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1. Introduction

We first recall some basic facts about the dynamics of (holomorphic) polynomial
automorphisms ofC2. It was shown in [FM]that the ones with interesting dynam-
ics are affinely conjugated to a finite composition of generalized Hénon maps—that
is, maps of the form(x, y)→ (P(x)− ay, x),whereP is a holomorphic polyno-
mial inC. The dynamics of such maps is studied in detail in a sequence of papers
by Bedford and Smillie, starting with [BS], in [FS], and also in [H].

For simplicity, let us refer to the case of one generalized Hénon map,h(x, y) =
(P(x) − ay, x), whereP has degreed ≥ 2. There are two posibilities: either
the forward iterateshn of h can escape to infinity at super-exponential rate
(∼ (const)d

n

) or they are locally uniformly bounded. The first situation occurs
on an open setU+ and the second on the complementK+ = C2 \ U+. Then
the Fatou set ofh, defined in the usual sense as the largest open set on which
the iterates{hn} form a normal family, is given byU+ ∩ intK+, while the Julia
set is∂K+. Similar statements hold for the inverse maph−1, the corresponding
sets being denoted byU− andK−. Using these facts, one defines (pluricomplex)
Green’s functions which measure the (super-exponential) rate of escape to infinity
in forward/backward time:

G±(w) = lim
n→∞

1

d n
log+‖h±n(w)‖,

wherew = (x, y)∈C2. These functions are continuous plurisubharmonic onC2

and actually pluriharmonic onU+ (resp. onU−). Moreover,K± = {G± = 0}.
The Green’s functions are used to define the currentsµ± = ddcG±, supported
on ∂K±, which satisfyh?µ± = d±1µ±

(
heredc = 1

2πi (∂ − ∂̄)
)
. It follows that

µ = µ+∧µ− is a probability measure supported on∂K+ ∩ ∂K−, which is invari-
ant underh. The currentsµ± and the invariant measureµ are important tools in
understanding the dynamics ofh.

It is an interesting problem to study the dynamics of polynomial automorphisms
of CN in dimensions higher than 2. To our knowledge, there are only a few at-
tempts in this direction, which we briefly recall now. The theory of Hénon maps
in C2 carries over to the special class of shift-like polynomial automorphisms of
CN, which are introduced and studied in [BP].
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A polynomial automorphismh of CN and its inverseh−1 can be regarded as
meromorphic maps ofPN, which are well-defined away from the indeterminacy
setI+ (resp.I−). This approach is used by Sibony in [S]. He callsh a regular
automorphism ifI+∩ I− = ∅. Note that this is always the case for Hénon maps in
C2. For such automorphisms he defines the Green’s functionsG± and the currents
µ± as in the 2-dimensional case. The closed setsK± = {G± = 0} are still the
sets of points with bounded forward (resp. backward) orbit; on the complements
U± the iterates escape to infinity at super-exponential rate. Moreover, Sibony
shows that there exists a positive integerl such that the measure(µ+)l∧ (µ−)N−l
is an invariant probability measure with interesting dynamical properties. Hence
the dynamics of regular polynomial automorphisms is similar in many aspects to
that of Hénon maps ofC2. For the study of dynamics of birational maps ofP2 we
refer to [D].

In this paper we consider the dynamics of polynomial automorphisms ofC3,

which are not regular in the sense of Sibony. The polynomial automorphisms of
degree 2 have been classified up to affine conjugacy into seven classes by Fornæss
and Wu [FW]. For this reason, we restrict our attention to the quadratic case.
However, when dealing with the inverse maps, we must consider quite often poly-
nomial automorphisms of higher degree.

Of these seven classes, two consist of affine automorphisms and elementary
automorphisms, which have simple dynamics. (See [FW], and also[FM], since
they are in direct analogy with the 2-dimensional case.) It turns out that the remain-
ing five classes have rich dynamics, exhibiting new interesting phenomena. These
new dynamical behaviors are different in many aspects from the 2-dimensional
case and from the higher-dimensional cases studied in [BP] and [S].

In Sections 2 through 6, we consider the five classes of polynomial automor-
phisms just mentioned. We use the same order and notationsH1 throughH5 as in
[FW]. The main goal is to introduce the Green’s functionsG±, to understand their
properties, and to identify the new dynamical phenomena that occur in dimension 3.
Our approach is as follows: We find first the open setU+where the forward iterates
Hn of the mapH under consideration escape to infinity at the super-exponential
rate(const)2

n

, which, of course, is the highest possible rate. We then prove that,
on the complementK+ = C3 \U+, the iterates either are bounded or they escape
to infinity at a much slower rate (e.g., in some cases exponential∼ (const)n). The
existence of this slower order of growth of the iterates is one of the new phenom-
ena alluded to previously. Using these facts, we can follow the technique in [BS]
to define the Green’s functionG+. A similar study is done in each case for the
inverse mapH−1, leading toU−, K−, andG−. In Section 7 we summarize the
main conclusions regarding new dynamical behaviors that occur in this setting.

The maps of the classesH1 andH2 (discussed in Sections 2 and 3) are semi-
direct products, and the results we obtain in these cases are fairly complete. For
these maps, the Green’s functionsG± are pluriharmonic onU±, and exactly one
of the setsK± (say,K+) consists of both points with bounded orbit and points
with orbit escaping to infinity at exponential rate. The other set,K−, consists only
of points with bounded (backward) orbit. Thus we obtain an invariant measure by
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taking the wedge product ofµ+ ∧ µ− with a third invariant(1,1) current arising
from the set of points with bounded forward orbit insideK+.

For the other classes it also happens in general thatG+ andG− are both plurihar-
monic onU+ andU−, respectively. This is not the case in the situations considered
in [BP] and [S], and it makes it impossible to construct invariant measures using
only the currentsµ± (as it is done in [BP] and [S]). Indeed, we haveµ+ ∧ µ+ =
µ−∧µ− = 0. Moreover, sometimes it also occurs under these circumstances that
H?µ+ = 2µ+, butH?µ− = 1

3µ
− since the degree ofH−n is 3n.

Throughout the paper we will use the following notation:w = (x, y, z) for a
point ofC3, andwn = (xn, yn, zn) = Hn(x, y, z), n ≥ 1, whereHn denotes the
nth iterate of a self-mapH of C3. We also let‖ · ‖+ = max{‖ · ‖,1}, where‖ · ‖
denotes the Euclidean norm. Whenever we refer toP3 as a compactification of
C3, we denote by [x : y : z : t ] the homogeneous coordinates onP3 and we iden-
tify C3 = {[x : y : z : 1]} ⊂ P3. Moreover, when referring to polynomials, we
will sometimes use the abbreviation l.d.t. with the meaning lower-degree terms.

Let us also note here that, in some of these cases, the estimates we obtain for
the order of growth of the orbits insideK± may not be sharp. They are, however,
good enough for the purpose of introducing the Green’s functions. In our forth-
coming papers, we will deal with the construction of invariant measures as well as
with the study of the dynamics of the maps onK+ andK− (e.g., with questions
like finding the precise rates of growth of the iterates or finding the points or sets
at infinity where orbits cluster).

Acknowledgment. Part of this work was done while the first author was vis-
iting the University of Wuppertal as a Humboldt Research Fellow. He is grateful
to Professor Klas Diederich for the invitation and to the Humboldt Foundation for
their support.

2. The ClassH1

The maps of this class are semi-direct products of the form

H1(x, y, z) = (P(x, z)+ ay,Q(z)+ x, cz+ d ),
where max{deg(P ),deg(Q)} = 2 andac 6= 0. As noticed in [FW], these maps
are dynamically interesting ifc 6= 1 andP has degree 2 inx. Then for any fixed
z, the map is essentially a Hénon map ofC2.

Sincec 6= 1,we may assume by an affine change of coordinates inz thatd = 0,
soH1 has the form

H1(x, y, z) = (αx2 + p1(z)x + p2(z)+ ay,Q(z)+ x, cz), (2.1)

where deg(p1) ≤ 1, deg(p2) ≤ 2, deg(Q) ≤ 2, andαac 6= 0. The inverse map
H−1

1 has the form

H−1
1 (x, y, z) =

(
y −Q

(
z

c

)
, α̃y2 + p̃1(z)y + p̃2(z)+ x

a
,
z

c

)
,

whereα̃ 6= 0, deg(p̃1) ≤ 2, and deg(p̃2) ≤ 4.
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Hence, in order to understand the dynamics ofH1 andH−1
1 , it is enough to con-

sider mapsH of the form

x1= αx2 + p1(z)x + p2(z)+ ay,
y1= Q(z)+ x, (2.2)

z1= cz,
whereαac 6= 0, deg(Q) ≤ 2, and where deg(p1) = k and deg(p2) = l are
arbitrary. Indeed, the mapH−1

1 is conjugated to a mapH of form (2.2) by the
transformation(x, y, z)→ (y, x, z).

It is easy to see that the degree ofHn is d2n−1, where d = deg(H ) =
max{2, k +1, l}. We will need the following lemma.

Lemma 2.1. There exists a constantC > 1 depending only on the coefficients of
H such that, for alln ≥ 1andw ∈C3, we have

‖(xn, yn)‖ ≤
(
C|c|d+|z|d+‖(x, y)‖+

)2n
, ‖wn‖ ≤

(
C|c|d+|z|d+‖(x, y)‖+

)2n√
2.

Proof. We note that

|x1| ≤ (|α|+|p1(z)|+|p2(z)|+|a|)‖(x, y)‖2+, |y1| ≤ (|Q(z)|+1)‖(x, y)‖2+,
hence max{|x1|, |y1|} ≤ C ′|z|d+‖(x, y)‖2+ for some constantC ′ > 1 depending
only on the coefficients ofH. If we let C = C ′√2 andC(z) = C|z|d+, it follows
that‖(x1, y1)‖ ≤ C(z)‖(x, y)‖2+ and so

‖(xn, yn)‖ ≤ C(cn−1z)(C(cn−2z))2 . . . (C(z))2
n−1‖(x, y)‖2n+

= ‖(x, y)‖2n+
n∏
j=1

(C(cn−jz))2
j−1
.

AsC(cjz) ≤ C|c|jd+ |z|d+, we see that

n∏
j=1

(C(cn−jz))2
j−1 ≤ (C|z|d+)2

n−1(|c|d+)An,

where

An =
n∑
j=1

(n− j)2j−1 ≤ 2n−2
∞∑
j=1

j

2j−1
= 2n.

This yields the first estimate. The second one follows easily from this, as|zn| =
|cnz| clearly satisfies the same estimate as‖(xn, yn)‖.
We now have to consider the three cases|c| > 1, |c| = 1, and|c| < 1 separately
because the dynamics ofH is different in each case.

Case 1:|c| > 1

We fix a numberδ ∈ (0,1) and, forR > 0, we define the set

V − = V −(R) = {w ∈C3 : |x| > max{R, |y|, |z|d+1} }. (2.3)
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Lemma 2.2. For any numberδ ∈ (0,1) there existsR0 = R0(δ) > 0 such that,
if R ≥ R0, thenH(V −) ⊆ V − and the following estimates hold forw ∈V −:

|x1− αx2| < δ|α||x|2, |y1− x| < δ|x|,
|α|(1− δ)|x|2 < |x1| < |α|(1+ δ)|x|2, (1− δ)|x| < |y1| < (1+ δ)|x|,

[|α|(1− δ)]2n−1|x|2n < |xn| < [|α|(1+ δ)]2n−1|x|2n .
Proof. We deal at first with the estimates. LetC be a constant depending only on
the coefficients such that max{|p1(z)|, |p2(z)|, |Q(z)|} ≤ C|z|d+. Forw ∈ V − we
get, by using (2.2) and (2.3),

|x1− αx2| ≤ C|z|d+|x| + C|z|d+ + |a||y|
< C|x||x|d/(d+1) + C|x|d/(d+1) + |a||x| < δ|α||x|2,

|y1− x| ≤ C|z|d+ < C|x|d/(d+1) < δ|x|.
The last inequality of each sequence holds provided that|x| ≥ R0(δ), with R0(δ)

sufficiently large. The third and fourth estimates of the lemma are immediate con-
sequences of the first two. The fifth estimate follows by repeated use of the third
one, once we have proved the invariance property ofV −.

Let noww ∈ V −. Using the estimates already established, ifR0(δ) is suffi-
ciently large then each of the following inequalities hold:

|x1| > |α|(1− δ)|x|2 > |α|(1− δ)R2 >R,

|x1| > |α|(1− δ)|x|2 > (1+ δ)|x| > |y1|,
|z1|d+1= |c|d+1|z|d+1 < |c|d+1|x| < |α|(1− δ)|x|2 < |x1|.

These showH(w)∈V −.
We now define

U+ =
∞⋃
n=0

H−n(V −), K+ = C3 \ U+. (2.4)

By Lemma 2.2, note thatU+ is an increasing union of open sets; in particular,U+

is open and henceK+ is closed. From the estimates of Lemma 2.2 it follows that,
onU+, the iterates ofH escape to infinity at super-exponential rate: ifw ∈ U+
then

|xn| > [|α|(1− δ)R]2n

|α|(1− δ) , yn = xn−1+O(|xn−1|),

for all n sufficiently large. We actually see thatyn/xn → 0, soHn(w)→ [1 : 0 :
0 : 0]∈P3 asn→∞, the convergence being locally uniform onU+.

Lemma 2.3. If w ∈K+ then, for every integern ≥ 0, we have

max{|xn|, |yn|} ≤ |c|n(d+1) max{R, C̃, |y|, |z|d+1},
whereR is as in the definition(2.3)ofV − and the constant̃C depends only onH.
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Proof. If w ∈K+ then(xn, yn, zn) /∈V − for everyn ≥ 0, so

|xn| ≤ Mn = max{R, |yn|, |zn|d+1}.
By the definition ofMn and by (2.2) we have that

|zn|d+1= |c|d+1|zn−1|d+1 ≤ |c|d+1Mn−1,

|yn| ≤ |Q(zn−1)| + |xn−1| ≤ C|zn−1|d+ +Mn−1 ≤ CMd/(d+1)
n−1 +Mn−1,

whereC is a constant depending onH as in the proof of Lemma 2.2. It follows
that

Mn ≤ max{R,CMd/(d+1)
n−1 +Mn−1, |c|d+1Mn−1}

≤ max{R, C̃, |c|d+1Mn−1}, (2.5)

whereC̃ = [|c|C/(|c|d+1− 1)]d+1. Indeed, ifCMd/(d+1)
n−1 +Mn−1 ≥ |c|d+1Mn−1,

thenMn−1 ≤ [C/(|c|d+1−1)]d+1 and soCMd/(d+1)
n−1 +Mn−1 ≤ C̃. The lemma now

follows by repeated use of (2.5).

At this point let us observe that the complex hyperplanez = 0 is invariant under
H, the restriction ofH to this hyperplane is a Hénon map ofC2 given by

h(x, y) = (αx2 + p1(0)x + p2(0)+ ay,Q(0)+ x).
If we denote byK+h ⊂ C2 the set of points with bounded forward orbit, then
by [BS] this set is unbounded (hence nonempty), andK+h × {0} ⊂ K+ con-
sists of pointsw ∈ C3 with bounded forward orbit underH. Moreover, ifw ∈
K+∩{z = 0}, then theH -orbit ofw is bounded. Indeed, by Lemma 2.3, this orbit
could escape to infinity at most at exponential rate, so it must be bounded in view
of the results of [BS]. We will see later (Corollary 2.6) thatK+ contains points out-
side the planez = 0 as well. Sincezn = cnz, the iterates of any such point escape
to infinity at exponential rate. We summarize our results in the following theorem.

Theorem 2.4. For a mapH of form (2.2), let U+ andK+ be defined by(2.4).
The orbits of a pointw ∈C3 can either escape to infinity at super-exponential rate
or grow at most exponentially. The first situation occurs precisely on the open set
U+,where the iterates ofH converge locally uniformly to[1 : 0 : 0 : 0]∈P3. The
iterates of a pointw ∈K+ are bounded if and only ifw ∈K+ ∩ {z = 0}. If w ∈
K+ \ {z = 0} then the iterates escape to infinity at exponential rate.

We now proceed with the construction of the Green’s function, following the meth-
ods of [BS]. Recall that deg(Hn) = d2n−1, whered = deg(H ) ≥ 2. For n ≥ 1
we let

Gn(w) = 1

d2n−1
log+‖Hn(w)‖, G̃n(w) = 1

d2n−1
log+|xn|,

and define the Green’s function

G+(w) = lim
n→∞Gn(w) = lim

n→∞ G̃n(w). (2.6)
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Theorem 2.5. The limits in(2.6) exist and are equal, the convergence being
locally uniform onC3 in both cases. The limit functionG+ is nonnegative, con-
tinuous and plurisubharmonic onC3; G+ is pluriharmonic onU+; andK+ =
{G+ = 0}. Moreover,G+ BH = 2G+.

Proof. By the estimates of Lemma 2.3 and sincezn = cnz, the two limits exist
and are both zero onK+. By Theorem 2.4 we haveyn/xn → 0 andzn/xn → 0
for w ∈U+, soG̃n(w) ≤ Gn(w) ≤ G̃(w)+ log 3/(d2n−1), provided thatn is suf-
ficiently large. Thus, if one of the limits exists atw ∈U+, then the other does also
and they are equal. By Lemma 2.2 we have, forw ∈V −, that|α|(1− δ)|xn−1|2 <
|xn| < |α|(1+ δ)|xn−1|2 and so

|G̃n(w)− G̃n−1(w)| < const

d2n−1
.

This shows that the sequence{G̃n} is uniformly Cauchy onV − and hence locally
uniformly Cauchy onU+. Thus the two limits in (2.6) exist and are equal onC3.

Moreover, the functionG+ is pluriharmonic onU+, sinceG̃n are pluriharmonic
and the convergence is locally uniform. By Lemma 2.2 we haveG+ > 0 onU+,
soK+ = {G+ = 0}. Relation (2.6) implies that

G+ BH(w) = lim
n→∞Gn(H(w)) = lim

n→∞2Gn+1(w) = 2G+(w).

The estimate on‖wn‖ from Lemma 2.1 gives, for allw andn,

Gn(w) ≤ M + 2 log+|z| + log+‖(x, y)‖ (2.7)

for some constantM depending onH. So the upper semicontinuous regularization
G+? ofG+ is plurisubharmonic onC3 and satisfies (2.7) as well (see[K]). We have
G+ = G+? onU+ ∪ intK+, whereG+ was already continuous. SinceG+ BH =
2G+, the same holds forG+? . Hence, for everyw ∈ K+ andn ≥ 1, we get by
(2.7) together with the estimates of Lemma 2.3 thatG+? (w) = G+? (Hn(w))/2n ∼
n/2n. It follows thatG+? = 0 onK+, soG+ = G+? is plurisubharmonic onC3.

Note thatGn andG̃n converge locally uniformly toG+ onU+ ∪ intK+. We now
use the upper semicontinuity ofG+ together with Hartogs’ lemma to see that, for
everyε > 0 and everyw ∈ K+, there exists an open ballBw centered atw and
n0 = n0(w, ε) such that 0≤ Gn(w ′) ≤ ε and 0≤ G̃n(w ′) ≤ ε for everyw ′ ∈Bw
andn ≥ n0. This shows that the convergence is locally uniform onC3, and hence
G+ is continuous.

Corollary 2.6. K+ \ {z = 0} 6= ∅.
Proof. If K+ ⊆ {z = 0} then—by the removable singularity theorem—the func-
tion G+, which is pluriharmonic onC3 \ K+ and continuous onC3, would be
pluriharmonic onC3. As G+ ≥ 0, this implies thatG+ is constant, which is
impossible.

Now we can define the closed positive current of bi-degree(1,1), µ+ = ddcG+,
which satisfies
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H?µ+ = ddc(G+ BH ) = 2µ+.

As in [BS, Lemma 3.6], we have that suppµ+ = ∂K+.

Case 2:|c| = 1

ForQ(z) = a1z
2 + a2z + a3 as in (2.1), we set|Q|(z) = |a1|z2 + |a2|z + |a3|.

Note that in this case|z1| = |z|. ForR > 0 we define

V − = V −(R) = {w ∈C3 : |x| > max{R, |y| − |Q|(|z|), |z|d+1} }.
It is easy to see that all of the conclusions of Lemma 2.2 hold in this case as well,
with the above choice ofV −. Next, we letU+ = ⋃∞

n=0H
−n(V −) andK+ =

C3 \ U+. As before, we have that onU+ the iterates ofH escape to infinity at
super-exponential rate, converging locally uniformly to [1: 0 : 0 : 0]. On the other
hand, this timeK+ is the set of points with bounded forward orbit as follows.

Lemma 2.7. If w ∈K+ then, for alln ≥ 0, we have

max{|xn|, |yn|} ≤ max{R, |y|, |z|d+1} + |Q|(|z|).
Proof. If w /∈K+ then, since|zn| = |z|, for all n ≥ 0 we have

|xn| ≤ Mn = max{R, |yn| − |Q|(|z|), |z|d+1}.
Note by (2.2) that

|yn| − |Q|(|z|) ≤ |Q|(|zn−1|)+ |xn−1| − |Q|(|z|) = |xn−1| ≤ Mn−1,

soMn ≤ max{R,Mn−1, |z|d+1}. This implies

Mn ≤ max{R, |y| − |Q|(|z|), |z|d+1},
which yields the estimate of the lemma.

The Green’s functionG+ is then defined as in (2.6), and Theorem 2.5 holds in
this case as well. Similarly, the currentµ+ = ddcG+ has the same properties as
before. We also see from the above remarks that the iterates{Hn} are a normal
family onU+∪ intK+,which is the Fatou set ofH. Hence∂K+ = J+ is the Julia
set ofH.

Case 3:|c| < 1

The new feature in this case is thatzn = cnz→ 0 asn→∞, so the orbit of any
point will approach the invariant hyperplanez = 0. If Q(z) = a1z

2 + a2z + a3

then forR > 0 we let

V − = V −(R) = {w ∈C3 : |x| > max{R, |y| − |a3|}, |z| < 1}.
Then Lemma 2.2 holds for this setV −, and the setU+, defined as in (2.4), has the
same properties as before. The complementK+ of U+ is the set of points with
bounded forward orbits, as the next lemma shows.
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Lemma 2.8. Letw ∈ K+ and choosen0(w) such that|zn0| < 1. Then, for all
n ≥ n0,

max{|xn|, |yn|} ≤ max{R, |yn0|} + |a3| + C|z|
1− |c| ,

whereC = |a1| + |a2|.
Proof. With the lemma’s choice ofn0, sincew ∈K+ we have that|xn| ≤ Mn =
max{R, |yn| − |a3|} for all n ≥ n0. As |Q|(|z|) − |a3| < C|z| holds for|z| < 1,
we have

|yn| − |a3| ≤ |xn−1| + C|zn−1| ≤ Mn−1+ C|zn−1|.
HenceMn ≤ max{R,Mn−1} + C|zn−1|, which yields the desired estimate.

The construction ofG+ andµ+ is accomplished as before, and Theorem 2.5 holds
in this case as well.

Invariant Measures. We now consider the problem of constructing invariant
measures for the mapsH1 of form (2.1).

If |c| 6= 1, and say without loss of generality|c| > 1, then the inverse map
H−1

1 has form (2.2) withz1= z/c. ThenK− = K+(H−1
1 ) is the set of points with

bounded backward orbit. LetG− be the Green’s function forH−1
1 , constructed as

in Case 3, and letµ− = ddcG−. We have(H−1
1 )?µ− = 2µ−, soH?

1µ
− = 1

2µ
−.

By Theorem 2.4, the set of points with bounded forward orbit is an invariant sub-
set ofK+, namelyK+ ∩ {z = 0}. ThusK+ ∩ K− ∩ {z = 0} is the set of points
with bounded full orbit (i.e., forward and backward). SinceH?

1(dd
c log|z|) =

ddc log|z1| = ddc log|z|, an invariant measure forH1 is given by

µ = µ+ ∧ µ− ∧ ddc log|z|. (2.8)

It is useful to give the following alternative description ofµ. If h denotes the re-
striction ofH1 toz = 0, thenh is a Hénon map ofC2 andh−1= H−1

1 |z=0. Letν be
the invariant probability measure forh constructed in [BS]. Note that the Green’s
functionsg± of h are just the restrictions ofG± to z = 0, andν = ddcg+∧ddcg−.
Then the measureµ in (2.8) satisfies∫

C3
φ dµ =

∫
C2
φ(x, y,0) dν (2.9)

for anyφ ∈C0(C3). This shows thatµ is a probability measure supported on the
compact set∂K+ ∩ ∂K− ∩ {z = 0}. Relation (2.9) follows easily by consider-
ing two sequences{uj } and{vj } of smooth plurisubharmonic functions such that
uj ↘ G+ andvj ↘ G−. Then the measuresµj = ddcuj∧ddcvj∧ddc log|z| con-
verge weakly toµ, by a result of Bedford and Taylor (see[K]). On theother hand,
if u0

j (x, y) = uj(x, y,0) andv0
j (x, y) = vj(x, y,0) are regarded as plurisubhar-

monic functions onC2, then the measuresνj = ddcu0
j ∧ ddcv0

j converge weakly to
ν. As ddc log|z| is the current of integration along the hyperplanez = 0 and since
uj, vj are smooth, we have forφ ∈ C∞0 (C3) that

∫
C3 φ dµj =

∫
C2 φ(x, y,0) dνj .

By the preceding remarks this gives (2.9) asj →∞.
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This construction also works in the case|c| = 1, but it does not seem to be dy-
namically natural anymore, as bothK± consist only of points with bounded orbit.
In this case we can also define an invariant measure byµ = µ+∧µ−∧ i dz∧ dz̄,
sinceH?

1(i dz ∧ dz̄) = |c|2i dz ∧ dz̄ = i dz ∧ dz̄.

3. The ClassH2

The second class consists of mapsH2, with inverseH−1
2 , of the form

H2(x, y, z) = (P(y, z)+ ax,Q(y)+ bz, y),

H−1
2 (x, y, z) =

(
1

a
x − 1

a
P

(
z,

1

b
y − 1

b
Q(z)

)
, z,

1

b
y − 1

b
Q(z)

)
,

(3.1)

where max{deg(P ),deg(Q)} = 2 andab 6= 0. The dynamics of these maps is in-
teresting when deg(Q) = 2 and deg(P ) > 0. If Q(y) = β1y

2 + β2y + β3 and
β1 6= 0, it is easy to see (by an affine change of coordinates iny andz) that we
may assumeβ1= 1 andβ3 = 0.

Hence it is enough to consider mapsH of the form

x1= ax + P(y, z),
y1= y2 + βy + bz, (3.2)

z1= y,
whereN = deg(P ) > 0 andab 6= 0. Then the inverseH−1

2 is conjugated to a
mapH of form (3.2), essentially by the transformation(x, y, z)→ (x, z, y).

Let h denote the Hénon map

h(y, z) = (y2 + βy + bz, y); (3.3)

thenH is a semidirect product overh. We start by finding the degree of the iter-
atesHn. By Proposition 4.2 of [BS], there existsn0 ≥ 0 such thatP B hn0 has
cy k as the unique term of highest total degree:P Bhn0(y, z) = cy k+ l.d.t.,where
k > 0 andc 6= 0. We choose the smallest suchn0 and define the numbers

γ = k/2n0+1 and γ+ = max{γ,1}, (3.4)

which determine the degree of the iteratesHn for n sufficiently large. Sincek ≤
N2n0 we have 0< γ ≤ N/2, soγ ≤ 1 in the quadratic caseN = deg(P ) ≤ 2. It
is easy to see thatγ could be larger than 1 as well—for instance, whenP(y, z) =
yN + l.d.t. andN ≥ 3. The dynamics ofH is particularly interesting in such
cases, as we can see from the discussion following Lemma 3.4.

Lemma 3.1. There exists a numbern1 ≥ n0 such thatdeg(Hn) = γ+2n for all
n ≥ n1.

Proof. We have deg(yn) = 2 deg(zn) = 2n for all n. For j ≥ 0 let lj =
deg(xn0+j ). As deg(P B hn0+j ) = k2j andxn0+j+1= axn0+j + P B hn0+j(y, z),
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we havelj+1 ≤ max{lj, k2j } and hence, by induction,lj ≤ max{l0, k2j−1} for all
j ≥ 1. We fix j0 such thatk2j0−1 ≥ l0. In view of the above, we havelj = k2j−1

for all j > j0. Thus forn ≥ n1= n0 + j0 +1 we conclude that

deg(Hn) = max{deg(xn),deg(yn)} = max{k2n−n0−1,2n} = γ+2n.

We now proceed to find the setU+ where the iterates escape to infinity at super-
exponential rate. With the usual notation, forR > 0 we let

V − = V −(R) = {w ∈C3 : |y| > max{R, |z|, |xn0|4/(4k−1)} }. (3.5)

Lemma 3.2. For any δ ∈ (0,1) there existsR0(δ) > 0 such that, forR > R0,

the following statements hold.

(i) For w ∈V −, we have:

(1− δ)|y|2 < |y1| < (1+ δ)|y|2,
[(1− δ)|y|]2n < |yn| < [(1+ δ)|y|]2n ,

(1− δ)|c||y|k < |xn0+1| < (1+ δ)|c||y|k.
(ii) H(V −) ⊆ V −.
(iii) There exist constantsC1, C2, depending onH and δ, such that forw ∈ V −

andn > n0 we haveC1|yn|γ < |xn| < C2|yn|γ . Moreover, if γ = 1 then
xn/yn→ c asn→∞.

Proof. (i) By (3.2) and (3.5) we have

|y1− y2| < (|β| + |b|)|y| < δ|y|2,
|xn0+1− cy k| ≤ |a||xn0| + C|y|k−1 < |a||y|k−1/4 + C|y|k−1 < |c|δ|y|k,

whereC depends only on the coefficients ofP B hn0 and where the last inequal-
ity of each sequence holds provided that|y| > R0, with R0(δ) sufficiently large.
The remaining inequality in (i) follows by repeated use of the first, once we have
proved (ii).

(ii) For R0(δ) sufficiently large, we have

|y1| > (1− δ)|y|2 > |y| = |z1|,
|xn0+1| < |c|(1+ δ)|y|k < [(1− δ)|y|2]k−1/4 < |y1|k−1/4;

henceH(V −) ⊆ V −.
(iii) Using the invariance ofV − and the estimates in (i) we derive

(1− δ)|c||yl|k < |xl+n0+1| < (1+ δ)|c||yl|k,
(1− δ)2n0+1|yl|2n0+1

< |yl+n0+1| < (1+ δ)2n0+1|yl|2n0+1
.

The second inequality gives(1− δ)k|yl|k < |yl+n0+1|γ < (1+ δ)k|yl|k. This,
combined with the first of the preceding two inequalities, yields
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(1− δ)|c|
(1+ δ)k <

|xn|
|yn|γ <

(1+ δ)|c|
(1− δ)k ,

wheren = l + n0 +1> n0.

Assume now thatγ = 1, sok = 2n0+1. As in the proof of (i), we have

|xl+n0+1− cy kl | ≤ |a||xl+n0| + C|yl|k−1

and so ∣∣∣∣xl+n0+1

y kl
− c

∣∣∣∣ ≤ |a|
|yl|1/4 +

C

|yl| → 0 as l→∞.

By writing yn0+1= P̃(y, z) = y k + l.d.t. we obtain∣∣∣∣yl+n0+1

y kl
−1

∣∣∣∣ ≤ C ′(P̃ )|yl| → 0 as l→∞.

Thus we have shown thatxn/yn→ c asn→∞.

Define

U+ =
∞⋃
n=0

H−n(V −), K+ = C3 \ U+. (3.6)

By Lemma 3.2, the orbit of any pointw ∈ U+ escapes at infinity at super-
exponential rate (eventually like(const)2

n

). Moreover, by Lemma 3.2(iii), the
iteratesHn converge locally uniformly onU+ to

[1 : 0 : 0 : 0] if γ > 1, [c : 1 : 0 : 0] if γ = 1, [0 : 1 : 0 : 0] if γ < 1. (3.7)

For the Hénon maph of (3.3), we letK+h be the set of points with bounded forward
orbit andU+h = C2 \K+h the set of points whose orbit escapes to infinity.

Lemma 3.3. We haveK+ = C×K+h andU+ = C×U+h . Moreover, theH -orbit
of any pointw ∈K+ can escape to infinity at most at exponential rate.

Proof. Note thatHn(w) = (xn, yn, zn) = (xn, hn(y, z)). Thus ifw ∈ C × K+h
then the iterateshn(y, z) are locally uniformly bounded onK+h , sow /∈ U+ by
Lemma 3.2. This shows thatC×K+h ⊆ K+.

Let noww ∈K+. Then, for alln ≥ 0,

|yn| ≤ Mn = max{R, |zn|, |xn+n0|4/(4k−1)}.
If we let P B hn0(y, z) = cy k +∑j+l≤k−1cjly

jzl then we have

|xn+n0| ≤ |a||xn+n0−1| + c|yn−1|k +
∑

j+l≤k−1

|cjl||yn−1|j|zn−1| l

≤ |a|Mk−1/4
n−1 + |c|Mk

n−1+ CMk−1
n−1 ≤ C̃Mk

n−1,
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whereC = ∑|cjl| andC̃ = |a| + |c| + C + 1. Using this together with|zn| =
|yn−1| ≤ Mn−1, we obtain

Mn ≤ max{Mn−1, C̃M
4k/(4k−1)
n−1 } ≤ C̃M 4/3

n−1

for all n ≥ 1. This shows thatMn ≤ (C̃M0)
(4/3)n and so|yn| ≤ (const)(4/3)n ,

which implies(y, z)∈K+h and sow ∈C×K+h . We conclude thatK+ = C×K+h ;
hence,U+ = C× U+h . Since

xn = anx + an−1P(y, z)+ an−2P(y1, z1)+ · · · + P(yn−1, zn−1),

we see that, onK+, |xn| can grow to infinity at most at exponential rate.

We postpone for the moment our discussion of the precise behavior of the iter-
atesHn onK+ in order that we may introduce the Green’s function. Denote by
g+(y, z) the Green’s function for the Hénon maph. We define

G+(w) = lim
n→∞

1

γ+2n
log+‖Hn(w)‖ = lim

n→∞
1

2n
log+|yn|. (3.8)

By [BS], the second limit of (3.8) equalsg+(y, z), the convergence being locally
uniform onC2. The two limits are equal onK+, as they are both zero there by
Lemma 3.3, and they are also equal onU+ in view of Lemma 3.2(iii). We con-
clude that

G+(x, y, z) = g+(y, z)
is continuous and plurisubharmonic onC3 and pluriharmonic onU+, thatK+ =
{G+ = 0}, and that the convergence is locally uniform onC3 in both limits. More-
over, we haveG+ BH = 2G+ and henceH?µ+ = 2µ+, whereµ+ = ddcG+.

In order to discuss the behavior of the iteratesHn onK+, we must consider
three cases.

Case 1:|a| < 1

Here the iteratesHn are locally uniformly bounded onK+. Indeed, we have the
following formula forxn:

xn = anx +
n−1∑
j=0

an−1−jP(yj, zj ). (3.9)

Let D be an open relatively compact subset ofC3. Since (by [BS]) the orbits
{hn(y, z)} are uniformly bounded onK+h ∩ D, it follows that there exists a con-
stantM > 0, depending onD, such that|P(yj, zj )| < M for all w ∈K+∩D and
all j. Then, by (3.9),|xn| ≤ |x| +M/(1− |a|) for all n ≥ 0.

Case 2:|a| = 1

In this case we have the following locally uniform estimates onK+: For any open
relatively compactD ⊂ C3, there exists a constantM such that|xn| ≤ |x| + nM
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for all w ∈K+ ∩D and alln ≥ 0. This follows from (3.9), as in Case 1. For ex-
ample, assume thata = 1 and that(y0, z0) 6= (0,0) is an attractive fixed point of
h, with basin of attractionB ⊂ C2. If P(y0, z0) 6= 0 then it is easy to see that,
for w ∈C× B, we havexn = nP(y0, z0)+O(1). If P(y0, z0) = 0 then the iter-
atesHn are locally uniformly bounded onC×B. On the other hand, ifP(0,0) =
0 andP(y0, z0) 6= 0 hold simultaneously, then we see that there are points ofK+

with bounded orbit (the origin is fixed byH ) as well as pointsw ∈K+ with xn =
nα +O(1), α 6= 0.

Case 3:|a| > 1

We introduce the following notation:

Sn(y, z) =
n−1∑
j=0

1

aj
P(yj, zj ), Tn(w) = x + 1

a
Sn(y, z),

S(y, z) =
∞∑
j=0

1

aj
P(yj, zj ), T (w) = x + 1

a
S(y, z).

(3.10)

Because the iterates ofh are locally uniformly bounded onK+h , we see that{Sn}
converges locally uniformly onK+h toS and that{Tn} converges locally uniformly
onK+ to T ; therefore,S ∈ C(K+h ) ∩ O(intK+h ) andT ∈ C(K+) ∩ O(intK+).
We remark that intK+ is, in some cases, empty. By (3.9) we have

xn = an
(
x + 1

a
Sn(y, z)

)
= anTn(x, y, z).

We denote byX the following subset ofK+:

X = {w ∈K+ : T(w) = 0 } =
{
w ∈K+ : x = −1

a
S(y, z)

}
.

Lemma 3.4. For w ∈ K+ we haveT B H(w) = aT (w), soH(X) = X. If w ∈
K+ \ X then{Hn(w)} ∼ {an} escapes to infinity at exponential rate, the iterates
Hn converging locally uniformly onK+ \ X to [1 : 0 : 0 : 0]. The orbits of the
pointsw ∈X are locally uniformly bounded relative to the invariant setX.

Proof. We have

T BH(x, y, z) = ax + P(y, z)+
∞∑
j=0

1

aj+1
P(yj+1, zj+1) = aT (x, y, z),

which givesH(X) = X. If w0 ∈ K+ \ X, we fix a relatively open neighbor-
hoodD of w in K+ \ X such thatM > |T(w)| > ε > 0 onD. For n suffi-
ciently large we have|Tn(w) − T(w)| < ε/2 for all w ∈ D. So, by (3.9) and
(3.10),|xn/an − T(w)| = |Tn(w)− T(w)| < ε/2, which givesε|a|n/2< |xn| <
(M + ε/2)|a|n for all w ∈D. Finally, if w ∈X then, sinceT(w) = 0, we obtain
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|xn| = |an(Tn(w)− T(w))| ≤
∞∑
j=n

1

|a|j−n+1
|P(yj, zj )|,

which shows that the iteratesHn are locally uniformly bounded relatively toX.

Let us recall the description of the dynamics ofH on U+ given in (3.7). By
Lemma 3.4 and by (3.7), ifγ > 1 thenHn(w) → [1 : 0 : 0 : 0] asn → ∞ for
all w ∈U+ ∪ (K+ \ X). The convergence is locally uniform on the open setU+

and locally uniform (in the relative sense) onK+ \X, but it is not locally uniform
on the whole union. We also note that, when intK+ 6= ∅, the Julia setJ+ of H
(defined with normal families) is equal to∂K+ ∪ X. In this caseX is a complex
submanifold of intK+. HenceJ+ 6= suppµ+.

Invariant Measures. If H is of form (3.2) then (a) we setK− = K+(H−1)—
see (3.6); (b) we denote byG− the Green’s function of the inverse mapH−1; and
(c) we letµ− = ddcG−. In view of the preceding results, ifg−(y, z) is the Green’s
function of h−1 (the inverse of the Hénon maph in (3.3)) thenG−(x, y, z) =
g−(y, z). Moreover,K− = C×K−h andH?µ− = 1

2µ
−. As we noticed at the be-

ginning, the mapH−1 has form (3.2) (after a suitable change of coordinates iny

andz), with 1/a as the coefficient ofx.
We have that the(1,1) bidimensional currentµ+ ∧ µ− isH -invariant:

H?(µ+ ∧ µ−) = H?µ+ ∧H?µ− = 2µ+ ∧ 1
2µ
− = µ+ ∧ µ−.

In the case when|a| = 1, the measure

µ = µ+ ∧ µ− ∧ i dx ∧ dx̄
isH -invariant. This is because

µ+ ∧ µ− ∧ i dx1 ∧ dx̄1= µ+ ∧ µ− ∧ i d(ax) ∧ d(ax) = µ+ ∧ µ− ∧ i dx ∧ dx̄.
Let us consider now the case|a| 6= 1. Besides the invariant currentsµ±, we

also have the invariant setX. If |a| > 1 thenX ⊂ K+ is precisely the set of points
with bounded forward orbit, whereas if|a| < 1 thenX is constructed using the
inverseH−1 (with |1/a| > 1 as the coefficient ofx as before), andX is the set of
points with bounded backward orbit. HenceK+∩K− ∩X equals the set of points
with bounded full orbit. Letν be the invariant measure onC2 constructed in [BS]
for the Hénon maph. SinceG± = g±, we actually haveν = µ+ ∧ µ−, regarded
as a measure onC2, with support onL = ∂K+h ∩ ∂K−h . In direct analogy to the
construction of invariant measures in Section 2 (see (2.9)), we define an invariant
measureµ onC3 by its action onφ ∈C0(C3):∫

C3
φ dµ =

∫
L

φ

(
−1

a
S(y, z),y, z

)
dν, (3.11)

whereS is as in (3.10). Becauseν is a probability measure, it follows thatµ is a
probability measure supported on the compact set
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w : x = −1

a
S(y, z), (y, z)∈ ∂K+h ∩ ∂K−h

}
= X ∩ ∂K+ ∩ ∂K−.

The invariance ofµ also follows from (3.11): If forφ as above we writeψφ(y, z) =
φ
(− 1

a
S(y, z),y, z

)
, then sinceψφBH = ψφ B h andν is h-invariant we obtain

(H?µ)(φ) =
∫
C3
φ BH dµ =

∫
L

ψφ B h dν =
∫
L

ψφ dν =
∫
C3
φ dµ.

We also note thatµ = lim n→∞ µn,whereµn = µ+∧µ−∧ddc log|Tn|. Indeed,
using a smoothing argument as at the end of Section 2, we see that forφ ∈C∞0 (C3)

we have ∫
C3
φ dµn =

∫
C2
φ

(
−1

a
Sn(y, z),y, z

)
dν,

so by (3.11) the measuresµn converge weakly toµ. SinceTn B H = aTn+1, we
haveH?µn = µn+1, which also gives the invariance ofµ.

4. The ClassH3

This class contains mapsH3 of the form

H3(x, y, z) = (P(x, z)+ ay,Q(x)+ z, x), (4.1)

where max{deg(P ),deg(Q)} = 2 anda 6= 0. For simplicity we will writeH =
H3. The inverse of this map is given by

H−1(x, y, z) =
(
z,

1

a
x − 1

a
P(z, y −Q(z)), y −Q(z)

)
. (4.2)

We start by discussing the dynamics ofH and write

P(x, z) = αx2 + α ′xz+ α ′′z2 + l.d.t.,

Q(x) = βx2 + l.d.t. (4.3)

We remark that ifα = 0 andα ′ 6= 0 then deg(xn) = deg(xn−1) + deg(xn−2), so
the degrees of the iteratesHn are given by Fibonacci’s numbers (such maps are
considered in [B]).

Hence we will work under the generic assumptionα 6= 0 (so the caseβ = 0 is
also covered). Forε > 0 andR > 1/ε, we define

V − = V −ε,R = {w ∈C3 : |x| > max{R, |z|/ε, (|y|/ε)1/2} }. (4.4)

Lemma 4.1. For any δ ∈ (0,1), there existε = ε(δ) ∈ (0,1) andR0(δ) > 1/ε
such that, for anyR > R0, the setV − has the following properties:

(i) the following estimates hold forw ∈V −:

|α|(1− δ)|x|2 < |x1| < |α|(1+ δ)|x|2, |y1| < (|β| +1)|x|2,
[|α|(1− δ)]2n−1|x|2n < |xn| < [|α|(1+ δ)]2n−1|x|2n;



Green’s Functions for Irregular Quadratic Polynomial Automorphisms ofC3 435

(ii) H(V −) ⊆ V −;
(iii) the iteratesHn converge uniformly onV − to [α : β : 0 : 0].

Proof. (i) Forw ∈V − we have

|x1− αx2| < Cε|x|2 and |y1| < (|β| + Cε)|x|2,
whereC depends only on the coefficients ofH. So the first two inequalities hold
if we chooseε(δ) sufficiently small andR > 1/ε. The third estimate follows from
the first one and from part (ii) of the lemma.

(ii) If w ∈V − then, by the estimates of (i), we obtain

|x1| > |α|(1− δ)R2 >R,

|z1|/ε = |x|/ε < |α|(1− δ)|x|2 < |x1|,
(|y1|/ε)1/2 < [(|β| +1)/ε]1/2|x| < |α|(1− δ)|x|2 < |x1|,

provided that|x| >R0(δ), with R0 sufficiently large. This showsH(w)∈V −.
(iii) Using xn = ayn−1 + P(xn−1, xn−2) together with the estimate|yn−1| <

(|β| +1)|xn−2|2, we have∣∣∣∣ xnx2
n−1

− α
∣∣∣∣ ≤ C |xn−2|

|xn−1| <
C

|α|(1− δ)
1

|xn−2| → 0 as n→∞,

whereC is a constant depending on coefficients. Similarly, since

yn = Q(xn−1)+ xn−2

we obtain ∣∣∣∣ ynx2
n−1

− β
∣∣∣∣ ≤ C |xn−2|

|xn−1| → 0 as n→∞,

so limn→∞ yn/xn = β/α uniformly onV −.

We define

U+ =
∞⋃
n=0

H−n(V −), K+ = C3 \ U+. (4.5)

By Lemma 4.1, the orbit of any point inU+ escapes at infinity at super-exponential
rate and the iteratesHn converge locally uniformly onU+ to [α : β : 0 : 0]. On
the other hand, the orbit of any pointw ∈ K+ can escape to infinity at most at
exponential rate, as follows.

Lemma 4.2. If w ∈K+ then the following estimate holds for alln ≥ 0:

max{|xn|, |yn|, |zn|} ≤ 1

ε2n+1
max{ε2R2, |z|2, ε|y|}.

Proof. Sincew ∈K+, by (4.4) we have|xn| ≤ Mn = max{R, |zn|/ε, (|yn|/ε)1/2}
for all n ≥ 0. We note that|zn|/ε = |xn−1|/ε ≤ Mn−1/ε and |yn| ≤
|Q(xn−1)|+|zn−1| ≤ CM 2

n−1,whereC > 1depends only onH. Thus(|yn|/ε)1/2 ≤
(C/ε)1/2Mn−1 and so we conclude thatMn ≤ Mn−1/ε and henceMn ≤ M0/ε

n.
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It follows that |xn| ≤ M0/ε
n, |yn| ≤ M 2

0/ε
2n−1, and|zn| ≤ M0/ε

n−1, which to-
gether imply the estimate of the lemma.

In order to introduce the Green’s functionG+, we need the following simple
observation.

Lemma 4.3. deg(Hn) = 2n, and ‖Hn(w)‖ ≤ (C‖w‖+)2n holds for alln ≥ 0
andw ∈C3, whereC is a constant depending only onH.

Proof. There exists a constantC > 1, depending on coefficients, such that
‖H(w)‖+ ≤ C‖w‖2+. By induction, this gives the desired estimate.

We now define the Green’s functionG+ of H by

G+(w) = lim
n→∞

1

2n
log+‖Hn(w)‖ = lim

n→∞
1

2n
log+|xn|. (4.6)

Note that by Lemma 4.3 we have(1/2n) log+‖Hn(w)‖ ≤ log+‖w‖ + logC for
all n and for allw ∈ C3. Lemma 4.2 shows that the limits are both 0 onK+. By
Lemma 4.1(i), we have|yn| = O(|xn|) and|zn| = |xn−1| = o(|xn|) for w ∈ V −
andn ≥ 0, so both limits exist and are equal onU+ provided that one of them
exists. We now proceed exactly as in the proof of Theorem 2.5: we first show that
the second limit exists locally uniformly onU+. Then, using the estimate derived
above from Lemma 4.3, we show thatG+? = G+. We conclude that all the as-
sertions of Theorem 2.5 hold for the functionG+ in (4.6): G+ ∈ PSH∩ C(C3),

K+ = {G+ = 0}, G+ is pluriharmonic onU+, andG+ B H = 2G+. Hence, if
µ+ = ddcG+ then we haveH?µ+ = 2µ+.

We now study the dynamics of the inverse mapH−1 given in (4.2). Consider
the change of coordinates given byw ′ = (x ′, y ′, z ′) = F(w), where

x ′ = x, y ′ = y −Q(z), z ′ = z. (4.7)

The mapH−1 is then conjugated to the map̃H(w ′) = F B H−1 B F−1(w ′) given
by

x ′1 = z ′,

y ′1 =
1

a
x ′ − 1

a
P(z ′, y ′)−Q(y ′)

= 1

a
x ′ + p(z ′, y ′)+ γ ′′z ′2 + γ ′y ′z ′ + γy ′2,

z ′1 = y ′,

(4.8)

where deg(p) ≤ 1, γ ′′ = −α/a, γ ′ = −α ′/a, andγ = −β − α ′′/a (recall the
form of P,Q from (4.3)). We will study the mapH̃ under the generic assump-
tion γ 6= 0 (recall that the mapH was studied under the generic assumptionα 6=
0). One reason for doing so is that whenγ = 0 andγ ′ 6= 0 we have deg(y ′n) =
deg(y ′n−1) + deg(y ′n−2), so the degrees of the iterates are once again given by
Fibonacci’s numbers.
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We proceed to find the dynamically relevant setsU+ = U+(H̃ ) andK+ =
K+(H̃ ) and to define the Green’s functionG+ for the mapH̃ of (4.8). We will
then relate these to the corresponding setsU−,K− and to the Green’s function
G− of the mapH−1.

For ε > 0 andR > 1/ε, let

V − = V −ε,R(H̃ ) = {w ′ ∈C3 : |y ′| > max{R, |x ′|, |z ′|/ε} }.
The following lemma is proved in a similar way to Lemma 4.1.

Lemma 4.4. For everyδ ∈ (0,1), there existε = ε(δ) ∈ (0,1) andR0(δ) > 1/ε
such that, for allR > R0, we haveH̃(V −) ⊆ V − and the following estimates
hold forw ′ ∈V −:

|γ |(1− δ)|y ′|2 < |y ′1| < |γ |(1+ δ)|y ′|2,
[|γ |(1− δ)]2n−1|y ′|2n < |y ′n| < [|γ |(1+ δ)]2n−1|y ′|2n .

We next let

U+ =
∞⋃
n=0

H̃−n(V −), K+ = C3 \ U+. (4.9)

From Lemma 4.4 it follows that the orbit{w ′n} of any pointw ′ ∈ U+ escapes to
infinity at super-exponential rate and that the iteratesH̃ n converge locally uni-
formly onU+ to [0 : 1 : 0 : 0]. On the setK+, the orbits can escape to infinity at
most at exponential rate, as we now show.

Lemma 4.5. For anyw ∈K+ and anyn ≥ 0, we have

max{|x ′n|, |y ′n|, |z ′n|} ≤
1

εn
max{R, |x ′|, |z ′|/ε}.

Proof. If w ′ ∈ K+ andn ≥ 0, then |y ′n| ≤ Mn = max{R, |x ′n|, |z ′n|/ε}. But
|x ′n| = |z ′n−1| ≤ εMn−1 and|z ′n|/ε = |y ′n−1|/ε ≤ Mn−1/ε, soMn ≤ Mn−1/ε and
the lemma follows.

The Green’s function ofH̃ can now be defined by

G+(w ′) = lim
n→∞

1

2n
log+‖H̃ n(w ′)‖

= lim
n→∞

1

2n
log+|y ′n| = lim

n→∞
1

2n−1
log+|z ′n|. (4.10)

It has the same properties as before: the convergence in the above limits is locally
uniform onC3, G+ ∈ PSH∩ C(C3), K+ = {G+ = 0}, G+ is pluriharmonic on
U+, andG+ B H̃ = 2G+.

We now return to the mapH−1(w) = F−1 B H̃ B F(w). We note that ifw ′ =
F(w) and ifwn = H−n(w) andw ′n = H̃ n(w ′) for n ≥ 0, thenF(wn) = w ′n;
hence, by (4.7) we have

x ′n = xn, z ′n = zn, y ′n = yn −Q(zn). (4.11)
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Using the setsU+ = U+(H̃ ) andK+ = K+(H̃ ) of (4.9), we define the corre-
sponding sets for the mapH−1 by

U− = F−1(U+), K− = F−1(K+) = C3 \ U−.
Using Lemmas 4.4 and 4.5, we easily obtain the following.

Lemma 4.6. The orbits{H−n(w)}n≥0 of pointsw ∈ U− escape to infinity at
super-exponential rate, whereas theH−1-orbit of any pointw ∈K− can escape to
infinity at most at exponential rate.

Proof. If w ∈ U− thenw ′ = F(w) ∈ U+(H̃ ), so |zn| = |z ′n| increases super-
exponentially to infinity. Forw ∈ K− we havew ′ = F(w)∈K+(H̃ ), and by
(4.11) we obtainxn = x ′n, zn = z ′n, andyn = y ′n +Q(z ′n). The estimate on‖w ′n‖
from Lemma 4.5 implies that‖wn‖ grows at most exponentially to infinity.

We will be more precise about the behavior of the iterates{H−n}n≥0 onU− when
we discuss the Green’s functionG− of the mapH−1. We now introduce the func-
tion Ĝ− = G+ B F. Using (4.10), (4.11), andF BH−n = H̃ n B F, we have

Ĝ−(w) = lim
n→∞

1

2n
log+‖F(H−n(w))‖ = lim

n→∞
1

2n−1
log+|zn|. (4.12)

The properties ofG+ mentioned before imply that̂G− ∈PSH∩ C(C3), K− =
{Ĝ− = 0}, Ĝ− is pluriharmonic onU−, Ĝ− BH−1= 2Ĝ−, and the convergence
of the two sequences defininĝG− is locally uniform onC3. Hence, ifµ− = ddcĜ−
thenH?µ− = 1

2µ
−.

Finally, consider the usual Green’s functionG− of H−1:

G−(w) = lim
n→∞

1

deg(H−n)
log+‖H−n(w)‖.

Theorem 4.7. The limit of the above sequence exists, the convergence being
locally uniform onC3. The functionG− is equal to the function̂G− of (4.12),
up to multiplication by a constant. Moreover, the iteratesH−n converge locally
uniformly on the setU− to a point ofP3 which depends onH.

Proof. As the degree ofH−1 can be 2, 3, or 4, we must consider the individual
cases.

Case 1:β = 0. Our generic assumptionγ 6= 0 implies thatα ′′ 6= 0, so
deg(H−n) = 2n for all n ≥ 1 (by (4.2),yn has the termy2n). Using (4.11), we
see thatyn/z2

n = (y ′n +Q(z ′n))/(z ′n)2 = y ′n/(y ′n−1)
2 + o(1) holds onU−. Hence

Lemma 4.4 and (4.12) imply that, forw ∈C3,

G−(w) = lim
n→∞

1

2n
log+‖H−n(w)‖ = lim

n→∞
1

2n−1
log+|zn| = Ĝ−(w),

and the iteratesH−n converge locally uniformly onU− to [0 : 1 : 0 : 0].

Case 2:β 6= 0 and α ′ = α ′′ = 0. Then, by (4.2), deg(H−n) = 2n, andzn
has the termz2n for all n ≥ 1. By Lemma 4.4 and by (4.11) we have|yn| =
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|y ′n +Q(z ′n)| = O(|z ′n|2) = O(|zn|2) onU−. Using this and (4.2) we get in fact
that|yn+1| = O(|zn|2) = O(|zn+1|), so‖H−n(w)‖ = O(|zn|) onU−. Thus

G−(w) = lim
n→∞

1

2n
log+‖H−n(w)‖ = lim

n→∞
1

2n
log+|zn| = 1

2
Ĝ−(w),

for anyw ∈C3. SinceH−1 has the form

x1= z, y1= cz2 + l.d.t., z1= βz2 + l.d.t.

for some constantc ∈ C, it follows thatyn+1/z
2
n → c andzn+1/z

2
n → β; hence

yn/zn → c/β onU−. We conclude that the iteratesH−n converge locally uni-
formly onU− to [0 : c : β : 0].

Case 3:β 6= 0, α ′′ = 0, and α ′ 6= 0. In this case we have deg(H−n) =
3(2n−1), andyn has the termz3(2n−1) for all n ≥ 1. As in Case 2, we have|yn| =
O(|zn|2) onU−. Therefore, by (4.2),|yn+1| < M|zn|3 < M ′|zn+1|3/2 holds on
V + = F−1(V −(H̃ )), with constantsM,M ′ independent onw. Using (4.2) again
we get in fact that 0< m < |yn+1|/|zn|3 < M ′′, so |yn| ∼ |zn|3/2 for w ∈ V +.
(HereV −(H̃ ) is as in Lemma 4.4.) This, combined with (4.12), shows that

G−(w) = lim
n→∞

1

3(2n−1)
log+‖H−n(w)‖ = lim

n→∞
1

2n
log+|zn| = 1

2
Ĝ−(w)

for all w ∈C3. Moreover, the iteratesH−n converge locally uniformly onU− to
[0 : 1 : 0 : 0].

Case 4:β 6= 0 andα ′′ 6= 0. Sinceγ 6= 0 we have deg(H̃ n) = deg(y ′n) = 2n,
andy ′n has the term(y ′)2

n

. Hence deg(H̃ n B F ) = deg(yn −Q(zn)) = 2n+1, and
yn −Q(zn) has the termz2n+1

for all n ≥ 1. As α ′′ 6= 0, these imply deg(H−n) =
deg(yn) = 2 deg(zn) = 2n+1. By Lemma 4.4 and (4.11), we see that|yn+1| ∼
|yn −Q(zn)|2 = |zn+1|2 holds onV + = F−1(V −(H̃ )) and so‖H−n(w)‖ ∼ |zn|2
(here∼ is used in the same sense as in Case 3). It follows that, onC3,

G−(w) = lim
n→∞

1

2n+1
log+‖H−n(w)‖ = lim

n→∞
1

2n
log+|zn| = 1

2
Ĝ−(w).

The iteratesH−n converge locally uniformly onU− to [0 : 1 : 0 : 0].

5. The ClassH4

The mapsH = H4 of this class have the form

H(x, y, z) = (P(x, y)+ az,Q(y)+ x, y), (5.1)

where max{deg(P ),deg(Q)} = 2 anda 6= 0. The inverse map is given by

H−1(x, y, z) =
(
y −Q(z), z, 1

a
x + P̃(y, z)

)
,

P̃(y, z) = −1

a
P(y −Q(z), z).

(5.2)
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As before, we write

P(x, y) = αx2 + α ′xy + α ′′y2 + l.d.t.,

Q(y) = βy2 + l.d.t. (5.3)

We recall from [S] that a mapH is regular ifI+ ∩ I− = ∅, whereI± denote
the indeterminacy sets ofH andH−1, respectively. It is easy to check that a map
H of form (5.1) is regular if and only ifβ 6= 0 andα 6= 0 (in which caseI+ =
[0 : 0 : 1 : 0] andI− = {t = z = 0}).

In studying the dynamics of the mapsH in (5.1) that are not regular, we must
discuss several cases. Before doing so, let us consider the action ofH on the hy-
perplane at infinity ofP3. The extension ofH toP3 is given byH [x : y : z : t ] =
[t 2H(x/t, y/t, z/t) : t 2], soH [x : y : z : 0] = [αx2 + α ′xy + α ′′y2 : βy2 :
0 : 0]. Whenβ 6= 0 (soα = 0), we haveH({t = 0} \ I+) ⊂ I− = {t = z =
0}. Moreover, ifα ′ 6= 0 then onI−, with coordinateu = x/y, the map is affine:
H [u : 1 : 0 : 0] = [

α ′
β
u + α ′′

β
: 1 : 0 : 0

]
. On the other hand, whenα ′ = 0

or β = 0, H maps{t = 0} \ I+ to a single point. Note that this was also the
case for the mapsH3 of (4.1): with the notation of (4.3) andα 6= 0, we have
H 2

3 [x : y : z : 0] = [α : β : 0 : 0].

Case 1:β 6= 0, α = 0, α ′ 6= 0

We begin by discussing the mapH. For ε > 0 andR > 1/ε, let

V − = V −ε,R = {w ∈C3 : |y| > max{R, |z|, (|x|/ε)1/2} }.
Lemma 5.1. For any δ ∈ (0,1), there existε = ε(δ) ∈ (0,1) andR0(δ) > 1/ε
such that, for anyR > R0, we haveH(V −) ⊆ V −, and the following estimates
hold onV −:

|β|(1− δ)|y|2 < |y1| < |β|(1+ δ)|y|2, |x1| < δ|y|3,
[|β|(1− δ)]2n−1|y|2n < |yn| < [|β|(1+ δ)]2n−1|y|2n .

Proof. The first two estimates hold onV − provided thatε = ε(δ) is sufficiently
small andR0 > 1/ε. As before, they implyH(V −) ⊂ V − if R0 is chosen suffi-
ciently large. The third estimate follows by induction from the first.

We let

U+ =
∞⋃
n=0

H−n(V −), K+ = C3 \ U+. (5.4)

By Lemma 5.1, the orbitHn(w) ofw ∈U+ escapes to infinity at super-exponential
rate(const)2

n

, because|yn| does so. The orbits of points inK+ can escape to in-
finity at most at a slower super-exponential rate.

Lemma 5.2. If M(w) = max{R, |z|, (|x|/ε)1/2}, then

max{|yn|, |zn|} < [CM(w)](3/2)n and |xn| < [CM(w)]2(3/2)n

hold for allw ∈K+ andn ≥ 0, whereC > 1 is a suitable constant.
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Proof. If w ∈K+ then|yn| ≤ Mn = max{R, |zn|, (|xn|/ε)1/2} holds for alln. We
have|zn| = |yn−1| ≤ Mn−1 and, by the definition ofMn−1, |xn−1| ≤ εM 2

n−1 and
|zn−1| ≤ Mn−1. Usingxn = P(xn−1, yn−1)+ azn−1 (see (5.1)), these imply|xn| ≤
C ′M 3

n−1,whereC ′ depends only on coefficients. We conclude thatMn ≤ C ′′M 3/2
n−1

whereC ′′ = (C ′/ε)1/2 and so, by induction,

Mn ≤ (C ′′)1+3/2+···+(3/2)n−1
M

(3/2)n

0 ≤ [(C ′′)2M0](3/2)n .

The conclusion of the lemma follows.

We now turn our attention to the dynamics ofH onU+. We recall in this case
that I+ = {t = y = 0}, I− = {t = z = 0}, andH({t = 0} \ I+) ⊂ I−; also,
on I− \ [1 : 0 : 0 : 0] with coordinateu = x/y, the mapH is given byh(u) =
ηu+ η ′, whereη = α ′/β andη ′ = α ′′/β. Note that the maph onI− = P1 always
has a fixed point at infinity, [1: 0 : 0 : 0]∈ I+. If η 6= 1, or if η = 1 andη ′ = 0,
then the maph = H also has the fixed point [u0 : 1 : 0 : 0] /∈ I+, whereu0 =
α ′′/(β − α ′) (resp.u0 = 0). With this setting, we have the following theorems.

Theorem 5.3. If η 6= 1, or if η = 1 andη ′ = 0, then the sequence of functions
Fn(w) = (1/ηn)(xn/yn − u0) converges locally uniformly onU+ to a noncon-
stant holomorphic functionF. We haveF B H = ηF onU+, X = {w ∈ U+ :
F(w) = 0 } 6= ∅, andH(X) = X. The dynamics ofH onU+ is as follows.

(i) If |η| < 1 then the iteratesHn converge locally uniformly onU+ to [u0 : 1 :
0 : 0].

(ii) If |η| = 1 then the iteratesHn are a normal family onU+, with limit func-
tions of the formw = [x : y : z : 1]→ [u0 + eiθF(w) : 1 : 0 : 0].

(iii) If |η| > 1, the iteratesHn converge locally uniformly onU+ \ X to [1 : 0 :
0 : 0] and locally uniformly alongX to [u0 : 1 : 0 : 0]. In particular, {Hn}n
is not a normal family onU+.

Corollary 5.4. The currentµ̃ of integration along the analytic hypersurface
X ⊂ U+ satisfiesH?µ̃ = µ̃.

Proof. This follows becausẽµ = ddc log|F | andF BH = ηF.

Theorem 5.5. If η = 1 and η ′ 6= 0, then the sequence of functionsEn(w) =
xn/nyn converges locally uniformly onU+ to η ′. In particular, the iteratesHn

converge locally uniformly onU+ to [1 : 0 : 0 : 0].

We postpone the proofs of Theorems 5.3 and 5.5 for the moment in order to dis-
cuss the Green’s functionG+. Let

G+(w) = lim
n→∞

1

2n
log+‖Hn(w)‖ = lim

n→∞
1

2n
log+|yn|.

Proposition 5.6. The above limits exist and are equal, the convergence being
locally uniform onC3. We haveG+∈PSH∩C(C3), G+ is pluriharmonic onU+,
K+ = {G+ = 0}, andG+ BH = 2G+. If µ+ = ddcG+ thenH?µ+ = 2µ+.
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Proof. By Lemma 5.2, the limits are both zero onK+; by Lemma 5.1, the second
limit exists locally uniformly onU+. By Theorems 5.3 and 5.5,

|xn| ≤ [(|F(w)| +1)|η|n + |u0|]|yn| or |xn| ≤ (|η ′| +1)n|yn|
holds forw ∈ U+, provided thatn is sufficiently large. This implies that the
first limit exists onU+ and is equal to the second. As in Lemma 4.3, we have
‖Hn(w)‖ ≤ (C‖w‖+)2n whereC is a constant, so the upper semicontinuous reg-
ularizationG+? of G+ satisfiesG+? (w) ≤ log+‖w‖ + logC. Using this together
with G+? BH = 2G+? and Lemma 5.2, we obtainG+? = 0 onK+. The proof now
continues as for that of Theorem 2.5.

Proof of Theorem 5.3.In order to obtain good estimates onFn, we must consider
instead ofV − the set

W− = {w ∈C3 : |y| > max{R, |z|, |x|2/3} }.
Lemma 5.7. There existsR0 > 0 such, that for anyR > R0,we haveH(W−) ⊆
W−. The estimates

|β|
2
|y|2 < |y1| < 3|β|

2
|y|2 and

( |β|
2

)2n−1

|y|2n < |yn| <
(

3|β|
2

)2n−1

|y|2n

hold forw ∈ W− andn ≥ 1. Moreover,U+ = ⋃∞
n=0H

−n(W−), whereU+ is
defined in(5.4).

Proof. The estimates and the invariance ofW− are proved as in Lemma 5.1. The es-
timate on|yn| implies

⋃∞
n=0H

−n(W−) ⊆ U+.We now takew /∈⋃∞n=0H
−n(W−).

Then |yn| ≤ Mn = max{R, |zn|, |xn|2/3} for all n ≥ 0. Using |zn| = |yn−1| ≤
Mn−1, |xn−1| ≤ M 3/2

n−1, and|zn−1| ≤ Mn−1, we obtain|xn| ≤ C ′M 5/2
n−1 and hence

Mn ≤ C ′′M 5/3
n−1. It follows thatMn ≤ (CM0)

(5/3)n , which impliesw /∈U+.
We now continue with the proof of the theorem. For a fixedm, note thatFn is holo-
morphic onH−m(W−) if n ≥ m and that it satisfiesFn B H = ηFn+1. It suffices
to show that the sequence{Fn} converges locally uniformly onW−. This implies
that the sequence converges locally uniformly onU+ toF ∈O(U+) andF BH =
ηF, henceH(X) = X.

OnW−, let us writeu = x/y andun = xn/yn. Sinceu0 is a fixed point for
h(u) = ηu+ η ′, we haveh(u)− u0 = η(u− u0). Using (5.1) and (5.3) (in which
we writep(x, y) for the terms ofP of degree lower than 2), we obtain

x1

y1
= x1

βy2

βy2

y1
=
[
h

(
x

y

)
+ p(x, y)

βy2

]
βy2

y1
,

so

u1− u0 = ηβy
2

y1
(u− u0)+ u0

(
βy2

y1
−1

)
+ p(x, y)

y1

= ηA(w)(u− u0)+ B(w). (5.5)



Green’s Functions for Irregular Quadratic Polynomial Automorphisms ofC3 443

We haveA,B ∈O(W−) and, by the definition ofW− and Lemma 5.7,

|A(w)−1| < C|y|−1/2, |B(w)| < C|y|−1/2 (5.6)

for some constantC and for allw ∈W−. In particular,A(w) 6= 0 onW− if R is
chosen sufficiently large. We introduce the following notation:

Aj(w) = A BHj(w) = A(wj ), Bj(w) = B BHj(w),

A0 = A, B0 = B,
0n(w) = A0(w)A1(w) · · ·An(w).

(5.7)

Using (5.5) inductively we obtain, after a straightforward calculation, the follow-
ing formula forFn:

Fn(w) = 1

ηn
(un − u0) = 0n−1(w)F̃n(w), where

F̃n(w) = u− u0 + fn(w), fn(w) =
n−1∑
j=0

Bj(w)

ηj+10j(w)
.

(5.8)

Lemma 5.8. The sequences{0n}, {fn}, {F̃n}, and hence{Fn}, converge uniformly
onW− to the holomorphic functions0, f, F̃ , andF, respectively. We have that
0 is bounded and nowhere vanishing onW−, F̃(w) = u− u0 + f(w), andF =
0F̃ is not identically zero. Moreover,f satisfies the estimate|f(w)| < C|y|−1/2

for all w ∈W− and for some constantC.

Proof. By Lemma 5.7 we have (choosingR sufficiently large) that

|yn| >
( |β|

2
|y|
)2n 2

|β| > c2n for all n ≥ 0 andw ∈W−,

with some constantc � 1. It follows from (5.6) that|Aj(w) − 1| < Cc−2j−1
for

all w ∈W− andj ≥ 0. Hence{0n} converges uniformly to0 ∈ O(W−), which
satisfies

0<
∞∏
j=0

(1− Cc−2j−1
) < |0(w)| <

∞∏
j=0

(1+ Cc−2j−1
) < +∞

onW−. Using the estimate on|yj | from Lemma 5.7 and (5.6), we obtain

|Bj(w)| < C

( |β|
2
|y|
)−2j−1

< C|y|−1/2

( |β|
2
|y|
)−2j−2

< C|y|−1/2c−2j−2

for j ≥ 1 andw ∈W−. This, together with the foregoing estimate on|0|, shows
that{fn} converges uniformly tof ∈O(W−) and|f(w)| < C|y|−1/2 onW−. To
see thatF 6≡ 0, we choosew ∈W− such thatx/y 6= u0. By the definition ofW−

we haveλw ∈W− for all λ ≥ 1. SinceF̃(λw) = x/y − u0 + f(λw), the preced-
ing estimate on|f | implies thatF̃(λw) 6= 0 for λ sufficiently large.
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Lemma 5.9. There exists an open neighborhoodD of [u0 : 1 : 0 : 0] in P3, with
D ∩ C3 ⊂ W−, such thatF̃ extends holomorphically toD by F̃ [u : 1 : v : 0] =
u− u0.

Proof. For w = [x : y : z : 1] ∈ W− we havey 6= 0, so we can change the
coordinates to [u : 1 : v : t ], whereu = x/y, v = z/y, and t = 1/y. In these
coordinates we have

W− = { [u : 1 : v : t ] : t 6= 0,max{R|t |, |u|2/3|t |1/3, |v|} < 1},
so we can find an open neighborhoodD ⊂ W− ∪ {t = 0} of [u0 : 1 : 0 : 0]
in P3. By Lemma 5.8 we have, in the new coordinates,|f(u, v, t)| < C|t |1/2 on
W−, sof extends holomorphically toD by f(u, v,0) = 0. HenceF̃(u, v, t) =
u− u0 + f(u, v, t) extends holomorphically toD by F̃(u, v,0) = u− u0.

Corollary 5.10. X 6= ∅; henceF is nonconstant.

Proof. With the notation of Lemma 5.9, let̃X = {w ∈ D : F̃(w) = 0 }. By
Lemma 5.9,X̃ ∩ {t = 0} = {t = u− u0 = 0} has dimension 1, sõX ∩W− 6= ∅.
As F = 0F̃ onW−, this showsX 6= ∅.
Remark. The point [u0 : 1 : 0 : 0] is fixed byH, and the derivativeH ′[u0 : 1 :
0 : 0]—computed in the coordinates from the proof of Lemma 5.9—is a 3× 3
upper triangular matrix with diagonal entriesη, 0, and 0.

We now prove the assertions of Theorem 5.3 regarding the dynamics ofH onU+.
Parts (i) and (ii) follow if we writeHn[x : y : z : 1] = [xn/yn : 1 : zn/yn : 1/yn]
and notice thatzn/yn,1/yn converge locally uniformly to zero onU+, by Lemma
5.1. For (iii), we first fixw ∈U+ \X, an open neighborhoodB ⊂ U+ \X of w,
and a constantc > 0 such that|F(w)| > c onB. It follows thatxn/yn → ∞,
henceHn(w)→ [1 : 0 : 0 : 0] uniformly onB. Let noww ∈X. By taking iter-
ates ofw, we may assume thatw ∈W−. SinceF = 0F̃ and0(w) 6= 0, we have
F̃(w) = 0, sou− u0 = −f(w). Using (5.8), we obtain

xn

yn
− u0 = ηn0n−1(w)

[
−f(w)+

n−1∑
j=0

Bj(w)

ηj+10j(w)

]

= −0n−1(w)

∞∑
j=n

Bj(w)

ηj−n+10j(w)
.

Proceeding as in the proof of the estimate on|f | in Lemma 5.8, we conclude from
this that|xn/yn − u0| = O(|yn|−1/2) and henceHn(w)→ [u0 : 1 : 0 : 0] locally
uniformly alongX. The proof of Theorem 5.3 is now complete.

Proof of Theorem 5.5.It suffices to show that{En} converges uniformly onW− to
η ′, whereW− is as in Lemma 5.7. Writing againu = x/y andun = xn/yn
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and usingh(u) = u + η ′, we obtain in a similar way with (5.5) thatu1 =
A(w)u+ η ′A(w)+B(w), whereA,B ∈O(W−) satisfy the estimates (5.6). With
the notation of (5.7), this gives

En(w) = un

n
= 1

n
0n−1(w)

[
u+

n−1∑
j=0

Bj(w)

0j(w)

]
+ η ′0n−1(w)

1

n

[
1+

n−2∑
j=0

1

0j(w)

]
.

As in the proof of Lemma 5.8, we have that0n → 0 uniformly onW−, 0< c <

|0(w)| < C onW−, and
∑n−1

j=0Bj(w)/0j(w)→ f(w) uniformly onW−. These
imply thatEn→ η ′ uniformly onW−.

We now consider the dynamics of the inverse mapH−1 given in (5.2). We write
P̃(y, z) = γz3 + p̃(y, z), whereγ 6= 0 and deg(p̃) = 2. Note that deg(H−n) =
deg(zn) = 3n for all n ≥ 1. For ε > 0 andR > 1/ε, we let

V + = V +ε,R = {w ∈C3 : |z| > max{R, |y|, (|x|/ε)1/3} }.
The following lemma is proved in a similar way as previous analogous result.

Lemma 5.11. For anyδ ∈ (0,1), there existε = ε(δ) ∈ (0,1) andR0(δ) > 1/ε
such that, for anyR > R0, we haveH−1(V +) ⊆ V +, and the estimates

|β|(1− δ)|z|2 < |x1| < |β|(1+ δ)|z|2,
|γ |(1− δ)|z|3 < |z1| < |γ |(1+ δ)|z|3, (C1|z|)3n < |zn| < (C2|z|)3n

hold onV +, with constantsC1, C2 depending onH−1 and δ.

We define

U− =
∞⋃
n=0

Hn(V +), K− = C3 \ U−.

By Lemma 5.11, the iteratesH−n(w) of pointsw ∈ U− escape to infinity at
super-exponential rate(const)3

n

, converging locally uniformly onU− to [0 : 0 :
1 : 0]. This time,K− is the set of points with bounded backward orbit, as follows.

Lemma 5.12. The iteratesH−n are locally uniformly bounded onK−.

Proof. If w ∈ K− then |zn| ≤ Mn = max{R, |yn|, (|xn|/ε)1/3} for all n ≥ 0.
As |yn| = |zn−1| ≤ Mn−1 and |yn−1| ≤ Mn−1, we obtain by (5.2) that|xn| ≤
C ′M 2

n−1; thusMn ≤ max{R,Mn−1, CM
2/3
n−1}, whereC depends on coefficients

andε. This impliesMn ≤ max{R,C3,Mn−1} and hence, by induction,Mn ≤
max{R,C3,M0}. The conclusion follows.

The Green’s functionG− of H−1 is now defined by

G−(w) = lim
n→∞

1

3n
log+‖H−n(w)‖ = lim

n→∞
1

3n
log+|zn|.
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It can be shown as before (see e.g. Proposition 5.6) that the convergence in the
above limits is locally uniform onC3, G− ∈PSH∩ C(C3), G− is pluriharmonic
onU−, K− = {G− = 0}, andG− B H−1 = 3G−. Hence, ifµ− = ddcG− we
haveH?µ− = 1

3µ
− and suppµ− = ∂K−.

Case 2:β 6= 0, α = α ′ = 0

With the notation of (5.2) and (5.3), we haveP(x, y) = α ′′y2+p(x, y), Q(y) =
βy2+ q(y), andP̃(y, z) = γz2+ p̃(y, z), where the degrees ofp, q, p̃ are≤ 1.
The maps are given by

H(x, y, z) = (α ′′y2 + p(x, y)+ az, βy2 + q(y)+ x, y),

H−1(x, y, z) =
(
y − βz2 − q(z), z, 1

a
x + γz2 + p̃(y, z)

)
.

(5.9)

If γ = 0 then the mapH 2 is regular. Indeed, if̃p1= ∂p̃/∂y, it is easy to check
that I+(H 2) = {t = y = 0} andI−(H 2) = {t = z = 0, x/a + p̃1y = 0}, so
I+(H 2) ∩ I−(H 2) = ∅.

Hence we assumeγ 6= 0. Then the dynamics of bothH andH−1 is similar to
that of the mapsH3 of (4.1), and the methods used there work in this case as well.
Briefly, the situation is as follows: Forε > 0 andR > 1/ε, for the mapH we
define the sets

V − = {w ∈C3 : |y| > max{R, |z|, (|x|/ε)1/2} },

U+ =
∞⋃
n=0

H−n(V −), K+ = C3 \ U+;

for the mapH−1 we define

V + = {w ∈C3 : |z| > max{R, |y|, (|x|/ε)1/2} },

U− =
∞⋃
n=0

Hn(V +), K− = C3 \ U−.

As usual, for a givenδ ∈ (0,1) we can findε ∈ (0,1) andR0 > 1/ε such that,
for anyR > R0, we haveH(V −) ⊂ V − andH−1(V +) ⊂ V +, and the following
estimates hold:

onV −: |β|(1− δ)|y|2 < |y1| < |β|(1+ δ)|y|2, |x1| < (|α ′′| +1)|y|2,
onV +: |γ |(1− δ)|z|2 < |z1| < |γ |(1+ δ)|z|2, |x1| < (|β| +1)|z|2.

Hence the forward iterates of points inU+ escape to infinity at super-exponential
rate, converging locally uniformly to [α ′′ : β : 0 : 0]. The backward iterates of
points inU− escape to infinity at super-exponential rate and converge locally uni-
formly to [−β : 0 : γ : 0]. On the other hand, one can show using the same
techniques as before that the forward (resp. backward) orbits of points inK+ (in
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K−, resp.) can escape to infinity at most at exponential rate. The Green’s func-
tions and the invariant currents are given by

G+(w) = lim
n→∞

1

2n
log+‖Hn(w)‖ = lim

n→∞
1

2n
log+|yn|, µ+ = ddcG+,

G−(w) = lim
n→∞

1

2n
log+‖H−n(w)‖ = lim

n→∞
1

2n
log+|zn|, µ− = ddcG−.

They are continuous plurisubharmonic onC3, and pluriharmonic onU+ (resp.
U−). Moreover,K± = {G± = 0} andG± BH = 2±1G±.

Case 3:β = 0

For this case, it follows thatP(x, y) = αx2+α ′xy+α ′′y2+p(x, y)andP̃(y, z) =
γz2 + γ ′yz+ γ ′′y2 + p̃(y, z), with the only restriction that deg(P ) = 2.

In the generic situation whenα 6= 0 andγ 6= 0, the dynamics is very similar to
the one of the maps in (5.9). There is a slight difference in the choice of the sets
V ±; in this case, we let

V − = {w ∈C3 : |x| > max{R, |z|, |y|/ε} },
V + = {w ∈C3 : |z| > max{R, |x|, |y|/ε} }.

With U± andK± defined in the usual way, we have that the forward iteratesHn

converge super-exponentially onU+ to [1 : 0 : 0 : 0] and thebackward iterates
H−n converge super-exponentially onU− to [0 : 0 : 1 : 0]. Again, onK+ and
K− the forward (resp. backward) orbits can escape to infinity at most at exponen-
tial rate. The Green’s functionsG± are defined and have the same properties as in
Case 2, with the only difference that this timeG+(w) = lim n→∞(log+|xn|)/2n.

If α = 0 andα ′ 6= 0 then it follows by induction that deg(yn) < deg(xn) and
deg(xn+1) = deg(xn)+ deg(xn−1) for all n ≥ 1. So the degrees of the forward it-
erates are given by Fibonacci’s numbers (see [B]). The same holds for the inverse
map, whenγ = 0 andγ ′ 6= 0.

We finally look at the case whenα = α ′ = 0 (soα ′′ 6= 0, as deg(P ) = 2). Here
we again have thatH 2 is regular, sinceI+(H 2) = [0 : 0 : 1 : 0] andI−(H 2) =
{t = z = 0}.

6. The ClassH5

This class contains mapsH = H5 of the form

H(x, y, z) = (P(x, y)+ az,Q(x)+ by, x), (6.1)

where max{deg(P ),deg(Q)} = 2 anda 6= 0 6= b. The inverse map is given by

H−1(x, y, z) =
(
z,
y −Q(z)

b
,
x

a
+ P̃(y, z)

)
,

P̃(y, z) = −1

a
P

(
z,
y −Q(z)

b

)
.

(6.2)
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We write
P(x, y) = αx2 + α ′xy + α ′′y2 + l.d.t.,

Q(x) = βx2 + l.d.t.
(6.3)

The mapH is regular if and only ifβ 6= 0 andα ′′ 6= 0. In the study of the dynam-
ics of mapsH that are not regular, we will consider several cases—of which the
first is the most interesting.

Case 1:β 6= 0, α ′′ = 0, α ′ 6= 0

Let us begin by discussing the dynamics of the inverse mapH−1. This is similar
to the dynamics of the mapH−1 in (5.2), of the corresponding case for the class
H4, so we will state the results without providing the proofs. We writeP̃(y, z) =
γz3 + p̃(y, z), whereγ 6= 0, deg(p̃) = 2, and p̃ does not containy2. Then
deg(H−n) = 3n for all n ≥ 1. For ε > 0 andR > 1/ε, we let

V + = V +ε,R = {w ∈C3 : |z| > max{R, |x|, (|y|/ε)1/2} }.
Lemma 6.1. For any δ ∈ (0,1), there existε = ε(δ) ∈ (0,1) andR0(δ) > 1/ε
such that, for anyR > R0, we haveH−1(V +) ⊆ V +, and the estimates

|β|
|b| (1− δ)|z|

2 < |y1| < |β||b| (1+ δ)|z|
2,

|γ |(1− δ)|z|3 < |z1| < |γ |(1+ δ)|z|3, (C1|z|)3n < |zn| < (C2|z|)3n

hold onV +, with constantsC1, C2 depending onH−1 and δ.

We define

U− =
∞⋃
n=0

Hn(V +), K− = C3 \ U−.

By Lemma 6.1, theH−1-orbits of points inU− escape to infinity at super-exponen-
tial rate, converging locally uniformly onU− to [0 : 0 : 1 : 0]. OnK− we have
the following behavior.

Lemma 6.2. There exist both a positive continuous functionM onC3 and a con-
stantC > 1such thatmax{|xn|, |yn|, |zn|} ≤ CnM(w) holds for anyw ∈K− and
n ≥ 0.

The Green’s functionG− of H−1 is given by

G−(w) = lim
n→∞

1

3n
log+‖H−n(w)‖ = lim

n→∞
1

3n
log+|zn|.

The convergence in the above limits is locally uniform onC3, G− ∈PSH∩C(C3),

G− is pluriharmonic onU−, K− = {G− = 0}, andG− B H−1 = 3G−. If µ− =
ddcG− we haveH?µ− = 1

3µ
− and suppµ− = ∂K−.
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We now consider the dynamics ofH. By a change of coordinates of the form
(x, y, z)→ (a ′x, b ′y, a ′z), we may assume thatH is given by

x1= αx2 + xy + p(x, y)+ az,
y1= x2 + q(x)+ by, (6.4)

z1= x,
where deg(p),deg(q) ≤ 1. The indeterminacy sets ofH areI+ = {t = x = 0}
andI− = {t = z = 0}. We haveH({t = 0} \ I+) ⊆ I−; on I−, with coordinate
u = y/x, the map is given by

H [1 : u : 0 : 0]= [1 : h(u) : 0 : 0], h(u) = 1

u+ α .
It is easy to check that, whenα = ±2i, the Möbius maph has a double fixed point
given byu0 = −α/2 = ∓i. If α 6= ±2i thenh has distinct fixed pointsu0, u

′
0,

and we haveh′(u0) = −u2
0 andh′(u′0) = −(u′0)2. If <α = 0 and=α ∈ (−2,2)

then |u0| = |u′0| = 1, and both fixed points are neutral; otherwise,|u0| < 1 <
|u′0|, u0 is attracting, andu′0 is repelling.

We now assumeα 6= ±2i. Note that the change of coordinatesu′ =
(u− u0)/(u− u′0) putsh into the formh̃(u′) = (−u2

0)u
′. By a projective change

of coordinates

w ′ = S(w) : [x ′ : y ′ : z ′ : t ′ ] = [a ′(y − u′0x) : a ′(y − u0x) : b ′z : t ]

with inverse

w = S−1(w ′) : x = x ′ − y ′
a ′(u0 − u′0)

, y = u0x
′ − u′0y ′

a ′(u0 − u′0)
, z = z ′

b ′

(wherea ′, b ′ are suitably chosen), the mapH is conjugated to the map̃H given
by

x ′1 = x ′(x ′ − y ′)+ p̃(x ′, y ′, z ′),
y ′1 = ηy ′(x ′ − y ′)+ q̃(x ′, y ′, z ′),
z ′1 = x ′ − y ′,

(6.5)

where deg(p̃),deg(q̃) ≤ 1, p̃, q̃ both containz ′, andη = −u2
0 = h′(u0). We have

0< |η| ≤ 1 andη 6= 1 (otherwiseu2
0 = −1 andu0 = u′0 = ±i).

Let us denote byI+∞ =
⋃∞
n=0 H̃

−n(I+) the extended indeterminacy set ofH̃ ,
that is, the minimal set away from which all the forward iteratesH̃ n are well-
defined. The new phenomenon occurring for this class is thatI+∞ is larger than
I+. In fact, in the new coordinates we haveI+ = {t ′ = 0, x ′ = y ′ } while I+∞ =⋃∞
j=0{t ′ = 0, x ′ = ηjy ′ }.
We study the dynamics of mapsH in (6.4) that correspond to the rationally neu-

tral case whenη is a primitive root of unity of orderk ≥ 2: ηk = 1. For instance,
α = 0 corresponds toη = −1. In this caseI+∞ =

⋃k−1
j=0{t ′ = 0, x ′ = ηjy ′ }. We
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will construct the dynamically relevant setsV −, U+,K+ for the mapH by first
defining suitable sets for the map̃H in (6.5), in thew ′-coordinates, and then by
using the transformationS−1. For this purpose it is useful to writeS−1 in terms
of η:

S−1(w ′) = w : x = a ′′(x ′ − y ′), y = b ′′(x ′ − ηk−1y ′), z = z ′/b ′, (6.6)

where|a ′′| = |b ′′|. Here we usedu′0 = −1/u0, η = −u2
0, andηk = 1.

For ε > 0 andR > 1/ε we let

Ṽ − =
{
w ′ ∈C3 : min

j=0,...,k−1
|x ′ − ηjy ′|
> max{R, |z ′|, (|x ′|/ε)1/2, (|y ′|/ε)1/2}

}
,

Ũ+ =
∞⋃
n=0

H̃−n(Ṽ −), K̃+ = C3 \ Ũ+.
(6.7)

Proposition 6.3. (i)For anyδ ∈ (0,1), there existsε = ε(δ) andR0 = R0(δ) >

1/ε such that, for allR > R0, we haveH̃(Ṽ −) ⊆ Ṽ −, and the estimates

(1− δ)|x ′ −ηj+1y ′||x ′ −y ′| < |x ′1−ηjy ′1| < (1+ δ)|x ′ −ηj+1y ′||x ′ −y ′| (6.8)

hold for allw ′ ∈ Ṽ − andj ∈ {0, . . . , k −1}.
(ii) There exists a positive continuous functionM on C3 such that, for all

w ′ ∈ K̃+ and all n ≥ 0, we havemax{|x ′n|, |y ′n|, |z ′n|} ≤ [M(w ′)]ν
n

, whereν =
2
(

3
4

)1/k ∈ ( 3
2,2).

Proof. (i) By (6.5), for a fixedj ∈ {0, . . . , k −1} we have

x ′1− ηjy ′1 = (x ′ − ηj+1y ′)(x ′ − y ′)+ l.d.t.

Because, onṼ −, |x ′| < ε|x ′ − ηj+1y ′|2 and |x ′| < ε|x ′ − y ′|2, we conclude
that|x ′| < ε|x ′ − ηj+1y ′||x ′ − y ′|, and the same holds for|y ′|. Moreover,|z ′| <
|x ′ − y ′| < ε|x ′ − y ′||x ′ − ηj+1y ′|, sinceR > 1/ε. Thus

|(x ′1− ηjy ′1)− (x ′ − ηj+1y ′)(x ′ − y ′)| < Cε|x ′ − y ′||x ′ − ηj+1y ′|,
whereC depends on coefficients, which yields (6.8) if we letε ≤ δ/C. Using
max{|x ′|, |y ′|} < ε|x ′ − ηj+1y ′|2 and (6.5), we get

max{|x ′1|, |y ′1|} < Cε|x ′ − ηj+1y ′|2|x ′ − y ′|,
so ifR is sufficiently large then by (6.8) we have

max{(|x ′1|/ε)1/2, (|y ′1|/ε)1/2} < C|x ′ − ηj+1y ′||x ′ − y ′|1/2

< (1− δ)|x ′ − ηj+1y ′||x ′ − y ′| < |x ′1− ηjy ′1|.
Since|z ′1| = |x ′ − y ′| < (1− δ)|x ′ − ηj+1y ′||x ′ − y ′|, it follows by combining
all these thatH̃(Ṽ −) ⊆ Ṽ −.

(ii) If w ′ ∈ K̃+ then for alln ≥ 0 we have

min
j=0,...,k−1

|x ′n − ηjy ′n| ≤ Mn = max{R, |z ′n|, (|x ′n|/ε)1/2, (|y ′n|/ε)1/2}. (6.9)
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As in the proof of (6.8), and sinceηk = 1, we have the following implications:

|x ′ − y ′| > M0 & |x ′ − ηjy ′| > M0⇒ |x ′1− ηj−1y ′1| > M1,

|x ′ − y ′| > M0⇒ |x ′1− ηk−1y ′1| > M1.
(6.10)

We fixw ′ ∈ K̃+ and claim that, for anyn ≥ k, there existsp = p(n)∈ {1, . . . , k}
such that

|x ′n−p − y ′n−p| ≤ Mn−p. (6.11)

Indeed, assume by way of contradiction that, for anyp ∈ {1, . . . , k}, (6.11) does
not hold. Since|x ′n−p − y ′n−p| > Mn−p, it follows by (6.10) that

|x ′n−p+1− ηk−1y ′n−p+1| > Mn−p+1.

This, together with|x ′n−p+1− y ′n−p+1| > Mn−p+1 and (6.10), implies that

|x ′n−p+2 − ηk−2y ′n−p+2| > Mn−p+2.

Continuing like this we conclude|x ′n−1 − ηk−p+1y ′n−1| > Mn−1 for all p ∈
{1, . . . , k}. Since this contradicts (6.9), our claim follows.

Let nown ≥ k andp = p(n)∈ {1, . . . , k} such that (6.11) holds. Then

Mn ≤ CM 3(2p−2)
n−p , (6.12)

whereC > 1 is a constant depending onH. Indeed, by the definition ofMj, we
have|zj | ≤ Mj and|xj |, |yj | ≤ εM 2

j . Using these together with (6.5) and (6.11),
we have

max{|x ′n−p+1|, |y ′n−p+1|} ≤ CεM 3
n−p, |z ′n−p+1| ≤ Mn−p.

Since‖H̃ n(w ′)‖ ≤ (C‖w ′‖+)2n , it follows for all j ∈ {1, . . . , p} that

‖H̃ n−j+1(w ′)‖ = ‖H̃p−j(w ′n−p+1)‖ ≤ (C‖w ′n−p+1‖+)2
p−j ;

hence max{|x ′n|, |y ′n|} ≤ (Cε)2
p−1
M

3(2p−1)
n−p . Moreover, if p = 1 then |z ′n| =

|x ′n−1−y ′n−1| ≤Mn−1, and ifp≥2 then|z ′n| ≤ |x ′n−1|+ |y ′n−1| ≤ (Cε)2
p−2
M

3(2p−2)
n−p .

These give (6.12).
We letM̃(w ′) = max{M0(w

′), . . . ,Mk−1(w
′)}. The assertion of part (ii) fol-

lows if we show that, for alln ≥ 0,

Mn ≤ [C 4M̃ 4/3]ν
n

, (6.13)

whereC is the constant in (6.12). This clearly holds forn < k, sinceν > 1. If
n ≥ k then we apply (6.12) repeatedly to get

Mn ≤ C1+r1+(r1r2)+···+(r1r2 . . . rl−1)(Mn−p1−···−pl )
r1r2 . . . rl , (6.14)

whererj = 3(2pj−2) andpj ∈ {1, . . . , k} are such thatn−p1−p2− · · · −pl−1 ≥
k and 0≤ n−p1−p2− · · ·−pl < k. Hencen− k < p1+ · · ·+pl ≤ lk, sol >
(n/k)−1. Moreover,p1+ · · · + pl−1+ pl ≤ n− k + k = n. We conclude that
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r1r2 . . . rl =
(

3

4

)l
2p1+···+pl ≤

(
3

4

)(n/k)−1

2n = 4

3
νn.

Sincerj ≥ 3/2, it is easy to check by induction that1+r1+r1r2 . . . +r1r2 . . . rl ≤
3r1r2 . . . rl, so (6.14) impliesMn ≤ (C3M̃ )r1r2 . . . rl . This gives (6.13), using our
estimate onr1r2 . . . rl .

We now return to the dynamics of the mapH in (6.4) and define

V − = S−1(Ṽ −),

U+ =
∞⋃
n=0

H−n(V −) = S−1(Ũ+),

K+ = C3 \ U+ = S−1(K̃+),

(6.15)

whereṼ − is given in (6.7) andδ, ε, R are chosen as in Proposition 6.3. The above
identities hold sinceH = S−1 B H̃ B S.

Proposition 6.4. (i) There exists a positive continuous functionM onC3 such
that, for allw ∈ K+ and all n ≥ 0, we havemax{|xn|, |yn|, |zn|} ≤ [M(w)]ν

n

,

whereν = 2( 3
4)

1/k < 2.
(ii) We haveH(V −) ⊆ V − andCmin{|xn|, |yn|} > [(1− δ)R]2n for all w ∈

V − andn ≥ 0, whereC−1 = |a ′′| = |b ′′| anda ′′, b ′′ are given in(6.6). In par-
ticular, theH -orbits of points inU+ escape to infinity at super-exponential rate
(const)2

n

.

(iii) The following estimates hold for allw ∈V − and alln ≥ k: |z1| < C1|y1|,
C(1− δ)|x|2 < |y1| < C(1+ δ)|x|2, max{|x1|, |y1|} < C1(max{|x|, |y|})2,
Ck(1− δ)k|xn−1| . . . |xn−k+1||xn−k|2 < |xn|

< Ck(1+ δ)k|xn−1| . . . |xn−k+1||xn−k|2,
Ck(1− δ)k|xn−1| . . . |xn−k||yn−k| < |yn| < Ck(1+ δ)k|xn−1| . . . |xn−k||yn−k|,

|xn|
|yn| < C

n/k

1 max
j=0,. . . ,k−1

|xj |
|yj | ,

|yn|
|xn| < C

n/k

1 max
j=0,. . . ,k−1

|yj |
|xj | ,

whereC is as in part(ii) andC1 > 1 is a constant depending on coefficients.

Proof. (i) This follows directly from Proposition 6.3, the formula (6.6) ofS−1,

and the definition (6.15) ofK+.
(ii) The H -invariance ofV − follows directly from theH̃ -invariance ofṼ −.

Using (6.8) repeatedly we see that|x ′n − y ′n| and |x ′n − ηk−1y ′n| are larger than
(1− δ)2n−1 times a product of 2n factors of the form|x ′ − ηjy ′|, which are each
larger thanR. Since|xn| = C−1|x ′n−y ′n| and|yn| = C−1|x ′n−ηk−1y ′n|, this gives
the estimate in part (ii).
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(iii) As in (ii), relation (6.8) applied forj = k − 1 yields the estimate for|y1|.
The estimate for|z1| is then trivial, since|z1| = |x| < |x|2. The third estimate fol-
lows from (6.4), since min{C|x|, C|y|} > max{R, |z|} holds onV −. Using (6.8),
we have

|x ′n − y ′n| ∼ |x ′n−1− y ′n−1||x ′n−1− ηy ′n−1|
∼ |x ′n−1− y ′n−1||x ′n−2 − y ′n−2||x ′n−2 − η2y ′n−2| ∼ · · ·
∼ |x ′n−1− y ′n−1| . . . |x ′n−k − y ′n−k||x ′n−k − ηky ′n−k|.

Sinceηk = 1, this yields the fourth inequality of (iii). Similarly,

|x ′n − ηk−1y ′n| ∼ |x ′n−1− y ′n−1|2
∼ |x ′n−1− y ′n−1| . . . |x ′n−k − y ′n−k||x ′n−k − ηk−1y ′n−k|,

which yields the estimate on|yn|. Using the estimates on|xn| and|yn|, we obtain(
1− δ
1+ δ

)k |xn−k|
|yn−k| <

|xn|
|yn| <

(
1+ δ
1− δ

)k |xn−k|
|yn−k| .

This implies the remaining inequalities of the proposition.

We define the Green’s functionG+ of H by

G+(w) = lim
n→∞

1

2n
log+‖Hn(w)‖ = lim

n→∞
1

2n
log+|xn| = lim

n→∞
1

2n
log+|yn|.

Theorem 6.5. The above limits exist and are equal, the convergence being lo-
cally uniform onC3. We haveG+ ∈PSH∩ C(C3), G+ is pluriharmonic onU+,
K+ = {G+ = 0}, andG+ BH = 2G+. If µ+ = ddcG+ thenH?µ+ = 2µ+.

Proof. By Proposition 6.4(i), thelimits are zero onK+. By the last two inequal-
ities of Proposition 6.4(iii), it follows that if one of the three limits exists at
w ∈U+ then the other two also exist and they are all equal. Let us writeGn(w) =
(log+|xn|)/2n and fixw0 ∈ V − and a relatively compact open ballB ⊂ V − cen-
tered atw0. By Proposition 6.4(iii) forw ∈ B we have|yn| < Cn

1 |xn| for some
constantC1 > 1, so

Gn+1(w) ≤ 1

2n+1
log+(C1 max{|xn|, |yn|})2 ≤ n+1

2n
logC1+Gn(w).

If we definemn+1= 2−n(n+ 3)2 logC1, thenmn+1+ (n+1)2−n logC1 ≤ mn for
all n ≥ 1, so{Gn +mn} is a decreasing sequence of positive pluriharmonic func-
tions onB. It follows by Harnack’s theorem that the functionsGn converge locally
uniformly to a positive pluriharmonic function onB. HenceG+ is well-defined
onC3 and is pluriharmonic and positive onU+. If G+? is the upper semicontin-
uous regularization ofG+ then, using Proposition 6.4(i) andG+? BH = 2G+? , it
follows thatG+? = 0 onK+. The proof now continues in the standard way.

We now discuss the dynamics ofH onU+. Recall that, onI− and with coordinate
u = y/x, H is given byh(u) = 1/(u+ α).
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Theorem 6.6. The sequence of functionsFn(w) = ykn/xkn converges locally
uniformly onU+ to a nonconstant nowhere-vanishing holomorphic functionF,

which satisfiesF BH = h BF and, in particular,F BH k = F. Moreover, for any
r ∈ {0, . . . , k − 1}, the sequence of iterates{H kn+r}n converges locally uniformly
onU+ ⊂ P3 to the functionw = [x : y : z : 1]→ [1 : hr B F(w) : 0 : 0].

Proof. Instead of the set̃V − in (6.7) we must consider the set

W̃− =
{
w ′ ∈C3 : min

j=0,...,k−1
|x ′ − ηjy ′| > max{R, |z ′|, |x ′|2/3, |y ′|2/3}

}
.

Lemma 6.7. If R is sufficiently large thenH̃(W̃−) ⊆ W̃− and, for allw ′ ∈ W̃−
andj ∈ {0, . . . , k −1}, we have

x ′1−ηjy ′1 = (x ′ −y ′)(x ′ −ηj+1y ′)[1+O(|x ′ −y ′|−1/4|x ′ −ηj+1y ′|−1/4)]. (6.16)

Moreover,Ũ+ =⋃∞n=0 H̃
−n(W̃−), whereŨ+ is as in(6.7).

Proof. The first part of the lemma follows as in the proof of Proposition 6.3. Note
that repeated use of (6.8) implies [(1− δ)R]2n < |x ′n − y ′n| ≤ 2 max{|x ′n|, |y ′n|}
and so, by Proposition 6.3,̃U+ is the set where the iterates̃Hn escape to infinity at
the highest super-exponential rate. Hence, by (6.16),

⋃∞
n=0 H̃

−n(W̃−) ⊆ Ũ+. For
the reversed inclusion, we show that there exists a positive continuous functionM

onC3 such that, ifw ′ /∈⋃∞n=0 H̃
−n(W̃−) andn ≥ 0, then max{|x ′n|, |y ′n|, |z ′n|} ≤

[M(w ′)]ν
n
1 , whereν = 2

(
5
6

)1/k
< 2. This is done by the same arguments as in the

proof of Proposition 6.3(ii): For alln ≥ 0, we have

min
j=0,...,k−1

|x ′n − ηjy ′n| ≤ Mn = max{R, |z ′n|, |x ′n|2/3, |y ′n|2/3}.

Implications (6.10) and inequality (6.11) hold in this setting. Inequality (6.12) be-
comesMn ≤ CM

(5/6)2p

n−p , wheren ≥ k andp = p(n) ∈ {1, . . . , k}. Inequality
(6.14) holds withp1, . . . , pl as before, andrj = 5

62pj . Hence

r1r2 . . . rl =
(

5

6

)l
2p1+···+pl ≤ 6

5
νn1 ,

and the conclusion follows.

Lemma 6.8. LetW− = S−1(W̃−).
(i) We haveH(W−) ⊆ W− and U+ = ⋃∞

n=0H
−n(W−), whereU+ is as

in (6.15). Moreover,min{|xn|, |yn|} > (R ′)2
n

holds onW− for some constant
R ′ � 1, andyn/x2

n and1/xn converge to zero locally uniformly onW−.
(ii) If w ∈ W− then yk/xk = (y/x)A(w), whereA ∈ O(W−) satisfies
|A(w)−1| < C(|x|−1/2 + |y|−1/2) onW− for some constantC.

Proof. (i) These follow directly from Lemma 6.7, Proposition 6.4, and the esti-
mate‖Hn(w)‖ ≤ (C‖w‖+)2n .
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(ii) By (6.16) and sinceηk = 1, we have the following:

x ′k − y ′k
(x ′k−1− y ′k−1)(x

′
k−1− ηy ′k−1)

= 1+O(|x ′k−1− y ′k−1|−1/4|x ′k−1− ηy ′k−1|−1/4),

x ′k−1− ηy ′k−1

(x ′k−2− y ′k−2)(x
′
k−2− η2y ′k−2)

= 1+O(|x ′k−2− y ′k−2|−1/4|x ′k−2− η2y ′k−2|−1/4),

...

x ′1− ηk−1y ′1
(x ′ − y ′)2 = 1+O(|x ′ − y ′|−1/2).

By (6.6),xj = a ′′(x ′j − y ′j ), so multiplying the foregoing identities yields

(a ′′)kxk
xk−1 . . . x1x2

= 1+O(|x|−1/2).

Here we used the fact that, in view of (6.16),|x ′j − ηly ′j | is larger than a degree-2j

product of factors of the form|x ′ − ηmy ′|, in which |x ′ − y ′| has degree 2j−1.

Thus|x ′j − ηly ′j |−1/4� |x ′ − y ′|−1/4. In a similar way, we obtain

(a ′′)kyk
xk−1 . . . x1xy

= 1+O(|x|−1/2 + |y|−1/2).

These yield part (ii) of the lemma.

We now proceed with the proof of Theorem 6.6. By Lemma 6.8, it suffices to show
that{Fn} converges locally uniformly onW−. LetAn(w) = A(wkn), A0 = A, and
0n = A0A1 . . . An−1. Then the estimates of Lemma 6.8 imply that{0n} converges
uniformly to 0 ∈ O(W−), which satisfiesC1 < |0(w)| < C2 for all w ∈ W−
(C1, C2 are positive constants). By Lemma 6.8(ii),Fn(w) = Fn−1(w)A(wk(n−1)) =
Fn−1(w)An−1(w), hence by inductionFn(w) = (y/x)0n(w) holds onW−. So{Fn}
converges locally uniformly onU+ toF ∈O(U+), andF(w) = (y/x)0(w) holds
onW−. We haveFn BH k = Fn+1 and so, onU+, F BH k = F. SinceC1 < |0| <
C2 it follows thatF is nowhere vanishing onW−, hence onU+.

Note that, forτ ∈ (0,1/3), W− contains pointsw = (x, y,0) with |y| =
|x|1−τ , provided that|x| is sufficiently large. Indeed, using (6.6) to writex ′, y ′,
andx ′ − ηjy ′ in terms ofx, y, we have that

max{|x ′|, |y ′|} < (const)|x|, min
j=0,...,k−1

|x ′ − ηjy ′| > (const)|y|,

sow ′ = S(w) ∈ W̃−. For such pointsw ∈W− we havey/x → 0 as|x| → ∞;
and sinceC1 < |0| < C2, it follows thatF(w) = (y/x)0(w) cannot be constant.

By Lemma 6.8 and (6.4), forw ∈W− we have

Fn BH(w) = ykn+1

xkn+1
= 1+ o(1)
Fn(w)+ α + o(1) .
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As n→ ∞, this implies thatF B H = h B F holds onU+ and henceF B Hr =
hr B F for all r ∈ {1, . . . , k}. We conclude that

H kn+r (w) = [1 : ykn+r/xkn+r : zkn+r/xkn+r : 1/xkn+r ] → [1 : hr B F(w) : 0 : 0]

locally uniformly onU+ asn→∞, and the proof of the theorem is complete.

Case 2:β 6= 0, α ′ = α ′′ = 0

With the notation of (6.1) and (6.2), we haveP(x, y) = αx2+ l.d.t. andP̃(y, z) =
γz2 + l.d.t. The generic caseα 6= 0 6= γ is covered in Case 2 for the classH4 by
switching the roles ofx andy in the formulas ofV ±,G±, . . . given there. There
are also interesting examples whenP ≡ 0. Then it is easy to check thatH 2 is
given by

x2 = ax, y2 = b2y +Q(az)+ bQ(x), z2 = az;
hence deg(H 2n) ≤ 2 for all integersn.

Case 3:β = 0

For this case,P(x, y) = αx2 + α ′xy + α ′′y2 + l.d.t., P̃(y, z) = γz2 + γ ′yz +
γ ′′y2 + l.d.t., and deg(P ) = deg(P̃ ) = 2. The generic situation whenα 6= 0 6=
γ is covered by Case 3 for the classH4. If α = 0 andα ′ 6= 0 then, as for the
classH4, the degrees of the forward iteratesHn are given by Fibonacci’s num-
bers. Ifα = α ′ = 0 (henceα ′′ 6= 0) there are some interesting examples, as when
P(x, y) = α ′′y2 andQ ≡ 0. Then it is easy to see that

Hn(w) = (cny2 + pn(x, z), bny, dny2 + qn(x, z))
for all integersn, where deg(pn) ≤ 1 and deg(qn) ≤ 1. Hence all forward and
backward iterates ofH have degree at most 2.

7. Conclusions

We summarize here the main dynamical features of the five classes of automor-
phisms studied throughout the paper. The goal is to highlight the new phenomena
that occur in dimension 3 and also to point out dynamical differences and analo-
gies between these five classes.

We recalled in the introduction a few facts about the dynamics of Hénon maps
in C2 and of regular polynomial autmorphisms inCN. In order to emphasize the
dynamical differences between these maps and the ones studied here, we first men-
tion a few more properties of Hénon maps, regular polynomial automorphisms,
and the shift-like automorphisms of [BP].

For Hénon mapsh inC2, the indeterminacy sets consist each of one point:I+ =
[0 : 1 : 0] andI− = [1 : 0 : 0]. The extension ofh to P2 maps the line{t = 0}
at infinity to [1 : 0 : 0], and this point is a super-attracting fixed point ofh with
basin of attractionU+ ∪ ({t = 0} \ I+).
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For regular polynomial automorphismsh of CN studied in [S], the situation is
analogous to the Hénon maps from the following point of view:h({t = 0}\I+) ⊂
I−, I− is an attractor with basinU+ inCN, and the setK = K+∩K− is compact
and is the set of points with bounded full orbit. Moreover, the extended indeter-
minacy setI+∞ = I+. Sibony also showed that ifd = deg(h), d ′ = deg(h−1), and
dim(I−) = l − 1, then deg(hn) = d n, dim(I+) = N − l − 1, d l = (d ′)N−l , and
µ = (µ+)l ∧ (µ−)N−l is an invariant probability measure supported onK.

Similar dynamical behavior with Hénon maps and regular automorphisms is
exhibited by the shift-like polynomial automorphisms ofCN studied in [BP]. A
shift-like automorphism of typeν ∈ {1, . . . , N −1} has the form

f(x1, . . . , xN) = (x2, . . . , xN , P(xN−ν+1)− ax1),

where deg(P ) = d ≥ 2 anda 6= 0. ThenK+ andK− are again the sets of points
with bounded forward (resp. backward) orbit,K = K+ ∩K− is compact inCN,
andµ = (µ+)ν ∧ (µ−)N−ν is an invariant probability measure supported onK.
We note that these similarities come from the fact thath = f ν(N−ν) is regular:
deg(h) = dN−ν, deg(h−1) = dν, I+(h) = {xN+1−ν = · · · = xN = t = 0},
dim(I+) = N − ν − 1, I−(h) = {x1 = · · · = xN−ν = t = 0}, and dim(I−) =
ν −1.

The automorphisms we consider are not regular, but the degrees of their forward
and backward iterates are always given by(const)2n or 3n for n sufficiently large.
With the vanishing of some coefficients it is possible to obtain mapsH in these
classes with “irregular” growth of degree (i.e., like Fibonacci’s numbers—see [B],
or with deg(H 2n) ≤ 2) or such thatH 2 is regular (see e.g. the classH4).

For all the maps studied here, the setU+ of points whose orbit escapes to infin-
ity at the highest super-exponential rate is always open. HenceK+ = C3 \U+ is
closed, as in the case of regular automorphisms, but it no longer consists only of
points with bounded forward orbit; we have only thatK+ = {G+ = 0} is the set
of points whose orbit escapes to infinity at rates slower than the one correspond-
ing toU+. Similar statements hold forU− andK−. The Green’s functionsG+

andG− are, in all these cases, pluriharmonic on the setsU+ (resp.U−). With the
usual notationµ± = ddcG±, we have that∂K+ ∩ ∂K− = supp(µ+ ∧ µ−) can-
not be compact, henceK+ ∩ K− is unbounded. Moreover, one cannot construct
invariant measures using only the currentsµ+ andµ−, as is done for regular auto-
morphisms.

The dynamics onU+ of the automorphisms we consider is determined by the
behavior of their extension toP3 along the hyperplane{t = 0} at infinity. For the
mapsH in the first three classes—given by (2.2), (3.2), and (4.1)—we have that the
second iterateH 2 maps all the points at infinity (inP3, where it is well-defined)
to a single point. The iteratesHn form a normal family onU+, since they con-
verge locally uniformly to that point. Similar statements hold in these cases for
the inverse mapsH−1 on the corresponding setsU−.

For the maps we considered from the classesH4 andH5 (see (5.1) and (6.1)),
the behavior at infinity is in general different than as just described (i.e., in Case 1
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for each of these classes). Such maps map{t = 0} \ I+ to I− = {t = z = 0},
where they are given by

H4[u : 1 : 0 : 0]= [h4(u) : 1 : 0 : 0], h4(u) = ηu+ η ′,
H5[1 : u : 0 : 0]= [1 : h5(u) : 0 : 0], h5(u) = 1/(u+ α). (7.1)

In Theorems 5.3, 5.5, and 6.6, we showed that the dynamics ofH4 andH5 onU+

is determined by the “dynamics at infinity” ofh4 andh5, respectively. This was
done by constructing suitable holomorphic functionsF4 andF5 on the setsU+,
which satisfy (resp.)F4 BH4 = ηF4 andF5 BH5 = h5 B F5. (In the case ofH4, if
F̃4 = F4 + u0, whereF4 is the function of Theorem 5.3 andu0 is the finite fixed
point ofh4, we haveF̃4 BH4 = h4 B F̃4.)

The maps in the classesH1 andH2 are essentially semidirect products over
Hénon maps inC2. Let us denote byK the set of points with bounded full orbit. It
is natural to expect thatK carries some dynamical information. For the mapsH

in the classesH1 andH2, K is compact and it is not difficult to find it explicitly,
roughly speaking as the intersection ofK+ ∩ K− with an analytic hypersurface
that is invariant underH (K = K+∩K−∩{z = 0} forH1, andK = K+∩K−∩X
forH2—see Section 3). Hence we can construct invariant measures usingµ+, µ−,
and this invariant hypersurface. Similar constructions of invariant measures may
work for some of the maps in the remaining classes. We also note the follow-
ing difference between some mapsH2 and Hénon maps. If we denote byF + the
Fatou set and byJ+ the Julia set (defined using normality) then, for Hénon maps,
J+ = ∂K+ = suppµ+. For mapsH2 such that intK+ 6= ∅, we have thatJ+ =
∂K+ ∪X is larger than∂K+ = suppµ+.

Recall that, for Hénon maps,U+ ⊆ F +. We have the following new phenom-
enon for the mapsH4 with |η| > 1 (see (7.1)): The iteratesHn

4 converge locally
uniformly onU+ \X to [1 : 0 : 0 : 0],whereX is an analytic hypersurface inU+,
invariant underH4 (with the above notation,X = {F4 = 0} = {F̃4 = u0}). Since
alongX the iteratesHn

4 converge locally uniformly to the finite fixed point [u0 :
1 : 0 : 0] ofh4, we conclude that{Hn

4 }n is not a normal family onU+. Note also
that [1: 0 : 0 : 0]∈ I− ∩ I+.

The dynamics of maps in classH5, Case 1, seems to be the most complicated
among the five classes. This is because the maps are nontrivial along the hyper-
plane at infinity inP3 and, at the same time, the extended indeterminacy setI+∞ is
larger thanI+. We only consider the “rationally neutral” case, corresponding to
ηk = 1 (see (6.5)). In this caseI+∞ ∩ I− consists of finitely many points, a fact that
allowed our construction of the setV − to work out. The remaining cases—when
I+∞ ∩ I− is a countable set—will be the subject of forthcoming papers.

We also have the following new situation arising for mapsH in Case 1 of each
of the classesH4 andH5. For such maps,H?µ+ = 2µ+ whereasH?µ− = 1

3µ
−.

Moreover, the Green’s functionsG+ andG− are pluriharmonic onU+ (resp.U−).
Because of these facts, the construction of invariant measures using the currents
µ+ andµ− seems to be complicated.
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