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C*-Compactness and the Calabi Flow on
Kahler Surfaces with Negative Scalar Curvature

SHU-CHENG CHANG

1. Introduction

Let M be a compact Kahlem-manifold that has a Kahler metrids? =
8apdz" ® dzf. Then it is known that, for the Ricci curvature tenslg; =
—(0%/92*9z%) log de(gm), ¥R, 5dz* A dzP is a closedl, 1)-form and its co-
homology class is equal to the first Chern clasgM ). Conversely, it was Calabi
who asked if, for any closed, 1)-form zﬂ;lléagdz“ A dz# that is cohomologous

to C1(M), can one find a Kahler metrig,; on M such thatl?af; is the Ricci cur-
vature tensor of,;? As a consequence of Aubin and Yau's results, one can find
a Kahler—Einstein metric oM with C1(M) = 0 orCy(M) < 0. WhenCy(M) >

0, the space of Kahler—Einstein metrics are invariant under automorphism group.
However, the existence does not always hold in general [F; M; T; TY].

Instead of the Kéhler—Einstein metric, we consider the notion of extremal met-
rics due to Calabi [C1]. Namely, fix a Kahler cla® = [wo] on a compact
Kéhler manifoldM and denote by, the space of all K&hler metrics with the
same fixed Kahler clas,. Now consider the functionab: Hqo, — R,

®(g) =/ R dju.
M

whereR denotes the scalar curvature gofA critical point of @ is called anex-
tremal metric.In particular, any Kahler—Einstein metric is an extremal metric that
also minimizesfM de,ug in Hg,. Furthermore, iK2g = C1(M) > 0 and if there
exist no nonzero holomorphic vector fields #fi then an extremal metric is a
Kahler—Einstein metric. On the other hand, there exist some obstructions to the
existence of extremal metrics due to Calabi [C2], LeBrun [L], Levine [Le], and
Burns and deBartolomeis [BB]. However, so far there is no known example of a
compact Kahler manifolds with C;(M) > 0 and no nonzero holomorphic tan-
gent vector field that does not carry any extremal metric. Concerning the existence
of extremal metrics, Calabi has asked whether one can always minimigeithe
Hgq, on M if there exist no nonzero holomorphic tangent vector fields and if the
tangent bundle o# is stable (see [C1; D; SY; UY]).

Throughout this note, we consider a compact Kéhler suffa¢gee Remark 2.2)

with a fixed Kéhler clas§2g = [wo] for wg = %gagdz“ A dzP. For any metric
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g € Hq,, there exists a real-valued scalar functiarglobally defined oM, such
that

0
8ap = 8up T Vup>
whereg, ; = 9%p/3z%9z".
Now consider the following Calabi flow ofM, [w¢]):

92ap@Tt) _ 9%R(g(1)

ot ) 3zgazﬂ ’ ] ] (11)
8uf(2:2:1) = 845(2,2) + 9u5(z, 2, 1), 1 =0,

where

0 0 0
R = R(gaﬁ) =-A Iog de(gaﬁ + (paB)v RO = R(gaB) =-A |Og de(gaﬁ)v

andg,;(z,z,0) = §a,§(z, 7) + ¢44(z, Z, 0) is positive definite. An interesting ob-
servation is that, if there exist no nonzero holomorphic tangent vector fieltls on
then the functionad decays along the Calabi flow @M, [wo]) (Lemma 2.1). If
we let

F(z,%, 1) = log det2,5(z, 2) + ¢uj(z, 7, 1) — log dex(g,4(z, 7)),
then

and
oF 0
— = —(log det
o 8t( gdetg)
_ ap08ap
Jat
a,gf?zR(g(t))
9z%9zFP
= AR.

We can then reformulate the Calabi flow as follows to yield the so-called modified
Calabi flow on Kahler manifolds:

. _0
8 = AR = —A’F + A(g*PR,p).

_ 0 _ -
8up(z,2,1) = 845(2,2) + 9u5(z, 2, 1), 1 =0, (12)

Juedio= [, duo, Fo(z,2) = F(z,Z,0).

Here F: M x [0, 00) — R is a smooth functionA = AM, dpo = dpo, and
dp = efduy. ¢
Form = 1, the Riemann surfacél.1) and (1.2) arequivalent. More precisely,

in this case letz, §) be a Riemann surface with a given conformal clé)s}sah 3.
In the author’s previous paper [Ch3] we considered the Calabi roV\Dot[]g]):
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oA 1

o = 28R,

A(p,0) = Ao(p), w3
0

8ij = EZAgij,

Js e duo = [y dpo,

wherex: ¥ x [0, co) — Ris asmooth function and = A,,.. Then we have the
following.

ProrosiTioN 1.1. Let(X, 2) be a closed Riemann surface. For any given smooth
initial value 1o, there exists a smooth solution(¢) of (1.3) on ¥ x [0, co).
Furthermore, there exists a subsequence of solutions that converges to one of
constant curvature metric.

REMark 1.1. If X is a 2-sphere then Proposition 1.1 holds up to the conformal
group. The crucial points for thé®-estimate of the conformal factar(and then
the higher-order estimates as well) are the bounds orjthe? d., and Bondi
mass/y, ¢* du. For details, see [Chr] and [Ch3].

In this paper, we will investigate similar properties of the flghl) form = 2
as we did in the flow (1.3). First, we will show sord¥-compactness properties
for F (Theorem 1.2, Corollary 1.3); then we will apply those results to the Calabi
flow. In fact, we prove some kind of Harnack estimate for the Calabi floly. As
consequences, under conditiarix) we show the long-time existence and asymp-
totic convergence of solutions (if.1) oncompact Kahler surfaces with no nonzero
holomorphic tangent vector fields a®g < 0 on (M, [wo]) (Theorem 1.4, Theo-
rem 1.5). Finally, combining with the results of [L], we show the blow-up behavior
of the Calabi flow on the ruled surface (Corollary 1.6).

We shall follow the notation of [G] and [Ch3] (see also Section 4). First, for a
sequence of smooth Kéhler metrigs } on a compact Kahler surfac@/, [wo])

in a fixed Kahler clas#lq,, letg’ = §a5(z, )+ wég(z, Z) and consider
. 0 .
L detg’ det(g,5(z,2) + ¢l 5(z, 2))
F'(z,7) = log go = log 8ap 5 $ap )
detg det(g,5(z, 2))

DerINITION 1.1.  We sayhat F' satisfies the properi) if there is a point € M
and if there exist positive constanise, H independent of* such that

/ e duo < H. (*)
B(x.p)

Using results of [G] for the case of Riemannian manifolds with fixed conformal
class then yields the following theorem.

THeOREM 1.2. Let {g’} be a sequence of smooth Kahler metrics on a compact
Kéhler surface(M, [wo]) in a fixed Kahler clas#{q, such that
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(i) Fi(z,7) satisfies the propertg); and
(ii) for fixed positive constants and p,

/ IRic(g")|” dug <K, p>2. (%)
M

HereRic(g’) is the Ricci curvature tensor with respectga
Then there is a constaut such that

| F'lyzr < C.
Hence a subsequence pf'} converges irC* with0 < « < 2”7_4.
REMaRrk 1.2. Itis worthy to note that the role @f in a fixed K&hler class corre-
sponds to the role of the conformal factoin a fixed conformal class. We refer
to [Ch3; Chw; G] for details.

As a consequence, under condities), property(x) holds for a compact Kéhler
surface withRy < 0 (Lemma 4.2) and so we have the following.

CoroLLARY 1.3. Let{g’} be a sequence of smooth Kahler metrics on a compact
Kéhler surfaceM, [wo]) with Ry < 0in a fixed Kahler clas#ig, such that(:x)
holds. Then there is a constafitsuch that

| Fillwar < C.

. . . 2p—4
Hence a subsequence oFf'} converges irC* with0 < o < ”T

With applications Fi(z, ) will be replaced byF(z, z, t) asin (1.2). Then we have
our next theorem as follows.

THEOREM 1.4. Let(M, [wo]) be a compact Kahler surface admitting no nonzero
holomorphic tangent vector fields. Under the fidwt),let F satisfy(1.2)on[0, T')
with the property(x) and condition(xx); that is,

/|Ric|”d,u§K, p>2
M

for the positive constant#l, K, p that are independent af Then the solution

of (1.1)exists onM x [0, c0). Moreover, there exists a subsequence of solutions
{g()} of (1.)on M x [0, co) that converges smoothly to one of constant scalar
curvature metric.

As a consequence of Theorem 1.4, under conditian, property(x) holds when
(M, go) is a Kahler surface wittlRg < 0 (Lemma 4.2). Hence we have the fol-
lowing theorem.

THEOREM 1.5. Let(M, [wo]) be a compact Kahler surface admitting no nonzero
holomorphic tangent vector fields and wiky < 0. Given the Calabi flow with
condition (xx) on [0, T), the solution of(1.1) exists onM x [0, o) and there
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exists a subsequence of solutidgsr)} of (1.1)on M x [0, co) that converges
smoothly to a negative constant scalar curvature metgic

ReMARk 1.3. (i) If m = 1 then, under the flow (1.3), conditiqe«) holds for
p =2 > 1 Then we have Proposition 1.1 without conditi@:).

(i) If m = 2 then, under the floi.1) onM admitting no nonzero holomorphic
tangent vector fields, we have bounds on ifenorm of scalar curvature, Ricci
curvature, and Riemannian curvature in the fixed Kahler class (Corollary 2.2).

(iii) LeBrun [L] proved the following. LetE — X be a rank-2 holomorphic
vector bundle over a compact Riemann surfacend let(M, J) = P(E) be the
total space of the associatédP-bundle. Let {o] be a Kahler class o with
Ci(M)-[w] < 0(e.g., genugx) > 2). Then ] contains a Kéhler metric of neg-
ative constant scalar curvature if and onlyEifis a semistable vector bundle; that
is, E = @ E;, where theE; are stable vector bundles in the sense of Mumford—
Takemoto [K; LU; UY]. On the other hand, in [BB] the authors constructed a
rank-2 non-semistable holomorphic vector bunateover ¥ of genus> 2 such
that P(E’) admits no nonzero holomorphic tangent vector fields and does not ad-
mit an extremal Kahler metric in the fixed Kéhler class (and then does not admit
a constant scalar curvature either).

In view of these results of [L] and [BB], we have the following corollary.

CoroLLARY 1.6. Let E — X be a rank2 holomorphic vector bundle over a
compact Riemann surface of genus> 2, whereE is not a semistable vector
bundle andP(E) admits no nonzero holomorphic tangent vector fields. [Lét
be a Kahler class orP(E) admitting a metric of negative scalar curvatuend
thenCy(P(E)) - [w] < 0). Then the Calabi flow does blow up 8(E) x [0, T)

in the sense that, for any > 2,

/ |Ric|”du — o0 ast — T.
P(E)

REMARK 1.4. (i) We may easily modify the example of [BB] so that the ruled
surfacesP(E) as in Corollary 1.6 do exist.
(ii) It may be possible fof" = co.

It is difficult to estimate the” °-bound of the fourth-order parabolic equatidri)
owing to a lack of the maximum principle.

We briefly describe the methods used in our proofs. In Section 2 we derive
the key estimate of equatiaii.1) (Theorem 2.3). In Section 3—based on the
Green formula, [Cao] and [Y]—we have the Harnack estimate for the equation
(1.1). Then we obtain th€ °-bound for solutionF(¢) of (1.2) and the higher-order
W, p-estimates of the solution f@t.1). Furthermore, if we assume the condition
(x*) and the uniformly lower bound for solutioFi(z) of (1.2), then we have the
long-time existence and convergence of solutiond 4.
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In view of Section 3, we reduce the proof of our main theorems to finding a
uniformly lower bound ofF () in Section 4. In fact, following Theorem 3.2 and
the condition(xx), we have the uniformly lower bound for the solutiérof (1.2)
if Ro < 0. Finally, in Section 5 we study the asymptotic behavior of solutions
of (1.1).

We would like to thank Professor S.-T. Yau for his constant encouragement dur-
ing our work on this problem and the referee for valuable comments.

2. The Mass Decay Estimates

In this section we consider the Calabi fl¢iv1) onM admitting no nonzero holo-
morphic tangent vector fields. Under this flow, we have the following lemma.
LEMma 2.1. Fort > 1o,

/deu|t§/ deu|to.
M M

Proof. The lemma follows easily from [C1]. O

CoroLLARY 2.2. There exists a positive constaiithat is independent of such

that
/ deu <C
M

for0<T < o0.

REMARK 2.1.  From [C1], we also have bounds on fifenorm of Ricci curvature
and Riemannian curvature in the fixed Kahler class.

Next, we will derive the following integral bound @rf. From now onC denotes
a generic constant that may vary from line to line.

THEOREM 2.3. Under the Calabi flow on a compact Kéhler surfa@é, [wo]),

/ ¢ ditg < Cla)
M

for 0 < o < oo.

REMARK 2.2. (i) In the proof of Theorem 2.3, we need only the bound on the
L?-norm of the Ricci curvature tensor that is satisfied owing to the flow.

(if) Under this flow,
d d
— | du=— | e"duo= | (AR)du =0;
ar ), M dthe o fM( ) dpu

then the volume is preserved and

/ efdug < oo.
M
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(iii) For m > 2, the inequality (2.3) does not hold. This is one of the reasons
why the theorem works for = 2 only.

Proof of Theorem 2.3First, with respect tgo, we have the Sobolev constatyg.
Thatis, forN = 25 n = 2m, andp € C*(M),

2/N 0
(f |<P|Nduo> SA0</ |V<p|2duo~l-f gozd;m).
M M M

But for ¢ = e/Vf,

2/N 2/N
(/ |f|Ndu) - (/|¢|Ne-qu)
M M
2/N
(/ |<P|NdMo>
M
< Ao(/MlgwlszoJr/Mdeuo) (21)

Now, for f = e*f with « > 0 we have

2
Age@/N+20F e<2/N+2°‘)F|:<% + 2a>AoF + (% + 2a> |%F|2}

and so
0 2 2
/IWI duo+/ 9 duo
M M

0
:/|Ve(l/N+oz)F|2d'uo+/ e(2/N+2a)FdMO
M M

1 2 0
(ﬁ +a) f 6(2/N+2a)F|VF|2d/,L0+/ 6(2/N+2a)Fd/,L0
M M

1
—(—+a>/ e(2/N+2a)FAOFdMO+/ ¢@IN+20F g\ o
N M M

But o -
—AoF = gaﬂRQB — Ro,

and this implies that

0 2 2
/Ichl du0+f 0 duo
M M

1 0
= N+O¢)/ e(Z/N+2°‘)F(ga5Ra5—Ro)duo+/ e@INT20F gy o
M M

0
=< Cl/ e(4/N—1+4a)Fd,bL0+C2/ IgagRa5|2dM+C3/ e(2/]v+2a)pd'u0
M iy .

< C]_/ e(4/N—l+4ot)Fd’uO+C3/ 8(2/N+2a)Fd,LL0+C4. (22)
M M
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Together, (2.1) and (2.2) imply

2/N
(/ 6(1+Na)deL0> < CS(/ e(4/N—1+4a)FdMO+/ 6(2/N+2a)FdMO> +C6
M M M

In particular, form = 2,

1/2
(/ e(l+4Dt)FdMO> < CS(/ e4aFdMO+/ 6(1/2+2a)deL0> + Ce. (23)
M M M

Now, fore: > 0 we havel+4a) > 4o and(1+4e) > (3 + 2c). Onthe other
hand, ,, e dug is bounded. Thus, for (say) = %1 we have

1/2
(/ eZFd,uO) scs(/ eFdMo+/€FdMo>+C6§C;
M M M

o= % yields Young’s inequality,

12
(/ e3FdMo> < C5</ €2Fd/Lo+/ 6(3/2)Fd,u0) +Csg
M M M
< C(/ eZquo—i-/ equc)) + Ce
M M

<C.

Repeating this iteration, one then obtains

/ e dpo < C()
M

for0 < a < oo. OJ

3. A Priori Estimates

In this section (following [Cao; Ch1; Chr; Y]), undé%) and (xx), we will de-
rive all W ,-norm bounds on the solutiofi of (1.2); in particular, we have the
W2, ,-norm bounds o F'}. This, together with the local existence result, will
then show the long-time existence of solutionglof) and (12).

First set

1
$=9 i /Mq’ Ho
Then, as shown in [Y], we have the following result.

LemMA 3.1. There exist constarttg and Cy, independent of, such that

sup ¢ < Cs, sup |plduo < Co.
Mx[0,T) Mx[0,T) JM

Based on the Green formula and Theorem 2.3, we have the following uniformly
upper bound oF (¢) (or {F'}).
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THEOREM 3.2. Under the flow(1.2),if (xx) is satisfied then

F < Cypo
for all € [0, oc].
Proof. From the Green formula, l&¥ (X, -) denote the Green’s function faxg

with singularity X € M. ThenG(X,-) > 0 and||G(X, )|« < Cforgq < 2
(m = 2). Now

efdug
ef(X) = % —/ G(X, )Aoe” dpo
M M
efdug 0
= % —/ G(X.)e"(AoF +|VF|?) duo
M M

0
<c+ / G(X, )|2u5Rus — Rol dit
M

1/q 0 p
<C+ (/ G(X, ~)"du> (/ IgagRagl”du>
M M

1/q
< C—i—C(/ G(X, ~)"d,u>
M

for g < 2 (sincep > 2). But from Theorem 2.3, for/I; + 1/I, = 1 andgl; < 2
we have

1/q 1/q
(/ G(X, .)qdu> = (/ G(X, -)qudu0>
M M
Yl2q1/q
5[( / G(X, ')qlld,uo)l/ll< / 612Fdﬂo> }
M M

C.

IA

Then
ef(X) <,

which completes the proof of the theorem. O
CoroLLARY 3.3. Under the flow(1.2),if (xx) is satisfied then
¢l < Cu.

Proof. From Lemma 3.1, we can renormaligesuch thatp < —1. Then use [Cao,
Lemma 3] except replad@.14) in theproof [Cao, p. 364] by

0 —p)P1 C
/(—¢)”_2|V¢>|2duo§n!/ O oF _1yduo < —/(—¢>)f’—lduo.
M v p—1 p—1Ju

Finally, use a Nash—Moser iteration argument to obtairCthestimate fogp. [
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THEOREM 3.4. Let F(¢) satisfy(1.2),and suppose that) and (xx) hold. Then
there exists a constaiit = C(/) > 0 (I > 1) such that

0
IV'Fz 2,0, <C Vre[0,00].
Moreover, ifp > 2 then

IF®)llw,, < C Vte[0,o0].

REMARK 3.1.  For the sequendé}, under(x) and(xx) we have only théV; ,-
norm bounds; that is, '
1F'llw,, <C, p>2

Proof of Theorem 3.4From Lemma 4.1, under conditiqr x), the property(x)
implies
F > —Cop.
This and Theorem 3.2 plus*) imply
/(AOF)deo <C, p>2
M

and so
I Fllw,, < C. (3.1

On the other hand, by [Chr, Sec. 4]—in particular, by the interpolation inequality
and Sobolev imbedding theorem for 4-manifolds—it follows that

d 0 l 0 1+2

EIIV Fllp, < =2|V7"FllL, + CIF = (F)llw,,
where(F) = ( f,, F duo)/( f,; dio). Together, these results imply that

0
IV'Fll,, <C.

We refer to [Ch1; Chr] for detalils. O
Applying the results as in [Y] then yields the following.
ProrosiTioN 3.5. There exist constants;,, Cy3 such that

R a )
forallt [0, T).
Then the higher-order estimates f@dr1) will be established. For details, see
[Cao; Y].

4. Find a Lower Bound

In view of Section 3, we reduce the proof of our main theorems to finding a uni-
formly lower bound onF(¢) (or FY).
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DEeFINITION 4.1.  We say thafF(¢) (or F') satisfies the propert) if there is a
pointx € M as well as positive constangs e, H such that

/ e Fdug< H. (*)
B(x,p)

LemMma 4.1. Let F satisfy(1.2) on a fixed Kahler claséM, [wo]) with condition
(+x) and the property(x). Then there exist positive constaft§, 6o such that

/ e  dug < Cy. 4.2
M
As a consequence, there is a const@psuch that

F > —Cy. 4.2)

ReMARk 4.1. From Theorem 3.2, we have the upper bound
F < Cyo.

This is the key point to have a lower bound 8n

Proof of Lemma 4.1Consider

0
f |V€78F|2d,l,L0 — _/ EiaFA()ei(SFd/,LO
M M
0
= —/ e 2F(SAGF + 8?|VF|?) duo
M
0 -
< 8/ e_zaF(—g“’SRo,g + Ro) duo
M
<3$ / e PP Roduo + 8 f e*ZSF(—E“ﬁRQB)dMO. (4.3)
M M

Now fix r and letE, = {p e M : E“BRQB < b}. Then

- 048 - 048
/ e~ (— QPR 5) dyuo < / P (—§PR 5) dyso. (4.4)
M Eo

From the computation of [Y, (2.23)], at the pointvhere exg—Ciap }{2+ Ao}
achieves its maximum ofig, we have

e "DQ2+ Aog)*(q) < C15(2+ Aop)(g) — AoF(q) + Crs.  (4.5)
But on Eq we have—AgF = gaﬁRaﬁ — Ro < —Rp and, from Theorem 3.2 <
Cioover M. This implies

(24 Aog)?(q) < C17(2+ Aop)(q) + Cis
and then
(24 Aop)(g) < Cro.

These inequalities and Corollary 3.3 imply, as in [Y, (2.24)], that
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0 < (2+ Aggp) < Crgexp{Cua(p — inf p)} < C2o (4.6)
on Eq. Moreover, (4.6) and (4.5) imply
o -
24 Ao09)?(@) < Ca+ g*"R,5(q). (4.7)
Next considerE, € Eg, s = —Ca + Ca0e™ ' < 0 for some constanty,

which is possible because 6f < Cy1o. Then use the same method as before, now
on E,, to obtain

0.2 .
24 Aop)*(q') < Ca+ 8°PR,5(q") < Cope™ " < Cope”
for some poiny’; from (4.6),
0 < (2+ Agp) < Coze¥2F (4.8)
on E;.

On the othe(r) h_and, we may choose (as in [Y, (2.8)]) a coordinate system at a
point such thag®? = 8 @Ndg,5 = 8,500a- Then, at that point we have

g% = 8,51+ pur)? (4.9)
and, since” = detg = 1+ ¢11) 1+ ¢),
(24 Aop) = A+ @) + L+ @) > 2e"72, (4.10)

Then, from (4.10) and (4.8) we have

Cose /% < g% < Coge™ 112
and so )
IR| = Case "121g°R 51 (412)
onE;.
From (4.4) and (4.11) it now follows that, for smallwith (% + 28)q <1
1/g +1/p =1 andp > 2,

_ 0,3
| e R g do
M
_ 0,3
< / e BF(—goPR ) duo
Eo

0. 3
S/ e—F/Z—ZSF(_e—F/ngIﬂRaE) d/.L+C27/ e—ZSFdMO
s M

1/q 0 = 1/p
< </ o ("Y2-28)gF dﬂ) < (_e—F/ZgaﬁRaB)p dM)
s E.V

+C27/ e dug
M

< Cyrg+ C27/ eizaFdM@
M

From (4.3) we may then conclude that

0
/ |Ve |2 dpo < C29+5C30/ e *F duo.
M M
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Now let A; denote the first nonzero eigenvaluefd. By Rayleigh inequality,
we have

_ 2
/ e—zapd,u0< (fMe SFdMO)
M

(/s dio)

(Jue" d,uo)2 Co 8 —26F
=< W )»_1 + ZC3OL e dio. (4.12)

1 0
+—/ |Ve " |2 dpo
A Ju

But for§ < ¢, one has

/efapd.uo=v/ faFdMo-Ff eFdug
M B B¢

P 14

1/2 1/2
sen (o) ([ o)
BS BS
and then, for any > 0,
(fy e dpo)® ([5cdro)
= =<C(n)+ 1+ ”—/ez‘”d.
(Joy dito) (m + A+n) (J, o) I o

This implies that

(e dio) 5
/ e 2F duo < Cop) + At~ f e 2F duug+ - Ca / e 2 du.
M ( [y dieo) Ju A1 M

Then choose, § small enough and takiy = 268, which gives us (4.1).

To see that (4.2) follows from (4.1), apply the Green formula again. Now take

81 K 8o With 8192 < 80, 1/q1+ 1/q2 = 1, andq; < 2; this yields

Jue ™ duo _
fM d/'LO

0
<C _/ G(x, )e (=81 AoF + 82|VF|?} dpo
M

e (x) = f G(x, YAole ™) dug
M
_ 048
< Cby [ GG R - 8 Rugldu
<cic / G (x, ) dpto + f G (x, [ -8R 5] dito
M M
Yq1 1/q2
< C+C(f qudMO) (/(e—BlF)QZ d,bbo)
M M
.
+ / ¢ G (x, )[-g Rz duo
Eo

< Ca+t / G (x, Y8R ;] duo. (413)
Eo
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As before, choos#& small with (3 +81)g < 1,1/ +1/p =1 1/q' +1/q" =1,
qq’' < 2,andp > 2:

_ 045
/ G (x, )[R 5] dito
Eo

< / e_F/z_alFG(—e_F/zgr“BRag) du + C27/ e G dug
s M

1/q 0 - 1/p
5( / qu<—1/2—81>”du) < (_e_F/ZgaﬁRaB)de> +Ca
s ES

IA

1q
C</ qu[1(1/2+51)q]FdMO) +Cqy
Eg

) Yq' , Yq”
< C(/ G4 dMo) </ eI~ W2+304lq FdMO) +Cq

< C32.
Then
e (x) < Cas,

which completes the proof of Lemma 4.1. O

LemMma 4.2. Let F satisfy(1.2)on a fixed Kéhler claséM, [wo]) with condition
(*x) and Ry < 0. ThenF(¢) satisfieq(x).

Proof. Since Ry is negative, there exists a positive constant 0 with —Rg >
v > 0. From (4.3), one now obtains

0
5t / Ve 2 djug
M
_ _ 0,3
< [ e Roduo+ [ e BIER ) duo
M M
_ _ 0,3
S/ e Z‘SFRodMo-I—f e PF(—g“PR5) duo
M Eo
.
< —v/ eiZ‘Squo-i-/ 6728F(—gaﬂRa,§) dpo
M Eo

< —v / e 2 dug — / e*25F§aﬁRa5duo+c28. (4.14)
M Eo\E;

Again as in [, (2.23)], at the maximum poigtwe have

0
e "2+ 20p)*(9) = 2032+ Bog)(@) +4INf Rz = MoF ().

0
From [Y, (2.21)], we may choos€ss + inf;; R;;; = 1. BecauseR, < 0 and
0 0 0
Riin + Ry = Ro atg, it follows that inf,; R;;;; < 0 and
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2 . 0 0.z . 0
C(2+ Aop)® < (2 -2 ”;1; RJ;;’)(Z + Aop) + g*PR, 5 + 4!21; R;zii — Ro
1 1

. _
= (2-2inf Rip) @+ Aop) + 87R, 5

Now we may assume that

2+ Aogp) < -

0
2(2 -2 inf,‘¢1 RitTIZ)
on Eg\ E,. Otherwise,
C3s < (24 Aop) = A+ ¢43) + 1+ ¢3) < Coo.

Bute” = detg = 1+ ¢11) L+ ¢23), SOF has a uniformly lower bound. In this
case (sayp and|g* R, ;| < C2),

_ 0,3
/ e 2R i duo < Cas
D

and
257 0ud C0sp 047
/ e PR 5 duo < C28+C36+f e ?Fg*PR 5 dpo.
Eg Eo\(Es;UD)

On Eo\(E; U D) we have

0 2
2+ Aop) < 3v+8*R,z

and so o
_gaﬂRa_ =

NI
(4

From (4.14), it follows that

0 0 2
5 [ Ve o < v [ e o+ [ PR 5 do
M M

Eo

1
< ——U/ e P dpo + Cog+ Cas.
2 Ju
Thus
/ e dug < Car,
M

and the lemma is proved. O

CoroLLARY 4.3. Given the assumptions of Lemma 4.2, we have
F > —Cag.

5. Asymptotic Convergence to the Metric
with Constant Scalar Curvature

In this section, le{M, [wo]) be a compact Kéhler surface admitting no nonzero
holomorphic tangent vector fields. We will show that there exists a subsequence
of solutions of(1.1) that converges to the metric with constant Scalar curvature.
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Consider the energy functiondl(g) together with Simon’s general results [S].
Then we have the following theorem.

THEOREM 5.1. Given the assumptions of Theorem 1.5,
R, ast; — oo,
wherer is constant withr = ( f,, Rduw) /( [,, du).

REMARK 5.1.  Heref,, Rdu and [, du are all constants in a fixed Kahler class
Hg,.

Proof of Theorem 5.1ln view of (1.1), (12), Lemma 2.1, and the Cauchy—Schwarz
inequality,

d
o [ Ran=2 [ (Rgldu = [ amian
M M

dt Jy
/ /(AR)szdt<oo.
0 M

Then there exists a subsequefigg such that

and so

/(AR)Zd,uLj — 0 ast — oo.
M

We know that|| F|ly«2 < C forall 0 < ¢; < oo, so the elliptic estimates and
interpolation inequalities yield

RS+ and g <, 8oo
ast; — oo such that
Ay R =0. O

Now, Theorem 1.2 and Corollary 1.3 follow from Theorem 3.2, Lemma 4.1,
Lemma 4.2, and (3.1). Theorem 1.4 and Theorem 1.5 follow from Theorem 3.4,
Lemma 4.1, Lemma 4.2, and Theorem 5.1.
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