Green’s Functions for Irregular Quadratic
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1. Introduction

We first recall some basic facts about the dynamics of (holomorphic) polynomial
automorphisms of2. It was shown in [FM}hat the ones with interesting dynam-
ics are affinely conjugated to a finite composition of generalized Hénon maps—that
is, maps of the fornix, y) — (P(x) —ay, x), whereP is a holomorphic polyno-
mial in C. The dynamics of such maps is studied in detail in a sequence of papers
by Bedford and Smillie, starting with [BS], in [FS], and also in [H].

For simplicity, let us refer to the case of one generalized Hénon hfapy) =
(P(x) — ay, x), where P has degree/ > 2. There are two posibilities: either
the forward iteratesi” of h can escape to infinity at super-exponential rate
(~ (consy?") or they are locally uniformly bounded. The first situation occurs
on an open set/ ™ and the second on the complemedit = C2\ U*. Then
the Fatou set of;, defined in the usual sense as the largest open set on which
the iterategh”} form a normal family, is given by/ ™ Nnint K, while the Julia
set isdK . Similar statements hold for the inverse miap, the corresponding
sets being denoted iy~ andK ~. Using these facts, one defines (pluricomplex)
Green'’s functions which measure the (super-exponential) rate of escape to infinity
in forward/backward time:

. 1
G*(w) = lim —log"|A*"(w)||,
n—o00 "

wherew = (x, y) € C2. These functions are continuous plurisubharmoni€én
and actually pluriharmonic otr + (resp. onUU ~). Moreover,K* = {G* = 0}.
The Green’s functions are used to define the currgfts= dd°G*, supported
on dK*, which satisfyn*u* = d*iu* (hered® = 5= (3 — 3)). It follows that
w =t A is aprobability measure supported @™ N 0K —, which is invari-
ant underz. The currents.* and the invariant measuyeare important tools in
understanding the dynamics fof

Itis an interesting problem to study the dynamics of polynomial automorphisms
of CV in dimensions higher than 2. To our knowledge, there are only a few at-
tempts in this direction, which we briefly recall now. The theory of Hénon maps
in C2 carries over to the special class of shift-like polynomial automorphisms of
C¥, which are introduced and studied in [BP].
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A polynomial automorphisni of CV and its inversé:~* can be regarded as
meromorphic maps d@”, which are well-defined away from the indeterminacy
setl* (resp.I™). This approach is used by Sibony in [S]. He cails regular
automorphismif *N 7~ = @. Note that this is always the case for Hénon maps in
C?. For such automorphisms he defines the Green’s functignand the currents
u* as in the 2-dimensional case. The closed &&ts= {G* = 0} are still the
sets of points with bounded forward (resp. backward) orbit; on the complements
U® the iterates escape to infinity at super-exponential rate. Moreover, Sibony
shows that there exists a positive intefjsuch that the measu¢g™ ) A (u=)V~!
is an invariant probability measure with interesting dynamical properties. Hence
the dynamics of regular polynomial automorphisms is similar in many aspects to
that of Hénon maps df?. For the study of dynamics of birational mapsisfwe
refer to [D].

In this paper we consider the dynamics of polynomial automorphisni’ of
which are not regular in the sense of Sibony. The polynomial automorphisms of
degree 2 have been classified up to affine conjugacy into seven classes by Fornaess
and Wu [FW]. For this reason, we restrict our attention to the quadratic case.
However, when dealing with the inverse maps, we must consider quite often poly-
nomial automorphisms of higher degree.

Of these seven classes, two consist of affine automorphisms and elementary
automorphisms, which have simple dynamics. (See [FW], and[ kI8, since
they are in direct analogy with the 2-dimensional case.) Itturns out that the remain-
ing five classes have rich dynamics, exhibiting new interesting phenomena. These
new dynamical behaviors are different in many aspects from the 2-dimensional
case and from the higher-dimensional cases studied in [BP] and [S].

In Sections 2 through 6, we consider the five classes of polynomial automor-
phisms just mentioned. We use the same order and notdiiptisoughHs as in
[FW]. The main goal is to introduce the Green'’s functi@#is, to understand their
properties, and to identify the new dynamical phenomena that occur in dimension 3.
Our approachis as follows: We find first the openig&twhere the forward iterates
H" of the mapH under consideration escape to infinity at the super-exponential
rate (consy?’, which, of course, is the highest possible rate. We then prove that,
on the complemenk + = C3\ U™, the iterates either are bounded or they escape
to infinity at a much slower rate (e.g., in some cases exponentiabnsj”). The
existence of this slower order of growth of the iterates is one of the new phenom-
ena alluded to previously. Using these facts, we can follow the technique in [BS]
to define the Green'’s functiog ™. A similar study is done in each case for the
inverse mapH %, leading toU~, K—, andG~. In Section 7 we summarize the
main conclusions regarding new dynamical behaviors that occur in this setting.

The maps of the classé# and H, (discussed in Sections 2 and 3) are semi-
direct products, and the results we obtain in these cases are fairly complete. For
these maps, the Green’s functiafi$ are pluriharmonic o/ *, and exactly one
of the setsk* (say, K+) consists of both points with bounded orbit and points
with orbit escaping to infinity at exponential rate. The other Ket, consists only
of points with bounded (backward) orbit. Thus we obtain an invariant measure by
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taking the wedge product @ft A = with a third invariant(1, 1) current arising
from the set of points with bounded forward orbit insikie .

For the other classes it also happens in generatiti@ndG ~ are both plurihar-
moniconU ™ andU ~, respectively. Thisis not the case in the situations considered
in [BP] and [S], and it makes it impossible to construct invariant measures using
only the currentg.* (as it is done in [BP] and [S]). Indeed, we have A ut =
uw- A u~ = 0. Moreover, sometimes it also occurs under these circumstances that
H*u™ = 2p*, but H*u~ = fu~ since the degree af " is 3"

Throughout the paper we will use the following notatian:= (x, y, z) for a
point of C3, andw, = (x,, yn, zx) = H"(x, y,z), n > 1, whereH" denotes the
nth iterate of a self-mapf of C3. We also let| - | = max] - ||, 1}, where]| - |
denotes the Euclidean norm. Whenever we reféP¥@s a compactification of
C3, we denote byf : y : z : ¢] the homogeneous coordinates®hand we iden-
tify C3 = {[x : y : z : 1]} c PP2. Moreover, when referring to polynomials, we
will sometimes use the abbreviation I.d.t. with the meaning lower-degree terms.

Let us also note here that, in some of these cases, the estimates we obtain for
the order of growth of the orbits insidé* may not be sharp. They are, however,
good enough for the purpose of introducing the Green'’s functions. In our forth-
coming papers, we will deal with the construction of invariant measures as well as
with the study of the dynamics of the maps & andK ~ (e.g., with questions
like finding the precise rates of growth of the iterates or finding the points or sets
at infinity where orbits cluster).

ACKNOWLEDGMENT. Part of this work was done while the first author was vis-
iting the University of Wuppertal as a Humboldt Research Fellow. He is grateful
to Professor Klas Diederich for the invitation and to the Humboldt Foundation for
their support.

2. The ClassH;

The maps of this class are semi-direct products of the form
Hy(x,y,2) = (P(x,2) +ay, Q) +x,cz+d),

where maxdedq P), deg Q)} = 2 andac # 0. As noticed in [FW], these maps
are dynamically interesting f # 1 andP has degree 2 in. Then for any fixed
z, the map is essentially a Hénon map@f.
Sincec # 1, we may assume by an affine change of coordinatestiatd = 0,
so Hy has the form
Hy(x,y,2) = (@x’ + p1(2)x + p2(z) +ay, Q) + x, c2). (2.2)

where deg@p1) < 1, deq p2) < 2, deg Q) < 2, andaac # 0. The inverse map
H;* has the form

Hi'(x,y,2) = (y - Q(§>, &7 + pa()y + pal) + = g)

wherex # 0, deq p1) < 2, and deg@p») < 4.
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Hence, in order to understand the dynamicé&lpind H, 2, it is enough to con-
sider mapsH of the form

x1 = ax?+ p1(2)x + p2(2) + ay,
=00 +x, (22)
71 =CZ,

whereaac # 0, deg Q) < 2, and where de;) = k and deg@p,) = I are
arbitrary. Indeed, the maﬁfl is conjugated to a mafy of form (2.2) by the
transformation(x, y, z) — (y, x, 2).

It is easy to see that the degree Bf' is d2"1, whered = degH) =
max2, k + 1, 1}. We will need the following lemma.

LemmMma 2.1. There exists a constat > 1 depending only on the coefficients of
H such that, for allz > 1andw e C3, we have

2n 2"
s )l < (Cleld 121U e, )114) T lwall < (Clel4lzINx, »)Il4) V2.
Proof. We note that

1l < (lal+1pa@)I+p2)1+laD I (x, PIE, Iyl < (1Q@I+DIIx, I,

hence mafx1, [y} < C’lz|Z||(x, y)[|2 for some constan€’ > 1 depending
only on the coefficients off. If we let C = C'v/2 andC(z) = C|z|<, it follows
that || (x1, y1)Il < C(2)[|(x, y)|I5 and so

1, y)ll < Ce" (" 22))2 ... (C@)P" Il(x, »IZ

= [l I [z

j=1

As C(c'z) < Clel|z]?, we see that

H(C(c"*fz»z“ < (ClzH? (e,
j=1
where
n . o0 J
Av=) (=TT 2Y i =2

j=1 j=1 2/~

This yields the first estimate. The second one follows easily from thil,, s
|c"z| clearly satisfies the same estimatd|és,, y,)|l. O

We now have to consider the three caggs> 1, |c| = 1, and|c| < 1 separately
because the dynamics #f is different in each case.
Case lic| > 1
We fix a numbes € (0, 1) and, forR > 0, we define the set
Vo=V (R) ={weC®: |x| > maxRr, |yl, |z|**1}}. (2.3)
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LemMma 2.2. For any numbes € (0, 1) there existsRy = Ro(8) > 0 such that,
if R > Ry, thenH(V~) C V~ and the following estimates hold fare V—:

|x1 —ax?| < Slaf|x?,  |y1—x| < 8lxl,
| = 8)|x? < [x1] < |al@+8)Ix  @—8)lxl < [yl < @+ )lxl,
ol =17 Hx? < [xal < [+ 8)] Y%

Proof. We deal at first with the estimates. L@the a constant depending only on
the coefficients such that miyp1(2)!, |p2(2)l, 10()|} < Clz|4. Forw e V-~ we
get, by using (2.2) and (2.3),

|x1 — ax?| < Clz||x| + Clz|% + lally|

< Clx||x|Y D 4 x|V - al| x| < §|e|x|?,

|d/(d+1)

ly1— x| < Clzl{ < Clx < 8lx].

The last inequality of each sequence holds provided|that Ro(8), with Ry(8)
sufficiently large. The third and fourth estimates of the lemma are immediate con-
sequences of the first two. The fifth estimate follows by repeated use of the third
one, once we have proved the invariance property of

Let noww € V~. Using the estimates already establishedrfs) is suffi-
ciently large then each of the following inequalities hold:

|x1] > |1 = 8)[x|* > |a|(1— 8)R? > R,
|x1] > Ja|(L = 8)|x* > L+ 8)|x| > |yl,
|22t = [e|" Tz < [l x| < lal@— 8)]x]? < |xal.
These showH (w) e V. O

We now define
ut=JH"(v"), KT=C\U" (2.4)
n=0

By Lemma 2.2, note thdf * is an increasing union of open sets; in particular,
is open and henckE ™ is closed. From the estimates of Lemma 2.2 it follows that,
on U™, the iterates of escape to infinity at super-exponential ratewit U™
then
[lel@— &R
[xn] > ——————,
le|(1— )

for all n sufficiently large. We actually see that/x, — 0, SOH"(w) — [1:0:
0:0]eP®asn — oo, the convergence being locally uniform 6" .

Yn = Xp-1-+ 0(|xn—l|)a

LemMma 2.3. If w e K™ then, for every integet > 0, we have
max{|x, |, [yal} < I[P max(R, C, |yl. |z|*1).

whereR is as in the definitiorf2.3) of V— and the constant depends only of.



424 DAN ComMAN & JOoHN ERIK FORNZESS

Proof. If w e K™ then(x,, y,, z,) ¢ V~ for everyn > 0, so
xa| < My = maX(R, |y, |z,]*"Y.
By the definition ofM,, and by (2.2) we have that

d+1 _ | d+1 d+1 d+1
|21 = lel ™ Hzp-al ™ < el M, g,

d/(d+1)
Val < 1Q@n-D| + 151l < Clzaald + M1 < CM7SY 4+ M,y

whereC is a constant depending di as in the proof of Lemma 2.2. It follows
that

M, <maxR, CMYS™ 4 M, 4, |c***M, 1)
<maxR, C, c|"*'M,_4}, (2.5)

whereC = [|c|C/(|c|™* — D]9*+% Indeed, fFCMI (™ + M,y > |c|*T*M, 1,
thenM,_1 < [C/(|c]*Tt=D]%and soCM" b 4 Mn 1< C. The lemma now
follows by repeated use of (2.5). O

At this point let us observe that the complex hyperplare 0 is invariant under
H, the restriction ofH to this hyperplane is a Hénon map©f given by

h(x,y) = (@x?+ p1(0)x + p2(0) + ay, Q(0) + x).

If we denote byk,” c C? the set of points with bounded forward orbit, then
by [BS] this set is unbounded (hence nonempty), &fd x {0} C K+ con-

sists of pointsw e C* with bounded forward orbit undefl. Moreover, ifw

KT N{z = 0}, then theH -orbit of w is bounded. Indeed, by Lemma 2.3, this orbit
could escape to infinity at most at exponential rate, so it must be bounded in view
of the results of [BS]. We will see later (Corollary 2.6) that contains points out-

side the plane = 0 as well. Since,, = ¢"z, the iterates of any such point escape

to infinity at exponential rate. We summarize our results in the following theorem.

THeEOREM 2.4. For a mapH of form(2.2),let U+ and K+ be defined by2.4).

The orbits of a pointy € C2 can either escape to infinity at super-exponential rate
or grow at most exponentially. The first situation occurs precisely on the open set
U™, where the iterates aff converge locally uniformly tfl : 0 : 0 : 0]e P3. The
iterates of a pointw € K+ are bounded ifand onlyibh e K™ N{z = 0}. f w €

KT\ {z = 0} then the iterates escape to infinity at exponential rate.

We now proceed with the construction of the Green'’s function, following the meth-
ods of [BS]. Recall that de@") = 42", whered = degH) > 2. Forn > 1
we let

Gu(w) = log™|H"(w)|l,  Gu(w)= log™|x,l,

1 1
d2n71 d2n71

and define the Green’s function
Gt (w) = lim G,(w) = lim G,(w). (2.6)
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THEOREM 2.5. The limits in(2.6) exist and are equal, the convergence being
locally uniform onC? in both cases. The limit functiofi* is nonnegative, con-
tinuous and plurisubharmonic o83; G* is pluriharmonic onU+; and K+ =
{G*™ = 0}. Moreover,G™ o H = 2G™*.

Proof. By the estimates of Lemma 2.3 and singe= c¢"z, the two limits exist
and are both zero oK *. By Theorem 2.4 we have,/x, — 0 andz,/x, — O
forwe U™, s0G,(w) < G,(w) < G(w) + log 3/(d2"~1), provided that is suf-
ficiently large. Thus, if one of the limits existsate U *, then the other does also
and they are equal. By Lemma 2.2 we havefog V—, that|a|(1— 8)|x,_1]? <
|xu| < let|(X+ 8)|x,—1/? and sO
~ ~ const

|Gu(w) = Gpa(w)| < o1
This shows that the sequeni,} is uniformly Cauchy orv/ ~ and hence locally
uniformly Cauchy orU+. Thus the two limits in (2.6) exist and are equal©@#
Moreover, the functiorG* is pluriharmonic or/ *, sinceG, are pluriharmonic
and the convergence is locally uniform. By Lemma 2.2 we Have> 0 onU ™,
soK* = {G* = 0}. Relation (2.6) implies that

Gt o Hw) = lim G,(Hw)) = lim 2G,.1(w) = 2G*(w).
n—00 n—oo
The estimate ofjw, || from Lemma 2.1 gives, for alb andn,
Gn(w) < M + 2log*|z| + log*||(x, y) || (2.7)

for some constan¥ depending orH. So the upper semicontinuous regularization
G of G* is plurisubharmonic oft® and satisfies (2.7) as well (sg€]). We have
Gt =G onU*UintK*, whereG* was already continuous. Sin€e" o H =
2G™, the same holds fo6 . Hence, for everyw € K+ andn > 1, we get by
(2.7) together with the estimates of Lemma 2.3 figtw) = G (H"(w))/2" ~
n/2". It follows thatG} = 0 onK™*, soG+ = G} is plurisubharmonic ot 3.
Note thatG, andG, converge locally uniformly t&+ on U+ Uint K+. We now
use the upper semicontinuity 6f" together with Hartogs’ lemma to see that, for
everye > 0 and everyw € K, there exists an open ba#, centered atv and
no = no(w, €) such that 0< G,(w’) < ¢ and 0< G, (w’) < ¢ for everyw’e B,
andn > ng. This shows that the convergence is locally uniformh and hence
G is continuous. O

COROLLARY 2.6. K1\ {z =0} #4.

Proof. If Kt C {z = 0} then—by the removable singularity theorem—the func-
tion G*, which is pluriharmonic orC2® \ K+ and continuous oft2, would be
pluriharmonic onC3. As G* > 0, this implies thatG* is constant, which is
impossible. O

Now we can define the closed positive current of bi-de@te®, u™ = dd°G™,
which satisfies
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Hut =dd“(Gt o H) =2u*.
As in [BS, Lemma 3.6], we have that supp = 0K ™.

Case 2c| =1

For Q(z) = a1z2 + azz + az as in (2.1), we setQ|(z) = |a1lz2 + |azlz + |as).
Note that in this casg;| = |z|. For R > 0 we define

Vo=V (R) ={weC®: x| > maXR, |y| —0I(z]). lz]**Y}}.

Itis easy to see that all of the conclusions of Lemma 2.2 hold in this case as well,
with the above choice o¥ ~. Next, we letU*+ = (J,2o H (V") andK* =

C3\ U™. As before, we have that oli ™ the iterates off escape to infinity at
super-exponential rate, converging locally uniformly to{d: 0 : 0]. Onthe other
hand, this timeK ™ is the set of points with bounded forward orbit as follows.

LeEmMA 2.7. If w e KT then, for alln > 0, we have
max{|x, |, [yal} < max(R, [yl 2| + 1 QI(lz)).

Proof. If w ¢ K™ then, sincdz,| = |z|, for all n > 0 we have

|xal < M, = maxR, [ya| — 1Q1(z]), |z]*™).
Note by (2.2) that

Iyal = 1Q1(2]) = 1Q1(zn-1D) + [xp-1l = [Q1(|2]) = |xp-a] = M},
SOM, < max{R, M,_1, |z]4*Y}. This implies
M, < maxR, |yl —1QI(z]). 21",

which yields the estimate of the lemma. O

The Green’s functiorG* is then defined as in (2.6), and Theorem 2.5 holds in
this case as well. Similarly, the curremt = dd“G* has the same properties as
before. We also see from the above remarks that the itefatésare a normal
family onU* Uint K*, which is the Fatou set df. HencedK+ = J+ is the Julia
set ofH.

Case 3]c| <1

The new feature in this case is that= ¢"z — 0 asn — o0, so the orbit of any
point will approach the invariant hyperplape= 0. If Q(z) = a1z? + a»z + as
then forR > 0 we let

V> =V (R)={weC3:|x| > maxX{R, |y| — lasl}, |z| <1}.

Then Lemma 2.2 holds for this sgt™, and the set/ *, defined as in (2.4), has the
same properties as before. The complententof U™ is the set of points with
bounded forward orbits, as the next lemma shows.
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LEMMA 2.8. Letw € K* and chooseg(w) such that|z,,| < 1 Then, for all
n = no,
Clz|

max{|xnl, [ynl} = MAXR, |yngl} + las| + 7— EL

whereC = |aq| + |ay|.

Proof. With the lemma'’s choice ofg, sincew € K™ we have thatx,| < M, =
max{R, |y,| — laz|} forall n > ng. As |Q|(|z]) — |las| < C|z] holds for|z| < 1,
we have

|yn| - |613| =< |-xn71| + C|Zn71| =< M,,,]_—’- C|anl|-

HenceM, < maxR, M,_1} + C|z,_1|, which yields the desired estimate. [

The construction o5+ andu™ is accomplished as before, and Theorem 2.5 holds
in this case as well.

INVARIANT MEASURES. We now consider the problem of constructing invariant
measures for the mag#; of form (2.1).

If |c|] # 1, and say without loss of generality] > 1, then the inverse map
H ' has form (2.2) withy; = z/c. ThenK ~ = K+(H; %) is the set of points with
bounded backward orbit. L&t~ be the Green’s function fai; , constructed as
in Case 3, and let™ = dd°G~. We have(H; )*u™ = 2u~, SOH{u™ = u".
By Theorem 2.4, the set of points with bounded forward orbit is an invariant sub-
set of KT, namelyK ™ N {z = 0}. ThusK* N K~ N {z = 0} is the set of points
with bounded full orbit (i.e., forward and backward). Sindg(dd®log|z|) =
dd‘log|zi| = dd°log|z|, an invariant measure fdi; is given by

w=pu"Au Add°log|z|. (2.8)

It is useful to give the following alternative descriptionof If 4 denotes the re-
striction of H; toz = 0, then is a Hénon map of? andh ! = H;%|,—o. Letv be
the invariant probability measure forconstructed in [BS]. Note that the Green’s
functionsg® of & are just the restrictions @¥* toz = 0, andv = dd‘g* Add‘g™
Then the measure in (2.8) satisfies

/¢du=/ (x.y.0)dv (2.9)
(C3 CZ

for any¢ € Co(C3). This shows thap is a probability measure supported on the
compact sebK ™ N 3K~ N {z = 0}. Relation (2.9) follows easily by consider-
ing two sequence&uj} and{v;} of smooth plurisubharmonic functions such that
u; \ GTandv; \( G~. Thenthe measures = ddu; Add“v; Add°log|z| con-
verge weakly tqu, by a result of Bedford and Taylor (s@€]). On theother hand,

if uo(x y) = u;(x,y,0) and vo(x y) = vj(x, y, 0) are regarded as plurisubhar-
monic functions ort?, then the measures = dd“u® A ddv? converge weakly to

v. Asdd‘log|z| is the current of integration along the hyperplane 0 and since
u;j, v; are smooth, we have fagre C3°(C?) that s p di; = [ ¢(x, y,0)dv;.

By the preceding remarks this gives (2.9)jas> co.
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This construction also works in the cagsg¢= 1, but it does not seem to be dy-
namically natural anymore, as baki consist only of points with bounded orbit.
In this case we can also define an invariant measuge 8yu™ A u~ Aidz AdZ,
sinceH; (i dz AdzZ) = |cl?idz AdZ =idz AdZ.

3. The ClassH,
The second class consists of mdps with inverseHz‘l, of the form

Hy(x,y,2) = (P(y,2) +ax, Q(y) + bz, y),

. 1 1 1 1 1 1 (3.1)
Hy (x,y,2) = <ZX - ZP(Z’ 50 ZQ(Z))’ &3y~ EQ(Z)>’
where maxdeg P), deq Q)} = 2 andab # 0. The dynamics of these maps is in-
teresting when de@) = 2 and degP) > 0. If Q(y) = B1y? + B2y + B3 and
B1 # 0, it is easy to see (by an affine change of coordinatesamdz) that we
may assumg; = 1 andss = 0.

Hence it is enough to consider mafsof the form

x1=ax + P(y, 2),
y1=y>+ By + bz, (3.2)
1=y,

whereN = deg P) > 0 andab # 0. Then the inversealz‘l is conjugated to a
map H of form (3.2), essentially by the transformation, y, z) — (x, z, y).
Let 4 denote the Hénon map

h(y,z) = (y*+ By + bz, y); (3.3)

then H is a semidirect product ovér. We start by finding the degree of the iter-
atesH". By Proposition 4.2 of [BS], there existg > 0 such thatP o h"° has
cyF as the unique term of highest total degré@e: 2"°(y, z) = cy* +1.d.t., where

k > 0 andc # 0. We choose the smallest sughand define the numbers

y =k/2"1 and y, = maxy,1}, (3.4)

which determine the degree of the iterat& for n sufficiently large. Sincé <
N2" we have O< y < N/2, soy < 1inthe quadratic cas¥ = deg P) < 2. It
is easy to see that could be larger than 1 as well—for instance, whry, z) =
y¥ +1.d.t. andN > 3. The dynamics off is particularly interesting in such
cases, as we can see from the discussion following Lemma 3.4.

LemMma 3.1. There exists a number > ng such thatdeg H") = y, 2" for all
n=ni.

Proof. We have degy,) = 2dedz,) = 2" forall n. For j > O letl; =
degx,g+ ;). Asdeg P o h"oTV) = k27 andx, g1 j11 = ax,grj + P o h"™Vi(y, 2),
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we havel; 11 < max{/;, k2/} and hence, by inductios, < max{lo, k2/~1} for all
j > 1 We fix jo such thak2/o=1 > /. In view of the above, we have = k2/-1
forall j > jo. Thus forn > n; = ng + jo + 1 we conclude that

deg H") = maxdeg(x,), degy,)} = max(k2" "0 2"} =, 2". O
We now proceed to find the s&tt where the iterates escape to infinity at super-
exponential rate. With the usual notation, for> 0 we let
Vo=V (R)={weC3: |y| > maxR, |z|, |x,o|Y*P}}).  (3.5)

LemMma 3.2. For anys € (0, 1) there existsRo(8) > 0 such that, forR > Ry,
the following statements hold.

(i) Forw e V—, we have
A=8Iyl® < Iyl < A+ 8)Iyl?
[A—8)Iy1% < Iyl <[A+8)Iy]%,
A= 8)lellyl* < [xngral < @A+ &lcllyl*.
(i) HV-)ycCVv-.
(iii) There exist constants,, C,, depending or{ and §, such that forw € V-~

andn > ng we haveCy|y,|” < |x,| < Cz|y.|Y. Moreover, if y = 1then
Xn/Yp — casSn — 0.

Proof. (i) By (3.2) and (3.5) we have
Iy1 — ¥2 < (1B + 1BDIy| < 8lyl%,
|Xng+1 — V¥ < lallxngl + ClyI* ™t < lally* ™4 + Cly|*™* < [c|8]ylF,

whereC depends only on the coefficients Bfo 40 and where the last inequal-
ity of each sequence holds provided thdt> Rg, with Ro(8) sufficiently large.
The remaining inequality in (i) follows by repeated use of the first, once we have
proved (ii).
(i) For Ro(8) sufficiently large, we have

Iyl > A= 8Iyl* > |yl = |zl
|Xnoral < lel@+8)|ylF < [X— &)y Y4 < |yo/ Y4

henceH(V~) C V.
(iii) Using the invariance o ~ and the estimates in (i) we derive

A= 8)lellyil* < 1Xipngr1l < @+ 8)lellyilk,
n 1 n 1 no+1 na+1
A= 1?" < ipnoral < A+ 82 1y 20

The second inequality gived — 8)*|y[* < |yisnesal” < (L4 8)F|y|*. This,
combined with the first of the preceding two inequalities, yields
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A—=8lel  |xal QA+
< < ,
A+ ok [y l” d-8*

wheren =1 +ng+1> ny.
Assume now thay = 1, sok = 2"°*L As in the proof of (i), we have

k k—1
[Xi4norr — ¥y | < lallxiyngl + Clyil
and so

— 0 asl— oo.

xl+no+l_c‘ < |a| ~
N Y4 1yl

By Writing y.o1 = P(y, z) = y* +1.d.t. we obtain

0 c'(P
y1+0+1_1'5 ( )—>O asl — oo.

ylk [yi]
Thus we have shown tha},/y, — ¢ asn — oo. O
Define
vt=JH"(VvY),  Kk*=C\U" (3.6)
n=0

By Lemma 3.2, the orbit of any poinb € U™ escapes at infinity at super-
exponential rate (eventually likeeonsy?'). Moreover, by Lemma 3.2(iii), the
iteratesH” converge locally uniformly o/ * to

[1:0:0:0]1ify>1 [c:1:0:0]ify=1 1[0:1:0:0]ify <1 (3.7)

For the Hénon map of (3.3), we letk; be the set of points with bounded forward
orbit andU," = C?\ K, the set of points whose orbit escapes to infinity.

Lemma 3.3. Wehave&k™ = C x K;" andU™ = C x U,". Moreover, theH -orbit
of any pointw € K+ can escape to infinity at most at exponential rate.

Proof. Note thatH"(w) = (X, Yn, 2n) = (xn, B"(y,2)). Thus ifw € C x K;’
then the iteratea”(y, z) are locally uniformly bounded o&,", sow ¢ U™ by
Lemma 3.2. This shows th@t x K," € K.

Let noww € K*. Then, for alln > 0,

4/(4k—-1)
[yal < My = MaX(R, |z,], [Xppnol D).

If we let P o h"0(y, z) = cyk + Zjﬂskflcﬂyjz’ then we have

k j 1
Xusnol < lallXnenoal +clyucal + Y leillyu—tl/|2al
jHI<k—1

k—1/4 — ot
< lalM, " + leIMf_ + CMEL < M),
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whereC = Y |cy| andC = |a| + |c| + C + 1. Using this together withz,| =
|ya—1l < M,_1, we obtain

M, < maxM,_s, CM, ) < Cm,3

for all n > 1. This shows thatM, < (CMy)*?" and so|y,| < (cons}®*3",
which implies(y, z) € K, and sow € C x K,. We conclude thak+ = C x K,';
henceU* = C x U,". Since

Xy =a"x +a" P(y,2) +a"2P(y1, z0) + - + P(V-1, Z0-1),

we see that, ok, |x,| can grow to infinity at most at exponential rate. [

We postpone for the moment our discussion of the precise behavior of the iter-
atesH" on K™ in order that we may introduce the Green'’s function. Denote by
gt (v, z) the Green’s function for the Hénon mapWe define

. 1 . 1
Gt(w) = lim —— log"||H"(w)] = lim = log"|y,|. (3.8)
n—oo ]/+2n n—>o00 2N

By [BS], the second limit of (3.8) equais  (y, z), the convergence being locally
uniform onC2. The two limits are equal oK *, as they are both zero there by
Lemma 3.3, and they are also equalln in view of Lemma 3.2(iii). We con-
clude that

Gr(x,y,2)=g"(y,2)

is continuous and plurisubharmonic @3 and pluriharmonic o/ *, thatK + =
{G* = 0}, and that the convergence is locally uniform@hin both limits. More-
over, we haveG+ o H = 2G™* and henced*u™ = 2ut, whereu™ = dd°G+.

In order to discuss the behavior of the iterat&s on K, we must consider
three cases.

Casella| <1

Here the iterate#/” are locally uniformly bounded oK *. Indeed, we have the
following formula forx,:

n—1

X, =a"x + Za”_l_-iP(yj, Zj). (3.9)

j=0
Let D be an open relatively compact subset@¥. Since (by [BS]) the orbits
{h"(y, z)} are uniformly bounded o&," N D, it follows that there exists a con-
stantM > 0, depending orD, such thatP(y;, z;)| < M forallw € K* N D and
all j. Then, by (3.9))x,| < |x] + M/(1— |a]) foralln > 0.

Case 2:ja| =1

In this case we have the following locally uniform estimateskon For any open
relatively compacD c C3, there exists a constaM such thaix,| < |x| +nM
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for all w e Kt N D and alln > 0. This follows from (3.9), as in Case 1. For ex-
ample, assume that= 1 and thai(yo, zo) # (0O, 0) is an attractive fixed point of
h, with basin of attractiorB C C2. If P(yo, z0) # O then it is easy to see that,
for w e C x B, we havex,, = nP(yo, z0) + OQ). If P(yo, z0) = 0 then the iter-
atesH” are locally uniformly bounded 0@ x B. On the other hand, iP(0, 0) =

0 andP(yo, zo) # 0 hold simultaneously, then we see that there are poinksof
with bounded orbit (the origin is fixed bi ) as well as pointsy € K+ with x,, =
na+ 0Q), o #0.

Case 3ija| > 1

We introduce the following notation:

n—1

S = ! P(yi, z; T, = 1S
2 (Y, 2) _;E (¥, 2j), n(w) —x+5 w(Y, 2),
(3.10)
< 1 1
S(y,2) = — Py, z)), T(w)=x+ -8y, 2).
=0 a: a

Because the iterates #fare locally uniformly bounded oK,", we see thats, }
converges locally uniformly o&,” to S and tha{ 7, } converges locally uniformly
on K to T; therefore,S € C(K, ) N O(intK,;") andT € C(K*) N O(intK™).
We remark that inK* is, in some cases, empty. By (3.9) we have

1
Xn = a”<x + Sy, z)) =a"Ty(x,y,2).
We denote by the following subset ok *:
1
X={weK":T(w)=0}= {weK+ :x:——S(y,z)}.
a

LEmMA 3.4. Forw € KT we haveT o H(w) = aT(w), SOH(X) = X. Ifw ¢
KT\ X then{H"(w)} ~ {a"} escapes to infinity at exponential rate, the iterates
H" converging locally uniformly o+ \ X to[1: 0 : 0 : 0] The orbits of the
pointsw € X are locally uniformly bounded relative to the invariant sét

Proof. We have
X1
ToH(x,y,2) =ax+ P(y,2) + 2; PO e = aT(x, 3, 2),
]:

which givesH(X) = X. If wg € K+ \ X, we fix a relatively open neighbor-
hood D of w in K* \ X such thatM > |T(w)| > ¢ > 0 on D. For n suffi-
ciently large we haveT,(w) — T(w)| < ¢/2 for all w € D. So, by (3.9) and
(3.10),|x,/a" — T(w)| = |T,(w) — T(w)| < /2, which givese|a|/2 < |x,| <
(M + ¢/2)|a|" for all w e D. Finally, if w € X then, sincel'(w) = 0, we obtain
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o0

%] = la"(T,(w) = T)| < Y

J=n

W|P(Xj,2j)|,

which shows that the iteratég” are locally uniformly bounded relatively t8.

O
Let us recall the description of the dynamics #fon U™ given in (3.7). By
Lemma 3.4 and by (3.7), f > 1thenH"(w) — [1:0:0: 0] asn — oo for
allwe Ut U (K™ \ X). The convergence is locally uniform on the openet
and locally uniform (in the relative sense) &1 \ X, but it is not locally uniform
on the whole union. We also note that, whenknt # @, the Julia set/ ™ of H
(defined with normal families) is equal 8K ™ U X. In this caseX is a complex
submanifold of intk *. HenceJ ™ # suppu™.

INVARIANT MEASUREs.  If H is of form (3.2) then (a) we s& ~ = K+ (H1)—
see (3.6); (b) we denote iy~ the Green’s function of the inverse majp; and
(c)weletu™ = dd“G~. Inview of the preceding results,gf (v, z) isthe Green’s
function of 2~ (the inverse of the Hénon mdpin (3.3)) thenG~(x, y,z) =
g (y,z). Moreover,K~ =C x K, andH*u~ = %u‘. As we noticed at the be-
ginning, the map? ! has form (3.2) (after a suitable change of coordinates in
andz), with 1/a as the coefficient af.

We have that thé€l, 1) bidimensional current™ A w~ is H-invariant:

H (W Ap) = H Wt AHw =2u" A =pt Ap.
In the case whefu| = 1, the measure
w=u"Au Aidx Adx
is H-invariant. This is because
WA ANidxyAdii=p" Ap  Aid(ax) Ad(ax) = ut Au Aidx Adx.

Let us consider now the casel # 1. Besides the invariant currents®, we
also have the invariant s&t If |a| > 1thenX C K is precisely the set of points
with bounded forward orbit, whereas|if|] < 1 thenX is constructed using the
inverseH ~* (with |1/a| > 1 as the coefficient of as before), and is the set of
points with bounded backward orbit. Henk€ N K~ N X equals the set of points
with bounded full orbit. Lev be the invariant measure @it constructed in [BS]
for the Hénon map. SinceG* = g*, we actually have = u* A u~, regarded
as a measure 082, with support onL = dK,;" N 9K, . In direct analogy to the
construction of invariant measures in Section 2 (see (2.9)), we define an invariant
measure: on C2 by its action onp € Co(C3):

f ¢du=/¢<—}S(y,z),y,z> dv, (3.11)
C3 L a

whereS is as in (3.10). Becauseis a probability measure, it follows thatis a
probability measure supported on the compact set
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1
{w x=—=50,2), (y,z)EBK;'ﬂaKh_} =XN3AKTNIK".
a

The invariance oft also follows from (3.11): If forp as above we writé, (y, z) =
¢(—28(y,2).y, 2), then sincepg.y = ¥y o h andv is h-invariant we obtain

Hio@) = [ ootidu=[voondv = [voav= [ odu.
c3 L L c3

We also note that = lim,,_, o u,, wherew, = u™Au~ Add¢log|T,|. Indeed,
using a smoothing argument as at the end of Section 2, we see tiat 165° (C3)

we have
1
/ ddu, =/ ¢><——Sn(y,z),y,z> dv,
C3 c2 a

so by (3.11) the measurgs, converge weakly tqc. SinceT, o H = aT, 1, We
haveH*u, = .1, Which also gives the invariance of

4. The ClassH;

This class contains mag&; of the form

H3(x, y,2) = (P(x,2) +ay, Q(x) + 2, x), (4.1)
where maxdeq P), deg Q)} = 2 anda # 0. For simplicity we will write H =
Hs. The inverse of this map is given by

H ' x,y,2) = (z, C—fx - %P(z, y=0@),y - Q(z)>- (4.2)
We start by discussing the dynamicskfand write
P(x,z) = ax’+a'xz+a"z2 + 1d.t,,
0(x) = Bx?+l.d.t. (4.3)

We remark that itt = 0 anda’ # 0 then degx,) = deqx,_1) + dedgx,_»), SO
the degrees of the iteratés” are given by Fibonacci’s numbers (such maps are
considered in [B]).

Hence we will work under the generic assumptiogt 0 (so the cas@ =0 is
also covered). Far > 0 andR > 1/¢, we define

Vo=V ={weC: x| > maxR, |z|/e, (Iyl/e)V?} ). (4.4)

LemMA 4.1. For anyé € (0,1), there existt = ¢(8) € (0,1) and Ro(8) > 1/¢
such that, for anyR > Ry, the setV~ has the following properties

(i) the following estimates hold fav € V~:
lal = 8)[xI? < x| < lal@+8)Ix3 Iyl < (Bl +DIx%
[al@— 1% Hx* < |xul < [lal@+ &]F Hx*;
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(i) HV)c VT
(iii) the iteratesH™ converge uniformly o~ to[e : 8 : 0: O]

Proof. (i) Forw € V~ we have
|x1 — ax?| < Ce|x|? and |yi < (I8 + Ce)|x[?,

whereC depends only on the coefficients Bf So the first two inequalities hold
if we choose:(§) sufficiently small andR® > 1/¢. The third estimate follows from
the first one and from part (ii) of the lemma.

(i) If w e V™ then, by the estimates of (i), we obtain

|x1] > |a|(L— 8)R? > R,
|z1l/e = |xI/e < lal(1—8)|x|* < |xil,

(Iyal/e)Y? < [UBI+ /el V?1x| < |l = 8)|x]* < |xl,

provided thatx| > Ro(8), with Rg sufficiently large. This show& (w) e V.
(iii) Using x, = ay,_1 + P(x,_1, x,_2) together with the estimatey, 1| <

(18] + Dlx,—2[% we have

n n— C 1

J; B a‘ <c [xn—2l -

X5_q [xp-a]  |e|L—28) |x,—2]
whereC is a constant depending on coefficients. Similarly, since

Yo = Q(xy—1) +x,-2

— 0 asn— oo,

we obtain
o —ﬂ‘ <c2 o asn— o,
X4 [Xn—1]
S0 lim,,_ o ¥, /X, = B/ uniformly onV . O
We define N
vt=JH™"(Vv")., Kk*=C\U" (4.5)
n=0

By Lemma 4.1, the orbit of any point i ™ escapes at infinity at super-exponential
rate and the iterated” converge locally uniformly o/* to [ : 8 : 0: 0]. On
the other hand, the orbit of any point € K* can escape to infinity at most at
exponential rate, as follows.

Lemma 4.2. If w € K™ then the following estimate holds for all> 0:

max{|x, |, Iyl 241} < ——5 max(e?R?, |zI%, elyl}.
I

Proof. Sincew € K+, by (4.4) we havéx, | < M, = max{R, |z,|/¢, (|y.|/e)Y?}
for all n > 0. We note that|z,|/e = |x,_1l/e < M,_1/e and |y,| <
|Q(xp—1)|+|z4-1] < CM? |, whereC > 1dependsonly ofl. Thus(|y,|/e)Y¥? <

(C/e)Y?M,_; and so we conclude thaf, < M,_i/e and henceM,, < My/s".
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It follows that|x,| < Mo/e", |y,| < M3/e*7L and|z,| < Mo/e"%, which to-
gether imply the estimate of the lemma. O

In order to introduce the Green’s functia@it, we need the following simple
observation.

LEmMA 4.3. degH") = 2", and || H"(w)|| < (C|w]|/+)?" holds for alln > 0
andw e C3, whereC is a constant depending only d@#.

Proof. There exists a consta@ > 1, depending on coefficients, such that
IHw)|s < C||w||i. By induction, this gives the desired estimate. O

We now define the Green’s functigh™ of H by
o1 .1
Gt(w) = lim —log"|H"(w)|| = lim = log"|x,|. (4.6)
n—>oo 21 n—>o0 21

Note that by Lemma 4.3 we hav&/2") logt || H"(w)| < log*||w]| + logC for
all n and for allw € C3. Lemma 4.2 shows that the limits are both 0&r. By
Lemma 4.1(i), we havey,| = O(|x,|) and|z,| = |x,—1] = o(|x,|) forw e V~
andn > 0, so both limits exist and are equal éht provided that one of them
exists. We now proceed exactly as in the proof of Theorem 2.5: we first show that
the second limit exists locally uniformly aii ™. Then, using the estimate derived
above from Lemma 4.3, we show that™ = G*. We conclude that all the as-
sertions of Theorem 2.5 hold for the functiéi® in (4.6): G* € PSHN C(C%),
KT = {G* = 0}, G* is pluriharmonic orU*, andG™ o H = 2G™*. Hence, if
ut = dd°G™ then we have*ut = 2ut.

We now study the dynamics of the inverse nfp* given in (4.2). Consider
the change of coordinates given oy = (x', y’, z’) = F(w), where

X=x, yYy=y-0@®, 7=z 4.7)

The mapH ~Lis then conjugated to the map(w’) = F o H 1o FY(w’) given
by
x; =17/,
/ l / 1 / 4 I
yp=_x —;P(z,y)—Q(y)
(4.8)

1o

1 ’ /A "n_12 12
=% +p@EL YY)+ Yy YT +yy s,
1=y,
where degp) <1, y" = —a/a, y' = —a'/a, and~y = —B8 — «"/a (recall the
form of P, Q from (4.3)). We will study the magf under the generic assump-
tion y # 0 (recall that the map! was studied under the generic assumptio#
0). One reason for doing so is that whgn= 0 andy’ # 0 we have degy,) =

deqy, ) + dedy,_,), so the degrees of the iterates are once again given by
Fibonacci’'s numbers.
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We proceed to find the dynamically relevant séts = U*(H) andK+ =
K*(H) and to define the Green’s functi@® for the mapH of (4.8). We will
then relate these to the corresponding #éts K~ and to the Green’s function
G~ of the mapH X

Fore > 0andR > 1/¢, let

V=V p(H) = {w'eC3:|y| > maxR, x|, |2'|/e} ).
The following lemma is proved in a similar way to Lemma 4.1.

LemMma 4.4. For everys € (0, 1), the~re existt = ¢(8) € (0,1) and Ro(§) > 1/¢
such that, for allR > Rg, we haveH(V~) C V~ and the following estimates
hold forw’ e V—:

yIA =&Y < Iyil < lyI@+8Iy'1%
y1@ =917 My 1 < Iyl < [lyI@+ 817 Hy'1?.
We next let

vt=JA"VvY),  Kkt=C\U" (4.9)
n=0

From Lemma 4.4 it follows that the orbjtv,} of any pointw’ € U™ escapes to
infinity at super-exponential rate and that the itera#sconverge locally uni-
formlyonU*to[0:1:0:0] Onthe sek ™, the orbits can escape to infinity at
most at exponential rate, as we now show.

Lemma 4.5. Foranyw € K+ and anyn > 0, we have
/ / 1
max{"xnlv |yn|7 |Z1/1|} = E_n maX{R7 |x,|7 |Z/|/8}‘
Proof. If w" € K* andn > 0, then|y,| < M, = maxR, |x,l. |z,|/¢}. But
|x,| = |z, 4| < eM,_1and|z,l/e = |y, 4l/e < My—1/e, SOM, < M,_1/¢ and

the lemma follows. U

The Green’s function off can now be defined by

. 1 ~
Gt(w') = nll_)moo > log* | H"(w")||

= nILmoo 2—1’1 log®|y,| = nIi_r)no<3 an_l log™|z)|. (4.10)
It has the same properties as before: the convergence in the above limits is locally
uniform onC3, Gt € PSHN C(C?), K* = {G* = 0}, G is pluriharmonic on
Ut,andG* o H = 2G™.

We now return to the mafl Y(w) = F 1o H o F(w). We note that ifw’ =
F(w) and ifw, = H™"(w) andw, = H"(w’) for n > 0, then F(w,) = ws
hence, by (4.7) we have

Xy =Xpo 2y =2Zns Yp = Yn— Q(z2n). (4.12)
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Using the set&/* = UT(H) andK+ = K+ (H) of (4.9), we define the corre-
sponding sets for the mag—* by

U-=FYU"b), K- =FYKkH)=C3\U".
Using Lemmas 4.4 and 4.5, we easily obtain the following.

LEmMA 4.6. The orbits{H "(w)},>0 Of pointsw € U~ escape to infinity at
super-exponential rate, whereas tHe*-orbit of any pointw € K~ can escape to
infinity at most at exponential rate.

Proof. If w € U~ thenw’ = F(w) € UT(H), so|z,| = |z,| increases super-
exponentially to infinity. Forw e K~ we havew’ = F(w) € K*(H), and by
(4.11) we obtainx, = x,,, z, = z,,, andy, =y, + Q(z,). The estimate offjw, ||
from Lemma 4.5 implies thdtw, || grows at most exponentially to infinity. O

We will be more precise about the behavior of the iter§fés"},~o on U~ when
we discuss the Green’s functi@i~ of the mapH L. We now introduce the func-
tion G~ = G* o F. Using (4.10), (4.11), anéf o H" = H" o F, we have

. 1 1
G (w) = Iim —Iog+||F(H‘"(w))|| = Iim Flog+|zn|. (4.12)

The properties of5* mentioned before imply thals - €PSHN C(C®, K~ =
(G-=0}, G is pluriharmonic orty ~ ,G~oH1=2G", and the convergence
of the two sequences definidy- is Iocally uniform onC3, Hence, if= = dd°G-
thenH*u™ = u~.

Finally, consider the usual Green’s functi6im of H

G~(w) = Im ———log"|H~"(w)]|
o deg H™") g '
THEOREM 4.7. The limit of the above sequence exists, the convergence being
locally uniform onC3. The functionG ~ is equal to the functior ~ of (4.12),
up to multiplication by a constant. Moreover, the iterafés” converge locally
uniformly on the set/ ~ to a point of P2 which depends o#i.

Proof. As the degree off ! can be 2, 3, or 4, we must consider the individual
cases.

Case 1:8 = 0. Our generic assumptiop # 0 implies thate” # 0, so
deg H™") = 2" for all n > 1 (by (4.2),y, has the terny?"). Using (4.11), we
see thaty,/z2 = (y, + Q(z)))/(z,)? = y./(¥,_1)? + o(1) holds onU ~. Hence
Lemma 4.4 and (4.12) imply that, far € C3,

- H 1 + —n H 1 + A—
G (w) = lim —log™||H " (w)| = lim — log"|z,| = G~ (w),
n—o0 2" n—oo 2n—1
and the iterate#/ —" converge locally uniformly o/~ to[0:1:0: 0]

Case 2.8 # 0anda’ = «” = 0. Then, by (4.2), deg? ") = 2", andz,
has the terny? for all » > 1. By Lemma 4.4 and by (4.11) we havye,| =
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Iy, + Q(z})| = 0(|z,,1% = O(|z,|% onU~. Using this and (4.2) we get in fact
that|y,+1l = 0(Iz4]?) = O(|zu14l), SO H(w)|| = O(|z4]) onU~. Thus

- R T 1a-
G (w)=Iim —log"||H " (w)| = lim —log"|z,| = =G~ (w),
n—o00 2N n—>o00 2N 2
for anyw e C3. SinceH * has the form

xX1=2z, y1= cz?+1dt, z1=Bz%>+1d.t.

for some constant € C, it follows thaty, 1/z2 — ¢ andz,;1/z2 — B; hence
yu/zn — c¢/B onU~. We conclude that the iteratgg~" converge locally uni-
formlyonU~to[0:c: g :0]

Case 3:8 # 0, «” = 0, anda’ # 0. In this case we have def ") =
3(2"-1), andy, has the term3@ ™ for all n > 1. As in Case 2, we havl,| =
O(|z,|? on U~. Therefore, by (4.2)|y,+1] < M|z,|°® < M'|z,4+1/¥? holds on
v+ = FY(V~(H)), with constants\Z, M’ independent ow. Using (4.2) again
we get in fact that O< m < |y,q1|/|z.° < M", SO|y,| ~ |z,|¥% forw e V*.
(HereV~(H) is as in Lemma 4.4.) This, combined with (4.12), shows that

- i —n ; 1 + 1
G~ (w) = lim log™ | H™" ()|l = lim o log™|z,| = 50 (W)

1
oo 3(2n~h)
for all w e C3. Moreover, the iterate® " converge locally uniformly o/ ~ to
[0:1:0:0]

Case 4:8 # 0anda” # 0. Sincey # 0 we have degd”) = degy,) = 2",
andy, has the ternty’)?". Hence degH” o F) = dedy, — Q(z,)) = 2"*% and
yn — O(z,) has the term?" " foralln > 1. Asa” # 0, these imply degH ") =
degy,) = 2dedz,) = 2"*L By Lemma 4.4 and (4.11), we see that 1| ~
[va = Q(2a)? = |za41l? holds onV* = F7{(V~(H)) and sol| H " (w)|| ~ |z4|?
(here~ is used in the same sense as in Case 3). It follows thaf,%on

G~ lim 1 logt||H ™" = lim 1Io+ —16*
() = lim = log* | H~"(w)]| = lim_>-10g"[z,| = 56~ (w).

The iteratesd ~" converge locally uniformly o/~ to [0 : 1: 0 : O] O

5. The ClassH,

The mapsH = H, of this class have the form

H(x,y,2) = (P(x,y) +az, Q(y) +x, ), (5.1)
where maxdeg P), deq Q)} = 2 anda # 0. The inverse map is given by

H ™ x,y,2) = (y -0, z, 1x + P(y, z))
(5.2)

~ 1
P(y,z) = —;P(y - 0(2), 2).
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As before, we write

P(x,y) = ax?+a'xy +a”y? + Ld.t,

0(y) = By? + Ld.t. (5.3)

We recall from [S] that a magf is regular if /¥ N I~ = ¢, whereI* denote
the indeterminacy sets @&f and H %, respectively. It is easy to check that a map
H of form (5.1) is regular if and only i8 # 0 anda # 0 (in which casd ™ =
[0:0:1:0]andl~ = {r =z = 0}).

In studying the dynamics of the mapkin (5.1) that are not regular, we must
discuss several cases. Before doing so, let us consider the actibomthe hy-
perplane at infinity of?3. The extension o toP3isgivenbyH[x :y:z:t] =
[12H(x/t,y/t,z/t) : t?], SOH[x : y : z : 0] = [ax? + a'xy + a"y? : By?:
0:0]. Wheng # 0 (soax = 0), we haveH({t = O}\IT) C I~ ={t =z =
0}. Moreover, ifa’ # 0 then on/ —, with coordinatex = x/y, the map is affine:
H[u:1:0:0]= [%qu% :1:0: O]. On the other hand, whew' = 0
or 8 = 0, H maps{r = 0} \ I to a single point. Note that this was also the
case for the map#f; of (4.1): with the notation of (4.3) and # 0, we have
H2x:y:z:0]=[a:p:0:0]

Casel8#0,0a=0,a'#0
We begin by discussing the map Fore > 0 andR > 1/, let
Vo=V r={weC?:|y| > maxXR, |z|, (|x|/e)"?}}.

LemMma 5.1. For anys € (0, 1), there existe = ¢(§) € (0,1) and Ro(8) > 1/¢
such that, for anyR > Ry, we haveH (V™) C V~, and the following estimates
hold onV ~:

1BIA—=8)Iy < Il < IBIA+OIVIE  |xl <8Iy,
HBIA—1FYy1Z < Iyl < [IBIA+8]Z Hyl*.

Proof. The first two estimates hold ovi~ provided that = ¢(8) is sufficiently
small andR, > 1/¢. As before, they implyH(V~) C V~ if Rq is chosen suffi-

ciently large. The third estimate follows by induction from the first. O
We let o
ut=JH"(v"), KT=C\U" (5.4)
n=0

By Lemma 5.1, the orbitf*(w) of w € U™ escapes to infinity at super-exponential
rate(consi?’, becausey,| does so. The orbits of points K™ can escape to in-
finity at most at a slower super-exponential rate.

LEMMA 5.2. If M(w) = max{R, |z|, (|x|/&)Y¥?}, then
max{|y,|, [zal} < [CMw)]®?" and |x,| < [CMw)]*¥?"
hold for allw € K+ andn > 0, whereC > 1is a suitable constant.
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Proof. If w e K* then|y,| < M, = max{R, |z,|, (|x,|/¢)¥?} holds for alln. We
have|z,| = |y.—1] < M,_1 and, by the definition oM,,_1, |x,_1| < ean_l and
|Zn—1| < M,_1. Usingx, = P(x,_1, Yo—1) +az,—1 (see (5.1)), these imply,| <
C'M?_,, whereC’ depends only on coefficients. We conclude that< C”M,f‘fz1
whereC” = (C'/¢)Y/? and so, by induction,

M, < (C//)1+3/2+~~.+(3/2>"*1Mé3/2)" < [(C,,)ZMO]@/Z)A.
The conclusion of the lemma follows. O

We now turn our attention to the dynamics Bfon U*. We recall in this case
that/t" ={r=y =0}, 1" ={=z=0}, andH({r =0} \ I") C I; also,
on/~\[1:0:0: 0]with coordinatex = x/y, the mapH is given byh(u) =
nu +n’, wheren = o’/ andn’ = «”/B. Note that the map on I~ = P always
has a fixed point at infinity, [10: 0: 0]le I*. If n £ 1, orif n = 1andy’ = 0,
then the mag: = H also has the fixed poinf : 1: 0 : 0] ¢ I+, whereug =
a"/(B — ') (resp.ug = 0). With this setting, we have the following theorems.

THeorREM 5.3. If n #£ 1, orif n = 1andn’ = 0, then the sequence of functions
F,(w) = 1/n™)(x,/y. — ug) converges locally uniformly o+ to a noncon-
stant holomorphic functio®. We haveF o H = nFonU™, X = {w e Ut :
F(w) =0} £ ¢, and H(X) = X. The dynamics off onU " is as follows.

(i) If |n| < 1then the iterategl™ converge locally uniformly oV * to[ug : 1:
0:0]
(ii) If |»] = 1then the iterategi” are a normal family orU*+, with limit func-
tions of the formw =[x : y : z: 1] — [uo + e F(w) :1:0: 0]
(ii) If |n| > 1, the iteratesH” converge locally uniformly o+ \ X to[1:0:
0 : 0] and locally uniformly alongX to [ug : 1: 0 : O]. In particular, {H"},
is not a normal family o/ *.

CoroLLARY 5.4. The currenti of integration along the analytic hypersurface
X C U™ satisfiesH*i = [i.

Proof. This follows becaus@g = dd€log|F| andF o H = nF. O

THeoreM 5.5. If n = 1andn’ # 0, then the sequence of functioAg(w) =
x,/ny, converges locally uniformly otV * to »’. In particular, the iteratesH"
converge locally uniformly o+ to[1: 0: 0 : 0]

We postpone the proofs of Theorems 5.3 and 5.5 for the moment in order to dis-
cuss the Green's functiofi*. Let

. 1 . 1
Gt(w) = lim = log"|H"(w)|| = lim = log"|y,|.
n—o00 2N n—oo 2n

ProrosiTioN 5.6. The above limits exist and are equal, the convergence being
locally uniform onC3. We haveG+ € PSHN C(C?), G™ is pluriharmonic on *,
Kt ={G*=0},andG" o H =2G™. If u™ = dd°G™* thenH*u" = 2ut.
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Proof. By Lemma 5.2, the limits are both zero &"; by Lemma 5.1, the second
limit exists locally uniformly onU+. By Theorems 5.3 and 5.5,

lxal < [AF)] +Dnl" + luolllyal o |xu] < (In'l + Dnlyl

holds forw € U™, provided that: is sufficiently large. This implies that the
first limit exists onU™* and is equal to the second. As in Lemma 4.3, we have
|H"(w)| < (Cllw|l+)?" whereC is a constant, so the upper semicontinuous reg-
ularizationG; of G* satisfiesG (w) < log" ||w|| + log C. Using this together
with G o H = 2G} and Lemma 5.2, we obtaifi;” = 0 onK ™. The proof now
continues as for that of Theorem 2.5. O

Proof of Theorem 5.3In order to obtain good estimates 6}, we must consider
instead ofV ~ the set

W™ ={weC?:|y| > maxR, |zl, |x|*3}}.

LemMma 5.7. There exist®Ry > 0such, that forany® > Ry, we haveH(W~) C
W~—. The estimates

1Bl 38| BV Y 3B
Sy < Iyl < =~ Iy? and (7) D <yl < (5)

hold forw € W~ andn > 1. Moreover, Ut = (J;2q H™"(W™), whereU™ is
defined in(5.4).

Proof. The estimates and the invariancé®f are provedasinLemma5.1. The es-
timate ony, | implies| J7- o H"(W~) C Ut. Wenowtakew ¢ | Jo- o H(W™).
Then|y,| < M, = max{R 1zal, [x,1%/%) for alln > 0. Usinglz,,l = |yp_1| <
M,_1, |x,1| < M 1, and|z,_1| < M,_;, we obtain|x,| < C’M land hence
M, < C”MS/3 It follows that M,, < (CM)®®", which impliesw ¢ U+. O

We now continue with the proof of the theorem. For a fixgdhote thatF), is holo-
morphic onH "™(W™) if n > m and that it satisfie$, c H = nF, 1. It suffices
to show that the sequen¢g,} converges locally uniformly o —. This implies
that the sequence converges locally uniformlylohto F € O(Ut) andF o H =
nF, henceH(X) =

On W, let us writeu = x/y andu,, = x,/y,. Sinceuy is a fixed point for
h(u) = nu+n', we haveh(u) —ug = n(u —up). Using (5.1) and (5.3) (in which
we write p(x, y) for the terms ofP of degree lower than 2), we obtain

X1 ox By? [h<X> p(x,y)}ﬁy2
— - + )
i B2 wi y By? 1 n

2
x’
ul—uo—n—ﬂy (u—uo)+uo(ﬁy l)+p( Y)
Y1 Y1 y1

= nAw)(u — ug) + B(w). (5.5)

SO
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We haveA, B € O(W™) and, by the definition o~ and Lemma 5.7,
|[Aw) =1 < Cly|™2,  [Bw)| < Cly|™? (5.6)

for some constant’ and for allw € W~. In particular,A(w) 2 0onW~ if Ris
chosen sufficiently large. We introduce the following notation:

Aj(w) = Ao H(w) = A(w)), B;(w) = B o H/(w),
Ao=A, Bo=B8, (5.7)
[a(w) = Ag(w)As(w) - - - Ap(w).

Using (5.5) inductively we obtain, after a straightforward calculation, the follow-
ing formula for F;:

Fyw) = =, = tp) = Ty s(w) Fy(w).  where
n

~ g (5.8)
F(w) = u—uo+ fy(w),  fuw) =) %
’ J

j=0

LemMma 5.8. The sequencd§,}, { f,}, {F,}, and hencéF,}, converge uniformly
on W~ to the holomorphic functionk, f, F, and F, respectively. We have that
" is bounded and nowhere vanishing B, Fw)=u—uo+ f(w),and F =
['F is not identically zero. Moreoverf satisfies the estimatg(w)| < C|y| Y2
for all w e W~ and for some constat.

Proof. By Lemma 5.7 we have (choosiriysufficiently large) that

27[

2 n

[V, > <|—ﬂ||y|> = >¢? foral n>=0andwe W™,
2 |81

with some constant > 1. It follows from (5.6) that|A;(w) — 1| < Cc=? " for

allwe W~ andj > 0. Hence{I,,} converges uniformly ta" € O(W~), which

satisfies

0<[Ja-ce?™) <t < [Ja+cc?™) < +o0
j=0 j=0

on W~. Using the estimate ofy;| from Lemma 5.7 and (5.6), we obtain

61, \2 (18l N B
Biwl<C(Svl)  <chI () <yt

for j > 1andw € W~. This, together with the foregoing estimate |@H, shows
that{ f,} converges uniformly tof € O(W~) and|f(w)| < C|ly| Y2 onW~. To
see thatF' # 0, we choosav € W~ such thatc/y # ug. By the definition of W~
we havenw € W for all & > 1 SinceF(hw) = x/y —uo+ f(Aw), the preced-
ing estimate onf| implies thatF(A\w) # 0 for A sufficiently large. O
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LemMma 5.9. There exists~an open neighborhobBdof [ug : 1 :0: 0]in P2, with
D N C3 c W, such thatF extends holomorphically th by Flu :1:v: 0] =
u — uop.

Proof. Forw =[x : y : z : 1] € W~ we havey # 0, so we can change the
coordinates toif : 1 : v : ¢], whereu = x/y, v = z/y, andt = 1/y. In these
coordinates we have

W™ ={[u:1:v:1]:1#0, maxRle, |ul?3t]Y3, |v]} <1},

so we can find an open neighborhobdc W~ U {r = 0} of [ug : 1 : 0 : 0]
in P3. By Lemma 5.8 we have, in the new coordinatg&u, v, 1)| < C|t|Y? on
W~, so f extends holomorphically t® by f(u, v, 0) = 0. HenceF(u, v, 1) =
u —ug + f(u, v, ) extends holomorphically t® by F(u, v,0) = u —ug. O

CoroLLARY 5.10. X # @; henceF is nonconstant.

Proof. With the notation of Lemma 5.9, leX = {w € D : F(w) = 0}. By
Lemma5.9X N{r =0} ={t =u —uo = 0} has dimension 1, s§ N W~ # ¢.
As F = TF on W~ this showsX # ¢. 0

ReEMARK. The point ;o : 1: 0 : 0] is fixed byH, and the derivatived'[ug : 1 :
0 : O]—computed in the coordinates from the proof of Lemma 5.9—isxa33
upper triangular matrix with diagonal entrigs0, and 0.

We now prove the assertions of Theorem 5.3 regarding the dynamit¢®ofU *.

Parts (i) and (ii) follow if we writeH"[x : y : z : 1] = [x,/yn 1 20/ Y0 = 1/ yu]

and notice that,,/y,, 1/y, converge locally uniformly to zero oti *, by Lemma
5.1. For (iii), we first fixw € U™ \ X, an open neighborhooB c U™\ X of w,

and a constant > 0 such that F(w)| > ¢ on B. It follows thatx,/y, — oo,

henceH"(w) — [1: 0 : 0 : OJuniformly on B. Let noww € X. By taking iter-
ates ofw, we may assume thai € W~. SinceF = I'F andI'(w) # 0, we have
F(w) =0, sou — ug = — f(w). Using (5.8), we obtain

Xn 5 B (w)
w uo=mn"l,- 1(w)[ Sw) + Z nI (w):|

= —1ln- 1(w)Z B(w)

j n+lI‘ (w)

Proceeding as in the proof of the estimatg fhin Lemma 5.8, we conclude from
this that|x,,/y, — uo| = O(|y,|~¥?) and henced"(w) — [ug : 1: 0 : O]locally
uniformly alongX. The proof of Theorem 5.3 is now complete. O

Proof of Theorem 5.5It suffices to show thdtE,,} converges uniformly oV — to
n’, where W~ is as in Lemma 5.7. Writing agaim = x/y andu, = x,/y,
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and usingh(u) = u + n’, we obtain in a similar way with (5.5) that; =
A(w)u + n’A(w) + B(w), whereA, B € O(W ™) satisfy the estimates (5.6). With
the notation of (5.7), this gives

As in the proof of Lemma 5.8, we have tHat — I' uniformlyonW~—,0 < ¢ <
IT(w)| < ConW—, andzy;é Bj(w)/Tj(w) — f(w) uniformly onW~. These
imply that E,, — n’ uniformly onW~. O

n=1 p n—2
En(w) = ﬂ = ! nl(w)[u + Z M] + n/l",,l(w)%|}|-+ Z
Jj=0 j=0

n n [ (w)

1
[ (w)

We now consider the dynamics of the inverse nt&p given in (5.2). We write
P(y,2) = yz° + p(y, 2), wherey # 0 and degp) = 2. Note that degH ") =
degz,) = 3"foralln > 1 Fore > 0andR > 1/s, we let

Vi=Vi={w eC3: |zl > maxX{R, |y|, (|xl/e)¥3} }.

The following lemma is proved in a similar way as previous analogous result.

LeEmMMA 5.11. For anysd € (0, 1), there existe = ¢(8) € (0,1) and Rp(8) > 1/e
such that, for anyR > Ro, we haveH 1(V*) € v+, and the estimates

1BIL—8)IzI? < |x1] < [BI(L+8)z/%,
yI@—=8)zI® < lz1l < lyIA+ Oz, (CulzD¥ < |zal < (Calz))*
hold onV*, with constants’;, C» depending o ~* and §.
We define
o0
vt=Ju"Wv", Kk =C\U".
n=0

By Lemma 5.11, the iterateH ~"(w) of pointsw € U~ escape to infinity at
super-exponential rat@ons}®’, converging locally uniformly o/~ to [0 : O :
1:0Q]. Thistime,K ~ is the set of points with bounded backward orbit, as follows.

LemMma 5.12. The iteratesH =" are locally uniformly bounded oK ~.

Proof. If w € K~ then|z,| < M, = maxR, |y,|, (|x.|/e)¥3} for all n > 0.
As |y,| = lzp-1l < M, and|y,_1| < M, 4, we obtain by (5.2) thalx,| <
C'M? j; thus M, < max{R, M,_1, Canﬁ}, where C depends on coefficients
ande. This impliesM, < maxR, C3, M,_,} and hence, by inductiony, <

max{R, C3, My}. The conclusion follows. O

The Green'’s functior ~ of H~*is now defined by

1 1
G~ (w) = lim S—nlog+||H*"(w)|| = lim glog+|zn|.
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It can be shown as before (see e.g. Proposition 5.6) that the convergence in the
above limits is locally uniform o3, G~ € PSHN C(C?), G~ is pluriharmonic
onU~, K~ ={G~ =0}, andG~ o H' = 3G~. Hence, ifu~ = dd°G~ we
haveH*u~ = 14~ and supp™ = 9K ~.

Case28#0,a=a’'=0

With the notation of (5.2) and (5.3), we halx, y) = a”y? + p(x. y), Q(y) =
By2+q(y), andP(y, z) = yz2+ p(y, z), Where the degrees ¢f ¢, p are< 1.
The maps are given by

H(x,y,z) = (@"y? + p(x,y) + az, By* + q(y) + x, ),

» , 1 , (5.9)
H (x,y,2) = <y — Bz —q),z, ;x +vzc+ p(y, z)).

If y = 0then the magH 2 is regular. Indeed, ip; = 3p/dy, it is easy to check
that/"(H?) = {t =y =0} andI~(H? = {t =z =0, x/a + p1y = 0}, so
IT(HH NI (H? =¢.

Hence we assume # 0. Then the dynamics of botH and H is similar to
that of the mapg{s of (4.1), and the methods used there work in this case as well.
Briefly, the situation is as follows: Far > 0 andR > 1/¢, for the mapH we
define the sets

Vo ={weC3: |yl > maxR, |z|, (Ix|/e)"?}},
Ut = U H™(V7), KT=C3\U";
n=0

for the mapH —* we define

VP ={weC®: |z] > maxXR, |y|, (|x|/&)¥?}},
ut=|JH'(VH, K =C)\U".
n=0

As usual, for a givers € (0,1) we can finde € (0,1) and Ry > 1/¢ such that,
foranyR > Ry, we haveH(V~) c V- andH XV*) c V*, and the following
estimates hold:

onV=: [BlIA—8)yl® < Iyl < IBIA+8)Iyl% |xil < (la”| + D]yl
onVT: |yl -8z < lzal < IyI@+ 8zl |x1l < (18] +Dlz|%

Hence the forward iterates of pointslin™ escape to infinity at super-exponential
rate, converging locally uniformly tax[” : 8 : 0 : 0]. The backward iterates of
points inU ~ escape to infinity at super-exponential rate and converge locally uni-
formly to [-8 : 0 : y : 0]. On the other hand, one can show using the same
techniques as before that the forward (resp. backward) orbits of poiat$ ifin
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K~, resp.) can escape to infinity at most at exponential rate. The Green'’s func-
tions and the invariant currents are given by

. 1 ) 1 .
G (w) = lim —log"|H"(w)| = lim —log*|y,l,  u"=ddG",
n—oo 2N n—>oo 2N
= i 1 + —n H 1 + - cr—
G (w)=Iim —log"||H "(w)| = lim —log™|z,l|, W =dd‘G™.
n—>o00 2N n—>o00 2N

They are continuous plurisubharmonic @d, and pluriharmonic orU* (resp.
U~). Moreover,K* = {G* = 0} andG* o H = 2*1G*.

Case3,6=0

For this case, it follows tha (x, y) = ax?+a/xy+a”y2+p(x, y)andP(y, z) =
vz2 +y'yz +y"y2 + p(y, z), with the only restriction that de@) = 2.
In the generic situation when # 0 andy = 0, the dynamics is very similar to
the one of the maps in (5.9). There is a slight difference in the choice of the sets
V£ in this case, we let

Vo ={weC3?: |x| > maxR, |z|, lyl/e} },
Vi ={weC?: |z| > maxR, |x|, |yl/e} }.

With U* andK * defined in the usual way, we have that the forward iteratés
converge super-exponentially @ to [1 : 0 : 0 : 0] and thébackward iterates
H™" converge super-exponentially @ to [0 : 0 : 1 : 0] Again, onK™* and
K~ the forward (resp. backward) orbits can escape to infinity at most at exponen-
tial rate. The Green’s functiorG* are defined and have the same properties as in
Case 2, with the only difference that this tirGe (w) = lim,,_, o (I0g™ | x,|)/2".

If « = 0 anda’ # 0 then it follows by induction that d€g,) < degx,) and
dedq x,4+1) = degx,) + dedgx,_1) foralln > 1. So the degrees of the forward it-
erates are given by Fibonacci's numbers (see [B]). The same holds for the inverse
map, wherny = 0 andy’ # 0.

We finally look at the case when= o’ = 0 (sox” # 0, as de@P) = 2). Here
we again have that/? is regular, sincd *(H?) = [0:0:1: 0] andl~(H?) =
{t =2z=0}.

6. The ClassHs
This class contains mag$ = Hs of the form
H(x,y,z) = (P(x,y) +az, Q(x) + by, x), (6.1)
where maxdeq P), deg Q)} = 2 anda # 0 # b. The inverse map is given by
HXx,y,2) = (Z, y—TQ(z) ;—C + P(y, Z)),
(6.2)

~ 1 —
P(y,2) = —;P(Z, yTQ(Z))
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We write
P(x,y) =ax®>+a'xy +a’y? +1d.t.,

0(x) = Bx% + Ld.t.

The mapH is regular if and only if8 # 0 anda” # 0. In the study of the dynam-
ics of mapsH that are not regular, we will consider several cases—of which the
first is the most interesting.

(6.3)

CaselB #£0,0"=0,a’ #0

Let us begin by discussing the dynamics of the inverse Fiap This is similar

to the dynamics of the maf —* in (5.2), of the corresponding case for the class
H,, so we will state the results without providing the proofs. We w#ite, z) =

vz2 + p(y,z), wherey # 0, deg p) = 2, and 5 does not contairy?. Then
degH ") =3"foralln > 1 Fore > 0andR > 1/¢, we let

V= Vi = (w ezl > maxR, [4l, (1/e)V3)).

LemMma 6.1. For anys € (0, 1), there existe = ¢(§) € (0,1) and Ro(8) > 1/¢
such that, for anyR > R,, we haveH 1(V*) € V+, and the estimates

1Bl . 2 1Bl 2
Ibl(l Hlz|” < Iyl < |b|(1+5)|ZI ,

YIL—=8)zI® < lz1l < lyIA+ Oz, (CulzD¥ < |zal < (Calz))*
hold onV*, with constants”;, C, depending ot ands.

We define
oo
ut=|JH'(VH, K =C\U".
n=0
By Lemma 6.1, théZ ~1-orbits of points iU ~ escape to infinity at super-exponen-

tial rate, converging locally uniformly oy “to [0 : 0 : 1 : 0] On K~ we have
the following behavior.

LEMMA 6.2. There exist both a positive continuous functiron C® and a con-
stantC > 1such thamax{|x,|, |v.|, |z.|} < C"M (w) holds for anyw € K~ and
n > 0.

The Green'’s functioi ~ of Htis given by
. 1 . 1
G (w) = lim =log"|H™(w)|| = lim = log"|z,|.
n—oo 3" n—oo 3"
The convergence in the above limits is locally uniform@®h G~ € PSHNC(C?),

G~ is pluriharmonicon/~, K~ = {G~ =0}, andG o H 1 =3G . If u~ =
dd°G~ we haveH*n~ = 11~ and supp™ = 9K .
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We now consider the dynamics &f. By a change of coordinates of the form
(x,y,2) = (a'x,b’y,a’z), we may assume th& is given by
x1=ax?+xy+ p(x,y) +az,
y1=x%4q(x) + by, (6.4)
1= X,

where degp), degg) < 1 The indeterminacy sets @f are/t = {t = x = 0}
and/~ = {t =z =0}. We haveH({t =0} \ I™) € I—; onI—, with coordinate
u = y/x, the map is given by

HL1:u:0:01=[1:h(m):0:0], h(u) =

U—+o
Itis easy to check that, when= +2i, the Mobius mah has a double fixed point
given byug = —a/2 = Fi. If o # £2i thenh has distinct fixed pointso, uj,
and we havér'(ug) = —u3 andh’'(uy) = —(up)?. If Ra = 0 andJe € (-2, 2)
then|ug| = |ugl = 1, and both fixed points are neutral; otherwige| < 1 <
lugl, uo is attracting, and, is repelling.

We now assumex #* =+2i. Note that the change of coordinates =
(u — uo)/(u — up) putsh into the formh(u') = (—u%)u/. By a projective change
of coordinates

w =Sw):[x 1y '] =[a"(y —upx) 1a'(y —uox) :b'z 1 1]

with inverse
7 / / / /
1 ) x' =y uox' — ugy z
w="(w) x=— — V= 7= —
a’'(ug — ug) a'(ug — ug) b

(wherea’, b’ are suitably chosen), the map is conjugated to the maf given
by
xi — x/(x/ _ y/) + ﬁ(x/, y/’ Z/),
yp=m'(x" = y)+qx',y' 2, (6.5)
Zi = x/ - y/5
where degp), degg) <1, p, g both containe’, andn = —u3 = h'(ug). We have
0 < || < 1landy # 1 (otherwiseu3 = —1 andug = uy = +i).

Let us denote by~ = (22, H"(I*) the extended indeterminacy set it
that is, the minimal set away from which all the forward iterat&s are well-
defined. The new phenomenon occurring for this class isfas larger than
I't. In fact, in the new coordinates we haveé = {t' = 0, x' = y’} while I}, =
UZolt’ =0, x" =n/y’).

We study the dynamics of mapsin (6.4) that correspond to the rationally neu-
tral case whem is a primitive root of unity of ordek > 2: n* = 1. For instance,
o = 0 corresponds tg = —1. In this casel}, = [J:o{t' = 0.x' = ny’}. We
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will construct the dynamically relevant sets™, U *, KT for the mapH by first
defining suitable sets for the map in (6.5), in thew’-coordinates, and then by
using the transformatiof . For this purpose it is useful to writ6~* in terms
of n:
S—l(w/) —w'x = a//(x/ _ y/)7 y = b//(x/ _ nk—ly/)’ 7= Z//b/, (66)

where|a”| = |b"|. Here we usead, = —1/ug, n = —u3, andnp* =1

Fore > 0 andR > 1/¢ we let

V‘:{w/e(cai m |x—77y|
>max(R, |2'], (1x'|/e)Y2, (1y'l/e)"?) }

o N 3 (6.7)
= UH*"(V*), KT=C3\U".
n=0

ProrosiTION 6.3.  (i)Foranys € (0, 1),~th§re exis~t$ =¢(8)andRg = Ro(8) >
1/¢ such that, for allR > Rg, we haveH(V~) C V—, and the estimates
A=8)|x" =/ |Ix" = y'| < [xf —n'yi] < A+8)x' =0Ty [1x' =)' (6.8)

hold for allw’ e V= andj € {0, ..., k — 1}.
(i) There exists a positive continuous functith on C3 such that, for all
w’ e K and alln > 0, we havemax{|x/ |, |y/], |z.]} < [M(w")]"", wherev =
1/k
23)Y e 3,2).

Proof. (i) By (6.5), for a fixed; € {0, ..., k — 1} we have
xp—nlyp= (' =ty =y + Ldit.

Because, oV ™, |x/| < e|x’ — n/tly/12 and|x'| < e|x’ — y'|?, we conclude
that|x’| < e|x’ — n/T1y’||x" — y’|, and the same holds f¢y’|. Moreover,|z’| <
|x' —y'| < elx’ —y'||x’ —nitly’|, sinceR > 1/e. Thus

I(xp = niyp) — (X' — /Ty (X = y)| < Celx’ = y'lIx" — n/™y|,

whereC depends on coefficients, which yields (6.8) if we dex §/C. Using
max{|x’'|, |y'|} < e|x’ — n/*1y’|? and (6.5), we get

max{|x, [y{l} < Celx’ — /"y Plx" — ¥,
so if R is sufficiently large then by (6.8) we have

max{(|x;1/e)Y2, (Iy;1/e)?} < Clx’ — ity ||x — y/|Y2
< @=8)|x" =y |Ix = y'| < |x) = iyl

Sincelzy| =[x —y'| < A= 8)|x" — n/*ly’||x’ — y'], it follows by combining
all these thaf/ (V=) € V.
(ii) If w’e K™ then for alln > 0 we have

e Tyal < My = max(R, |z, (1x1/e)Y2, Iy, 1/e)Y?). (6.9)
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As in the proof of (6.8), and sinog® = 1, we have the following implications:

X' = y'| > Mo & |x' —n'y'| > Mo =[x —n'/"tyj| > My,
T S, (6.10)
[x" —y'| > Moo= |x;—n" "yl > M.

We fixw’ € KT and claim that, for any > k, there existy = p(n) {1, ..., k}
such that

|x;l_p — y,;_pl <M,_,. (6.11)
Indeed, assume by way of contradiction that, for any {1, ..., k}, (6.11) does
not hold. Sincéx,_, —y,_,| > M,_,, it follows by (6.10) that

/ k=17
|xn7p+l —n yn7p+l| > M”*PJrl'

This, together withx’ | > M,_,11and (6.10), implies that

/
n—p+1 " Yn—p+1
/ k=2,
|xn7p+2 -1 yn7p+2| > Mn7p+2-

Continuing like this we concludéx! ; — n*=7*ty’ || > M, for all p €
{1, ..., k}. Since this contradicts (6.9), our claim follows.
Letnown > kandp = p(n) € {4, ..., k} such that (6.11) holds. Then

3(217—2)
M, <CM,=, °, (6.12)

whereC > 1is a constant depending ¢h Indeed, by the definition a#/;, we
have|z;| < M; and|x;], |y;| < eMJ.Z. Using these together with (6.5) and (6.11),
we have

max{|x;, 1l Vo pial} < CeM o |z, il < My,
Since||H"(w")|| < (Cllw'||+)?", it follows for all je{l ..., p}that
Il = 1Ay < (Cllwgppall )™

— p—1- .
hence mafx/|, [y/[} < (Ce)? 'M>? . Moreover, if p = 1 then|z|| =

n—p
! <M, difp>2then|z)| < |x/ < (Ce? M)
|x, 1= Yy_ql SMy_q, andifp > 2then|z, | <|[x, 4| +1y, 4 < (Ce) n—p

These givg (6.12).
We letM (w’) = max{Mo(w’), ..., My_1(w’")}. The assertion of part (ii) fol-
lows if we show that, for alk > 0,

M, < [C*M*3", (6.13)

whereC is the constant in (6.12). This clearly holds for< k, sincev > 1. If
n > k then we apply (6.12) repeatedly to get

Mn < C1+r1+(r1r2)+...+(r1r2 L r—1) (Mn—pl—--~—p1)r1r2 . , (614)
wherer; = 3(2”~2) andp; € {1,..., k}aresuchthat — p1— po — -+ — pj_1 >
kandO<n—p;—po—---—p; <k.Hencen—k < p1+---+ p; < lk, sol >

(n/k) — 1L Moreover,p1+ -+ p;_1+ p; <n —k + k = n. We conclude that
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3\ 3\O/b-1 4
rirz...rp = (Z) 2prr < <Z) 2" = év”.

Sincer; > 3/2, itis easy to check by induction thatlr1+r1rp... +r1r2... 1 <
3r1rp... 11, SO (6.14) impliesM, < (C3M)™2---"t. This gives (6.13), using our
estimate onryro ... ;. O

We now return to the dynamics of the makin (6.4) and define

T=S5T),

=JH™"(v7) =870, (6.15)
n=0

+ _ (C3 \ Ut = S*l(kJr)’

whereV ~ is given in (6.7) and, &, Rare chosen as in Proposition 6.3. The above
identities hold sincéd = S0 Ho S.

ProposITION 6.4. (i) There exists a positive continuous functignon C2 such
that, for allw € K+ and allz > 0, we havemax{|x,|, |y.!, |z.|} < [M(w)]"",
wherev = 2(3)Vk < 2,

(il) We haveH(V~) € V~ and C min{|x,|, |y.|} > [A— 8)R]? forall w €
V- andn > 0, whereC~1 = |a”| = |b”| anda”, b” are given in(6.6). In par-
ticular, the H-orbits of points inU ™ escape to infinity at super-exponential rate
(consi?".

(iii) The following estimates hold for all € V~— and alln > k: |z1] < Ci]y1],

CA=®IxP? < |yl < CA+8)Ix,  max{|xil, yil} < Cumax{|x, [y[H?,

k k 2
CA=8)"xn—1l .. 1 xn—rsall Xn—r]” < 24|

< C*A+ ) xpal - [Xp—ppal | Xn—l?,
CHL— ) 1 xnetl oo Xne i [Yn—i] < Iyal < C*A+ &)X x0al - [Xnei] [ Yail,

X Xj '
| X < | ,I, 1yl <t max L
vl j=0.... k=1 ]y;] [ X5 ] =0, k=1 ] x|

whereC is as in part(ii) andC; > 1is a constant depending on coefficients.

Proof. (i) This follows directly from Proposition 6.3, the formula (6.6) &f*,
and the definition (6.15) ok ™.

(i) The H-invariance ofV ~ follows directly from theH-invariance ofV .
Using (6.8) repeatedly we see tHaf — y/| and|x/, — n*~1y/| are larger than
(1 — 8)%'~*times a product of 2factors of the formx’ — r)’y |, which are each
larger thanR. Since|x,| = C7Yx/ —y/|and|y,| = CYx/ —n*~1y/|, this gives
the estimate in part (ii).
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(iii) As in (ii), relation (6.8) applied forj = k — 1 yields the estimate fqiy,|.
The estimate fofz1| is then trivial, sincezy| = |x| < |x|2. The third estimate fol-
lows from (6.4), since mifC|x|, C|y|} > maxR, |z|} holds onV ~. Using (6.8),
we have

12, = Yl ~ 12 = YpallXq = n, 4l
~ 1= Vel o = Vallxg = 0Py ol
~ X1 = Vol e X — Yl — ”ky,;—k|'
Sincen* = 1, this yields the fourth inequality of (iii). Similarly,

Ix), — "ty

™~ X — y;—1|2
~ X = Vgl I = Va1 — nk_ly,;—k )
which yields the estimate g, |. Using the estimates du,,| and|y, |, we obtain
<1—8>"|xn_k| |4 <1+6>"|xn_k|
_— < < D a— .
14+8) 1yuil  lyal 1-6) |yn—sl

This implies the remaining inequalities of the proposition. O

We define the Green'’s functiad* of H by
. 1 . 1 . 1
Gt(w) = lim = log"|H"(w)|| = lim = log™|x,| = lim — log"|y,|.
n—o0 2N n—o0 2N n—o00 2N

THEOREM 6.5. The above limits exist and are equal, the convergence being lo-
cally uniform onC3. We haveG*+ € PSHN C(C?), G™ is pluriharmonic onU *,
Kt={GT=0},andGT o H =2G™*. If ut =dd°G* thenH*ut = 2u*.

Proof. By Proposition 64(i), thelimits are zero ork *. By the last two inequal-
ities of Proposition 6.4(iii), it follows that if one of the three limits exists at
w € U™ then the other two also exist and they are all equal. Let us Wite)) =
(log*|x,])/2" and fixwg € V~ and a relatively compact open b&lc V- cen-
tered atwo. By Proposition 6.4(iii) forw € B we havely,| < C;'|x,| for some
constantC; > 1, so

1 4 , n+1
Gpa(w) < ol log™ (Crmax{| x|, [y.IH* < Ton log C1 + G,(w).

If we definem .1 = 27" (n + 3)?log Cy, thenm,,, 1+ (n +1)27" log C; < m,, for

alln > 1, s0{G, + m,} is a decreasing sequence of positive pluriharmonic func-
tions onB. It follows by Harnack’s theorem that the functio@s converge locally
uniformly to a positive pluriharmonic function oB. HenceG* is well-defined

on C2 and is pluriharmonic and positive da*. If G is the upper semicontin-
uous regularization of; ™ then, using Proposition 4(i) andG} o H = 2G}, it
follows thatG} = 0 on K. The proof now continues in the standard way.[

We now discuss the dynamics Bfon U *. Recall that, o — and with coordinate
u=y/x, Hisgiven byh(u) = 1/(u + «).
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THEOREM 6.6. The sequence of functiod§(w) = yi,/xx, converges locally
uniformly onU* to a nonconstant nowhere-vanishing holomorphic function
which satisfieF o H = ho F and, in particular,F o H* = F. Moreover, for any
re{0, ..., k —1}, the sequence of iterat¢& **}, converges locally uniformly
onU+ c P3tothe functiorw =[x 1 y:z:1] — [L: A" o F(w) : 0:0].

Proof. Instead of the se¥ ~ in (6.7) we must consider the set

W= { w'eC? :j:Omink_l|x’ —n’y'| > max(R, |2'I, [x'I?/°, |y'?/%) }

LEMMA 6.7. If R is sufficiently large thed/ (W) € W~ and, forallw’e W~
andje{O ...,k =1}, we have

—nlyp = (& =y )& =0 YO+ O(x =y [TV =y V] (6.16)
Moreover,U+ =X, H"(W™), whereU™ is as in(6.7).

Proof. The first part of the lemma follows as in the proof of Proposition 6.3. Note
that repeated use of (6.8) implied [- §)R]?" < |x), — y,,| < 2max|x, |, |y, |}

and so, by Proposition 6.8]" is the set where the |teratél§’ escape to infinity at
the highest super-exponential rate. Hence, by (606%., H"(W~) € U*. For

the reversed inclusion, we show that there exists a positive continuous funttion
onC® such that, ifw’ ¢ | J°2 o H~"(W~) andn > 0, then max|x.,|, |y.|, |z,|} <
[M(w’)]“f, wherev = 2((53)1/’( < 2. Thisis done by the same arguments as in the
proof of Proposition 6.3(ii): For ahk > 0, we have

i j 2/3 2/3
min _x, = n'y;l < My = max(R, |z, ], x, %, 13,17},

Implications (6.10) and inequality (6.11) hold in this setting. Inequality (6.12) be-
comesM, < CM,ES_/?Z', wheren > kandp = p(n) € {1, ..., k}. Inequality
(6.14) holds withpy, ..., p; as before, and; = 22/’1. Hence

5\’ 6
Fifp... ] = (é) oprtetpl < gv'f’

and the conclusion follows. OJ

LEMMA 6.8. LetW~ = S~ Y(W).

(i) We haveH(W~) € W~ andU* = |J,ZoH"(W~), whereU™ is as
in (6.15). Moreover,min{|x,|, |y,|} > (R")?" holds onW~ for some constant
R’ > 1, andy,/x2 and1/x, converge to zero locally uniformly o .

(i) If w e W= then yi/xr = (y/x)A(w), where A € O(W~) satisfies
|A(w) — 1] < C(|x|™¥? + |y|7%2) on W~ for some constant.

Proof. (i) These follow directly from Lemma 6.7, Proposition 6.4, and the esti-
mate(| H"(w)|| < (Cllw|l+)%".
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(i) By (6.16) and since* = 1, we have the following:

’ ’
X — Yk

=D =D 1+ O(xp_qy — Yi_al ™ Hxfy — nyi_al ™Y,
k=17 Tk=13 k-1 k-1

Xp1— Vi1
(2= Vi) (X2 =12y 5)

=14 0(x}_p — yiol ™ x1_p — nPyp_ol 7Y%,

/ k=1,

X1 —1 / /-

e e S PN ()

(x" =y

By (6.6),x; = a"(x; — y;), so multiplying the foregoing identities yields
1"\ k
(a”)*xk =14 0(x V).
Xk—1...X1X

Here we used the fact that, in view of (6.16), — nlyj/| is larger than a degreet2
product of factors of the fornix’ — »™y’|, in which |x’ — y’| has degree 2%

Thus|x; — n'y/|™* <« |x" — y/|7¥. In a similar way, we obtain
(a”)*y
Xk—1-..X1XY

These yield part (ii) of the lemma. O

=14 O0(|x| ™2 + |y|7Y?).

We now proceed with the proof of Theorem 6.6. By Lemma 6.8, it suffices to show
that{F,} converges locally uniformly oW ~. Let A, (w) = A(wi,), Ap = A, and
I, = ApA1... A,_1. Then the estimates of Lemma 6.8 imply thB{} converges
uniformly toI" € O(W™), which satisfiesC; < |[I'(w)| < Co forall w e W~
(C1, Cpare positive constants). By Lemma6.8(f)(w) = F,_1(w) A(wgn-1) =
F,_1(w)A,_1(w), hence by inductiott;,(w) = (y/x)[,(w) holds onW~. So{F, }
converges locally uniformly o/ " to F € O(U ™), andF(w) = (y/x)I'(w) holds
onW~. We haveF, o H* = F,,1and so, orU*, Fo H* = F. SinceC, < |T'| <
C, it follows that F' is nowhere vanishing oW —, hence orJ *.

Note that, fort € (0,1/3), W~ contains pointaw = (x, y, 0) with |y| =
|x|*~7, provided that x| is sufficiently large. Indeed, using (6.6) to writg y’,
andx’ — n/y’ in terms ofx, y, we have that

max(|x'|, Iy'l} < (consy|x|, _ min 1Ix’—nfy’l > (consilyl,
i

,,,,,

sow’ = S(w) € W~. For such pointaw € W~ we havey/x — 0 as|x| — oo;
and sinceC; < |I'| < C, it follows that F(w) = (y/x)I'(w) cannot be constant.
By Lemma 6.8 and (6.4), fav € W~ we have

Yin+1 _ 1+ 0(1)
Xkn+1 Fn(w) +a+ 0(1) ’

Fyo H(w) =
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Asn — oo, this implies thatF o H = h o F holds onU™* and hence o H" =
h"o Fforallre{l,..., k}. We conclude that

Hkn-"_r(w) = [ Yintr/Xkntr * Zhntr/Xuntr 2 1/ Xkngr] = [L1h" 0 F(w) 1 0: 0]
locally uniformly onU* asn — oo, and the proof of the theorem is completé.]

Case28#0,a'=a"=0

With the notation of (6.1) and (6.2), we ha®éx, y) = ax2+1.d.t.andP(y, z) =
yz? + L.d.t. The generic case # 0 # y is covered in Case 2 for the clagg by
switching the roles of andy in the formulas ofV £, G*, ... given there. There
are also interesting examples when= 0. Then it is easy to check tha? is
given by

xp=ax, y2=>b%y+ 0(a2) +b0(x), z2=az;

hence degH ?") < 2 for all integers:.

Case3.86=0

For this caseP(x, y) = ax2+a'xy + a”y2 + Ld.t, P(y,2) = yz2 + y'yz +
y"y2 +L.d.t., and degP) = deg P) = 2. The generic situation whem # 0 #

y is covered by Case 3 for the clagg. If « = 0 anda’ # O then, as for the
classH,, the degrees of the forward iterat&&' are given by Fibonacci's num-
bers. Ifa = o’ = 0 (hencex” # 0) there are some interesting examples, as when
P(x,y) =a”y?andQ = 0. Then it is easy to see that

H"(w) = (cay? + pu(x,2), b"y, dyy? + qu(x, 2))

for all integersn, where degp,) < 1 and degy,) < 1. Hence all forward and
backward iterates aff have degree at most 2.

7. Conclusions

We summarize here the main dynamical features of the five classes of automor-
phisms studied throughout the paper. The goal is to highlight the new phenomena
that occur in dimension 3 and also to point out dynamical differences and analo-
gies between these five classes.

We recalled in the introduction a few facts about the dynamics of Hénon maps
in C2 and of regular polynomial autmorphisms@?. In order to emphasize the
dynamical differences between these maps and the ones studied here, we first men-
tion a few more properties of Hénon maps, regular polynomial automorphisms,
and the shift-like automorphisms of [BP].

For Hénon mapk in C2, the indeterminacy sets consist each of one pdiht=
[0:1:0]and/~ =[1:0: 0]. The extension of to P? maps the lingr = 0}
at infinity to [1: 0 : 0], and this point is a super-attracting fixed pointhofvith
basin of attractio/ ™ U ({r = 0} \ I™T).
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For regular polynomial automorphismsof C¥ studied in [S], the situation is
analogous to the Hénon maps from the following point of viéfr = 0}\ /1) C
I~, I~ is an attractor with basity + in CV, and the seK = K+ N K~ is compact
and is the set of points with bounded full orbit. Moreover, the extended indeter-
minacy set’f = I*. Sibony also showed thatdf = degh), d’ = degh 1), and
dim(I~) =1 —1, thendegh") =d”", dmI*) =N —-1—-1,d' = @)V, and
w = (uH)' A (u)N~!is an invariant probability measure supportedkan

Similar dynamical behavior with Hénon maps and regular automorphisms is
exhibited by the shift-like polynomial automorphisms®@f studied in [BP]. A
shift-like automorphism of type € {1, ..., N — 1} has the form

fxg, o xn) = (x2, ..o, XN, P(Xn—vg1) — axy),

where degP) = d > 2 anda # 0. ThenK ™ andK ~ are again the sets of points
with bounded forward (resp. backward) orbit,= K+ N K~ is compact inC",
andu = (uH)¥ A ()Y~ is an invariant probability measure supportedkan
We note that these similarities come from the fact that "™~ is regular:

degh) = dV=v, degh™) = d", I (h) = {xy41-y = --- = xy =t = 0O},
dm(H) =N—-v-LI " (h)={x1=--=xy_, =t =0}, anddim/ ™) =
v—1

The automorphisms we consider are not regular, but the degrees of their forward
and backward iterates are always givenbgnsy2” or 3" for n sufficiently large.

With the vanishing of some coefficients it is possible to obtain nfdge these
classes with “irregular” growth of degree (i.e., like Fibonacci’s numbers—see [B],
or with deg H?") < 2) or such that? is regular (see e.g. the clags).

For all the maps studied here, the &et of points whose orbit escapes to infin-
ity at the highest super-exponential rate is always open. HErice- C3\ U™ is
closed, as in the case of regular automorphisms, but it no longer consists only of
points with bounded forward orbit; we have only that = {G* = 0} is the set
of points whose orbit escapes to infinity at rates slower than the one correspond-
ing to U ™. Similar statements hold fd7 — and K —. The Green’s function& *
andG ™ are, in all these cases, pluriharmonic on the &etqresp.U ~). With the
usual notatiou* = dd°G*, we have thabk+ N 0K~ = supu™ A u~) can-
not be compact, hendé™ N K~ is unbounded. Moreover, one cannot construct
invariant measures using only the curremtsandy ™, as is done for regular auto-
morphisms.

The dynamics ot/ ™ of the automorphisms we consider is determined by the
behavior of their extension 2 along the hyperplang = 0} at infinity. For the
mapsH in the first three classes—given by (2.2), (3.2), and (4.1)—we have that the
second iteraté? > maps all the points at infinity (if?3, where it is well-defined)
to a single point. The iterateg” form a normal family onJ*, since they con-
verge locally uniformly to that point. Similar statements hold in these cases for
the inverse map# —* on the corresponding set& ™.

For the maps we considered from the clasdgsand Hs (see (5.1) and (6.1)),
the behavior at infinity is in general different than as just described (i.e., in Case 1
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for each of these classes). Such maps faap O} \ I to I~ = {t = z = O},
where they are given by

Ha[u:1:0:0]=[ha(u) :1:0:0], h4(u) =nu+7,

(7.2
Hs[1:u:0:0]=[1:hs(u):0:0], hs(u)=21/(u+ «).

In Theorems 5.3, 5.5, and 6.6, we showed that the dynamit ehd Hs onU
is determined by the “dynamics at infinity” af, andis, respectively. This was
done by constructing suitable holomorphic functidisand Fs on the setd/ ",
which satisfy (resp.F4 0 Hy = nF4 andFs o Hs = hs o Fs. (In the case oH,, if
Fs = F4 + uo, WhereF; is the function of Theorem 5.3 ang is the finite fixed
point of iy, we haveF, o Hy = hg o Fa.)

The maps in the classd$; and H, are essentially semidirect products over
Hénon maps if©2. Let us denote b the set of points with bounded full orbit. It
is natural to expect that' carries some dynamical information. For the méps
in the classe$l; and H,, K is compact and it is not difficult to find it explicitly,
roughly speaking as the intersectionff N K~ with an analytic hypersurface
thatis invariantundel (K = K*NK~N{z =0} for H,andKk = KTNK"NX
for H,—see Section 3). Hence we can construct invariant measuresusing ,
and this invariant hypersurface. Similar constructions of invariant measures may
work for some of the maps in the remaining classes. We also note the follow-
ing difference between some mafis and Hénon maps. If we denote By" the
Fatou set and by the Julia set (defined using normality) then, for Hénon maps,
JT = 0K* = supput. For mapsH; such that inkK+ #£ ¢, we have that/ * =
0Kt U X is larger tharbK * = suppu™.

Recall that, for Hénon mapg,* € F*. We have the following new phenom-
enon for the map#f, with || > 1 (see {.1)): The iterateg?; converge locally
uniformlyonU ™\ X to[1: 0 : 0 : 0] whereX is an analytic hypersurface iAt,
invariant undet, (with the above notation¥ = {F, = 0} = {F4 = uo}). Since
alongX the iterates; converge locally uniformly to the finite fixed poini{ :

1:0: 0] of hs, we conclude thatH}}, is not a normal family o/ *. Note also
that[1:0:0:0]el~ NI .

The dynamics of maps in clagg;, Case 1, seems to be the most complicated
among the five classes. This is because the maps are nontrivial along the hyper-
plane at infinity inP3 and, at the same time, the extended indeterminaci/sit
larger than/*. We only consider the “rationally neutral” case, corresponding to
n* = 1(see (6.5)). In this cade, N I~ consists of finitely many points, a fact that
allowed our construction of the se&t” to work out. The remaining cases—when
It NI~ is a countable set—will be the subject of forthcoming papers.

We also have the following new situation arising for ma&p# Case 1 of each
of the classeg$i, and Hs. For such mapsi*u™ = 2ut whereasH*u~ = %uf.
Moreover, the Green'’s functiorid™ andG ~ are pluriharmonic otV * (resp.U 7).
Because of these facts, the construction of invariant measures using the currents
w™ andu~ seems to be complicated.
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