value of any function holomorphic®ncon-
tinuous on2. However, it does satisfy the condition that pifz1, z») is a polyno-
mial in two complex variables such that the function,(z) = p(z, f(z)) has no
zero onb 2, then the degree of the mal, , on b2 is nonnegative. The points of
the intervall are not peak points for the algeb(Q).

3. The Induction Step

We have proved the Main Theorem, and somewhat more, in the 1-dimensional
case; we now show that thé-dimensional case is a consequence of(ffie- 1)-
dimensional case. Thus, we assume that the Main Theorem has been established
in the case of domains i@V~ and continuous functions on their boundary.

Let  be a bounded domain i@" with boundary of clasg’?, and letf be a
continuous function o~ <2 that satisfies the hypotheses of the Main Theorem. As
in the statement of that theorem, Igtdenote the graph of the functigf) a subset
of CN*L,

Let IT be a complex affine hyperplane @" that meet$Q transversely. We
will show that the restrictionf }(bmn) satisfies the hypotheses of the theorem
(in the (N — 1)-dimensional case) and so extends holomorphically into the slice
Q N I1. For notational convenience, we assume ffias C¥ 1 = C¥~! x {0} =
{zx =0} C CcV.

LetQ1, ..., Oy_1be functions defined and holomorphic on a neighborhiddd
of (CYN~1N Q) x C such that their set of common zeros is disjoint from the graph

Ff/ ={(z1,---»2nv-1, 0, f(z1, ..., Zv-1,0)) : (z1, ..., 2y_1, 0) € bQ}.

Since 2 has a Stein neighborhood basis, there is a Stein neighboriibod
Q x C such that¥ N (C¥-1x C) c W'. Each of the functiongs, ..., Qy_1 €x-
tends to be holomorphic oir; we denote these extensions alsody ..., Oy_1.
Denote byQ’ the mapQ’ = (Qy, ..., Qn_1) from W’ to CV~1. We must show
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that, if ¢/: CN~1 — CV1lis given byW/(z1,...,z2y-1) = Q'(z1, ..., IN-1
f(z1, ..., zy—1, 0)), then the degree ob’ as a map frombQ N I1to CV1is
nonnegative.

Let Q be theC"-valued map defined fag, ¢) in a neighborhood of2 x C by
0(z,¢) = (Q'(z1, ..., zv-1. {), zn). The setQ~X(0) is disjoint fromT}. By hy-
pothesis, the mag: bQ — CN \ {0} given byW(zy, ..., zy) = O(z, f(z)) has
nonnegative degree.

The point is thathe degree of the map’ is the same as the degree of the map
W. This factis contained in [2, Lemndal]. There is a derivation of the fact, based
on the Bochner—Martinelli integral, as follows.

Because the functioff is only continuous, a preliminary step is required. Let
o be a defining function of clasg? for the domainQ so thatp is defined on a
neighborhood of2, do # 0 onbQ, andQ = {0 < 0}. We suppose that the
function f has been extended to a continuous function define@ and smooth
in Q. For example,f might be harmonic i with the given values ob<.

If § > 0is small then, withQ; = {0 < —§}, the sethQ; is again a mani-
fold of class¢?, as isbQs N CN~L. Moreover, given that is small enough, the
function £ will not assume the value 0 in the s@t\ ;. Thend(¥, Q,0) =
d(¥, Q5,0 andd (¥, QNC¥ L 0) =dW, Qs NnCNL 0). The upshot of this

is that, for the purpose of verifying that the degreelofs the same as the de-
gree of¥’, we can assume the functighto be of class’. Thus, we must prove
that [, , W*By = [ o~ ¥/ *By-1. This is equivalent to proving thg{tff O*By =

fr/ 0’*Bn_1. Note that the last two formulas cannot be written without the as-

sumption thatf be smooth.

We need a fact about the Bochner—Martinelli kerfglon C¥: It is exact in
CN\ CN-1L This is well known and due originally to Martinelli [12]. It is a con-
sequence of a simple, direct calculationElfs the(N, N — 2)-form onCV \ {0}
given by

2(N-1 = =
{ )a)/(ZL---,ZNfl)/\CU(Z:L,.».,ZN)

— —
== |Z|

thend2 = 98 = (—DV YN — Dzylzl Nw'(Z1, ..., Zn) Aw(ze, ..., zx). From
this it follows that, on the set itY wherezy # 0, if yy denotes the constant
()N YD VINN-D(N — )1 /(27i)", then

1H
,3N=d YN— & .
IN

If we pull this formula back taC ¥+ by way of the mapQ, we obtain
OBy = d(yN_l(ZT)N—laQ D)~
Since
@'(Q1, ..., On-D) A@(Q1, ..., On-1) Adzy
{10112+ +1QNn-1/? + |z |}V 1

0'E =

)

it follows that
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Q"B = d(Vle,(Ql A A Qy1)
A(Q1, .., On-DA Q1% + -+ + 1Qn-al* + w7
dzn )
A\ .
27TiZN
Now apply Stokes’s theorem and Fubini's theorem (in the form given, e.g., in

[a7D:
0%y = lim f 0By = m —yxs
/f:‘ =01 FN{lzy|>¢) e—0t

/ (/ w’(Ql,...,QN_l)Ale,...,QN_l)) dzy
lewl=e) \JFnech c=ayy {1Q12 + -+ 10On=2? + |2y V1 ) 2mizy”

The negative sign in the last equation arises from considerations of orientation.
As ¢ — 07, the last quantity tends tySF, Q"*Bn_2. Thus, we have the desired
equality of the two degrees in question.

The inductive hypothesis now implies that the functfooontinues holomorphi-
cally into the domairfT N Q2. That is, we have shown thiitIT is a complex-affine
hyperplane irC¥ that meet$< transversely, thegf’mmbm extends holomorphi-
cally into the slicell N Q.

If N =2, we are in the situation of the 1-dimensional extension property con-
sidered in [15] (cf. [8]). The result of [15] implies that, as desir¢gdextends
holomorphically througtf2. If N > 2, a simpler argument is possible. Given a
pointw € 2, let IT be a complex-affine hyperplane @" throughw that meets
b<Q transversely. Definé (w) to be the value of the holomorphic extensiba
of f| e throughIT N . SinceN > 3, the value ofF; (w) does not depend on
the choice of T; denote this value by'(w). This gives a well-defined functiofR
on 2 that is holomorphic and assumes the valfiesn 2. The Main Theorem
is proved.

4. Extensions

We shall now consider certain extensions of the work just given.

A. The Convex Case

Itis more or less evident that an analog of the Main Theorem can be established in
the setting where® is a bounded convex domain@" and f € €(bD) is a con-
tinuous function that satisfies conditior) of the Main Theorem. (We consider
arbitrary convex domains, not only those with smooth boundaries; thus, we admit
polydiscs or convex polyhedra among other examples.)

The basis for this assertion is as follows. The compacDsgbes have a neigh-
borhood basis that consists of Stein domains. The slicBslyf complex lines are
convex 1-dimensional domains, so the result of Section 2 applies to them. The nec-
essary 1-dimensional extension result, tailored to the setting of convex domains,
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is contained in [8, Thm. 3.2.1]. Thus, the only point that needs to be verified in
this case is a fact about degrees.

Precisely put, what has to be established is the following.ALbe a bounded
convex domain irCY. If f € €(bA) satisfies conditior{x) and if IT is a com-
plex hyperplane that meets, then fp, the restriction off to bA N I1, has the
corresponding property.

This implication can be established as follows. Without loss of generality,
we supposdl to be the coordinate axig € CY : zy = 0}. Let Ay denote
the intersectiomA N I1. Fix a holomorphic mapping’ from a neighborhood
of Ay x C into CV~1 such that the zero locus of the mag given by ¥’ =
(Q'(z1, ..., 2nv-1, 0, f(z1, ..., Zy—1, 0)) is disjoint from the graph of;. We are
to prove that the degree of the mdp from »A N TT to CV~1 is nonnegative.

The mapQ’ can be extended to a holomorplii¢ ~-valued map (still denoted
by Q') defined on a neighborhood afx C. Let Q be theC"-valued map defined
on a neighborhood ok x C by (z, ¢) — ((Q'(z1, ..., zx-1, 0, ), zx). Then the
CN-valued map¥ defined onbA by W(z) = Q(z, f(z)) is zero-free; its degree
as a map t@" \ {0} is nonnegative. Note that we can extend the ryighrough
A as a smooth function.

Consider a smoothly bounded convex domairthat is a relatively compact
subset ofA and that is large enough for the quant®(z, f(z)) to be zero-free
on the compact sek \ D. Then the degree of the malpfrom bA to CV \ {0} is
the same as the degree of the migp: bD — CV \ {0}. Also, the degree of the
map¥’ from bA N T1to CV~1\ {0} is the same as the degree of the nigjpfrom
bD NTIto CN-1\ {0}.

The analysis using the Bochner—Martinelli integral invoked in Section 3 shows
the degree o, to be the same as the degreelgf. Thus, a result analogous to
the Main Theorem is established in the case of arbitrary bounded convex domains.

B. The Manifold Case

The work carried out in Sections 2 and 3 is set in the context of domai@d'in
But little effort is required to extend it to certain manifold situations.

Toward this end, ifR is an open Riemann surface andXifis a compact sub-
set of R, then we definezZ(X) to be the closure ifF'(X) of the (restrictions to
X of) functions defined and holomorphic on various neighborhoods of R .
Runge’s theorem implies that, wh&is the complex plane, this notion &f(X)
coincides with that used in Section 2.

If D is arelatively compact domain iR for which each point obD is a peak
point for the algebraz(D), then the continuous functiong on bD that extend
holomorphically througtD admit a characterization precisely parallel to that given
inthe Theorem of Section Zthey are those functions satisfying the conditibg)
that, if p is a function holomorphic on a neighborhoodfx C of the setD x C
such thatp~(0) is disjoint from the grapiy = {(z, f(z)) : z € bD}, then the
degree of the map — ¢,(z) = p(z, f(z)) frombD into C is nonnegativeThe
argument of Section 2 applies, mutatis mutandis, to deal with the present situation.
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Once we have this, we can formulate and prove a result on domains in mani-
folds as follows. Fix a complex manifole/ of dimensionM and in it a relatively
compact domaiD with 6D of class¢’2. We assume thab has a Stein neighbor-
hood basis. It then entails no loss of generality to suppose#hatitself a Stein
manifold and so, by the embedding theorem, théts a closed submanifold of
CN for some suitably larg&V. In this setting, we have the following resufthe
continuous functiory onbD extends holomorphically through if and only if it
satisfies the conditiof_4): For every holomorphicC¥-valued mapQ defined
on a neighborhood ab x C in .# x C such thatQ~(0) is disjoint from the graph
Iy = {(z, f(2)) : z € bD}, the mapz — Q(z, f(z)) frombD into C \ {0} has
nonnegative degree.

Unlike our proof of the Main Theorem, the proof we give for this is not based
on induction on dimension. Rather, we shall apply some information about the
Bochner—Martinelli kernel to show that it follows from the hypotheses that, for
every nonsingular 1-dimensional complex submanifblef a neighborhood of
D in .# that meet$D transversely, the restrictioﬁ|(mhm extends holomorphi-
cally into the slicex N D. Having established this point, by [16] we can conclude
that f extends holomorphically through. We establish the stated 1-dimensional
extension property first in the particular case that the clini® a complete inter-
section, so that there exists a map= (¢1, ..., ¢y _1) from a neighborhood b
in .# to C¥~*whose zero locus i¥ and whose differential has maximal rank at
each point ofz.

Consider a functior; defined and holomorphic on a neighborhoodXok C
that satisfies the condition that the zero locusGobe disjoint from the partial
graph{(z, f(z)) : z € (X N bD)}. We want to show that the map— G(z, f(z))
from X NbD to C \ {0} has nonnegative degree. Having fix@dthere is no loss in
assuming thaf is smooth orbD. (This follows from arguments we have already
used.) Hence, we must prove that the winding nunibé2xi) [, (dG/G) is
nonnegative.

By construction, the holomorphic map: D x C — CM given by

CD(Z, ;) = ((P(Z), G(Z, é‘)) = ((Pl(Z)v L) (prl(Z)v G(Zs ;))

does notvanish atany point of the grdptof / (on the whole obD). Accordingly,
the integralfrf ®*B), is nonnegative.

The map® is constructed so that it carri@3 \ = into CM \ i, wherea is
the complex ling{z € CY : z; = --- = zy_1 = 0}. In Section 6, a primitive
for the Bochner—Martinelli kernel is constructed in the dom@ii \ ; if ® €
£2M=2(CM \ 1) is the form given in Section 6 (witt here replacing theV of
Section 6), then

OBy = dd*(cy®),
where (as in Section 1), denotes the constagt-1)Y2M M =Dy — 1)1 /(27i)M.

We shall write|g| for the quantityy/|¢1]2 + - - - + |@u_1/2. Lete > 0 be a small
positive number. By Stokes’s theorem,
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f & B
L
= lim / ®*By = lim / cu®
e=>0% Jrrn{le()|>¢) e=>0% Jp((ryn{lpl>e)
. C
= lim / < Azl 2\M—1
e=0" Jrngpi=e) \2(M — D(l¢]* + |G|%)

M-2
M-1
G 2M—2r—4 2r—2M+2
XE < . )I | o]

r=0
x [(=D™(GdG — GdG) A &' (§) A w(9) + (=DM G20 (p) A w(p)].

Since|p| = ¢ on the path of integration, it follows from Stokes’s theorem and
Fubini's theorem for forms that

/d)*ﬁleim/ (/ N
Iy e—0t {ceCM-1|¢|=¢} l—}ﬂtp’l(é') 2(M —1)(8 + |G| ) -

M-2 M—1
X Z( . )GZM2’4|8|2’2M+2(—1)M(Gd(_} — GdG))w’(E) A (7).
r=0

Observe that the term in the primitide* © for ®*8,, that containg (@) A w (@)
contributes nothing to the integral: Itig2M — 2)-form in dg and so induces the
0-form on thez -path of integration (on whichp| = ¢).

The ¢-path of integration is thé2M — 3)-dimensional sphere of radiugs its
volume is(2rM~Y/(M — 2)1)e2M—3, and the coefficient of each term in the form
’'(p) is one of the coordinates @f and hence i9(¢). Consequently, the only
term in the sum under the last integral that (in the limit) can make a nonzero con-
tribution is the one corresponding to= 0. Thus, by using the equality,, =
(—=)M~Y(M — 1)/ 27i)cp—1, We reach

i _ en (=DM |G1PM-4(GdG — GdG)
"y = lim 2 2\M—1
r e—0t {ceCM-L:|¢|=¢) r?[ﬂwfl(f) 2(M — 1)(5 + |G| ) -

x £ M 20/ A ()
1 dG dG
B m Fﬂzpl(o){E - E}
Observe that the quantityt/2si) fq)_l(o)(dG/G) is the degreel of the mapping

z + G(z, f(2)) from £ N bD to C \ {0}. The quantity(l/27i) [, 1, (dG/G)
is —d.
We have established that

1 d
f opy=— [ X
Ty

271 Jsopp Q

By hypothesis, the former number is nonnegative. Consequently, the latter degree
is, too. We may conclude that the restricti@h(mbm extends holomorphically
into the slicex N D.
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This has been done under the assumption that the Gliigea complete inter-
section. In dimensior- 3, this condition is not restrictive, as follows from work
of Forster and Ramspott [5; 6]. That work is not simple, and we prefer to pro-
ceed without appeal to it. Moreover, it is not true that every nonsingular curve is
a complete intersection in the 2-dimensional case: There are unsolvable Cousin
Il problems on certain 2-dimensional Stein manifolds.

However, it is true that, in every dimensign 2, a nonsingular curve can be
approximated by a collection of irreducible branches of nonsingular complete in-
tersections. This device allows us to obtain the desired 1-dimensional extension
property in the general case.

To do this, fix a nonsingular analytic cur¥®in a Stein neighborhoo® of the
compact seD in .#. The first observation is that, althoughmay not be a com-
plete intersection iW, there is a neighborhood of X (V ¢ W) inwhich X is a
complete intersection. This follows because a neighborho&liof W is biholo-
morphically equivalent to a neighborhood of the zero section of the normal bundle
of the embedding < W. (See [10, p. 257].) This normal bundle is a holomor-
phic vector bundle over the noncompact Riemann surfaaed so is trivial. (See
[9, p. 303].) Thus, ifV is a sufficiently small neighborhood a in W, thenX
is a complete intersection ini. Let F be a holomorphic map from a neighbor-
hood of V to C*~! that definest as an analytic set. (We may have to shrink
a little to haveF be defined or¥’.) Let W; € W be a Stein domain whose clo-
sure iso(W)-convex. The seE N Wy is then&(W)-convex. Consequently, It
is chosen to be sufficiently thin and to be a Stein domain, then there will exist a
sequencéF, },—1». ... of holomorphic maps from¥ to CM~1 that converges uni-
formly on V N Wy to f. The mapsF, can be chosen such that (a) for eacl® is
aregular value of,, and (b)X, = Fn‘l(O) is transverse téD.

For eachn, the restrictionf|(2me) extends holomorphically into the slice

¥,ND. We are to deduce from this thﬁt extends holomorphically through
the slicex N D.

For this, sinceV is a Stein domain it will suffice to show that, for every holo-
morphic 1-formx on V, the integralfy, ., ., f« vanishes. (See [11].) We already
know that, for each, the integralfzmbmv fa vanishes. Hence, we must prove

that
Iim/ fa= Iim/ fa.
n=>00 JE-Yo)nbpnV =00 JF-10)nbDNV

By a device already used several times, it entails no loss of generality for
us to suppose that the functighis smooth and defined di. Then, by Stokes'’s

theorem,
Iim/ fa = Iim/ df Na
=0 JE-Yo)nbpnv =0 Jr-Yonp

/ fa = / df A a.
F-Y0)nbDNV F-Y0nD
We shall show that the right-hand sides of the last two equations are the same.

(ZNbD)

and also
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In this, we need the following remark. Letdenote the fundamental area form
onCV: w = (—i/2) Z’,Ll dzj A dz;. Thus, the area of a 1-dimensional varigty
in an open subset @ is |, .

Let T and7’ be thin tubes irC" over the system of curves N bD with T’ €
T. Let x be a nonnegative function of clagg® onC¥ with x = 1 on a neighbor-
hood of 7" and withx = 0 on a neighborhood & \ 7’. Then

Iim/ de/\a:/ xdf Aa.
= Jrns, 7Ny

If T’ is sufficiently small, then the latter quantity is small.
It follows that if T’ is chosen so that the area of the parFof:(0) in 77 is small,

then in
/ df Na — / df Na
F7Yo)nD F-Y0)nD

=/ de/\a—/ xdf Aa
E7YonD F-Y0)nD

7

+f (1—x)dfmx—/ A— 0 df ne
E7YonD F-Y0)nD

we have that the first summand on the right is small uniformlyfor sufficiently
largen while the second summand tends to zeraas oo. It follows that, as

desired,
Iim/ df/\a:/ df A a,
n=00 JE-YonD F-Y{0nD

which completes the proof.

5. Two Open Questions

In this work we have repeatedly imposed the hypothesis that the closure of our
domainD have a Stein neighborhood basis. It is not at all obvious that this hy-
pothesis is necessary for the conclusion, and we ask whether it can be replaced
by something weaker. In particular, might it suffice for the boundary of the do-
main to be connected? (The hypothesis that the closure of the domain has a Stein
neighborhood basis implies that the boundary of the domain is connected.) The
Stein neighborhood basis hypothesis is stable under passage to intersections by
lower-dimensional hypersurfaces; the hypothesis of having connected boundary
is not.

The second open question arises in connection with the classical description of
the boundary values of holomorpic functions on the unit disd-rom classical
function theory, a continuous functighon bU extends holomorphically through
U if and only if the Fourier coefficientg(n) = (1/27) [ f(e™)e~™ dv van-
ish forn = —1, —2,.... The vanishing of these integrals for all= -1, —2, ...
is equivalent to the vanishing of the integral
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1 f(@)

- dz
271 Jim1z—w

for all w € C with |w| > 1. Accordingly, we ask for a simple, direct proof of the
equivalence—in the case of functions on the unit circle—of these classical condi-
tions to the positivity conditions given by the Main Theorem and its corollary.

6. Appendix: A Primitive for the Bochner—Martinelli Kernel

In this appendix we shall determine an explicit primitive for the Bochner—Martin-
elli kernel in the complement of a complex line through the origicih

In order to avoid dealing with constants in some calculations, we shall not work
initially with the Bochner—Matrtinelli kerney itself but rather with the form

k=270 () A w(2),

defined and of bidegre@’, N —1) onC" \ {0}. The kernek differs from 8y only
by the constant factary = (—)Y2NN-D(N — 1)1 /(27i)N.
Denote byA the complex line

)»:{ze(CN2Z1=~-=ZN71=O},
and define : (CVM\ 1) x [0,1] — C¥\ A by
H(z,t) = H(z1, ..., Zn-1, 28, 1) = (21, ..., ZN—-1, tZN).

The mapH is a homotopy irC" \ A between the identity map dit¥ \ A and the
projectionz +— (z1, ..., 2ny—1, 0).

The formk is smooth onC" \ A and so (sincé is a closed form) the homo-
topy formula for forms [14, p. 8-53] provides the formula= d®, where®
denotes th€2N — 2)-form obtained as follows. Writél *k = dr A ¢ + n with
n a(2N — -form on (C" \ 1) x [0, 1] that does not have a factdr and with
¥ a(2N — 2)-form on the same manifold that does not have a fagtoTo be
sure, the coefficients af andn will depend orr.) Then® is the form given by
e = fol % dt. (In connection with the homotopy formula, note that the range of
the map; — H(z, 0) is of complex dimensioW — 1, so that the fornk induces
on it the zero form.)

We determine® explicitly as follows. In this it will be convenient to write
for (zq, ..., zv-1) € CN7Yif z = (za, ..., zv—1, zv) € CV. We have

H*k = (1212 + 2|z ) 0/ (1, o, N1, 128) A @(21, -y ZN-1, 12N)-
Then
w(z1, ..., 2ZN-1, tzy) = tw(2) + ZNQ)(Z,) A dt
and
N-1
®'(Za o Iven 12n) = Y (DT Zdz A AL A Ad(N)
j=1

+ (D" MIyw(Z1, ..y Iv1)-
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From this it follows (after some computation) that

N-2
1 N-1
o= Z 2N—2r—4) /\2r—2N+2
{Z(N —1)(|Z/|2 + |ZN|2)N_1 r:o( r )|ZN| [’

x [(DY(ndzy — Zndzy) A ') A0 ()
+ (DM HznPo(E) A w@)].
This is the desired primitive—a-primitive—for k on C¥ \ A. We then have that
By = d[cn O]

on CY \ A. (In this formula,cy denotes the constant introduced in Section 1 in
connection with8y.)
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