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1. Introduction

LetA1 andA2 be disjoint compact subintervals of [0,1), and letL be the small-
est compact interval containingA1∪A2. Let S : A1∪A2→ L be a mapping such
that the restrictionsS |Ai are affine surjections ontoL for eachi. Then we define
the affine Cantor setKS by

KS ≡ { x ∈L : S i(x) ⊂ A1∪ A2 for all i ≥ 1}.
We call this atwo-branched affine Cantor set.If we replace the restriction that

S be locally affine with the requirement that|S ′| > 1, thanKS is called a two-
branchedhyperbolic Cantor set.(This is sometimes also called a dynamically de-
fined Cantor set, a self-similar Cantor set, or a “cookie cutter”.) Ak-branched
affine Cantor set or hyperbolic Cantor set is defined similarly for anyk ≥ 2.

A different kind of Cantor set arises as follows. Letf be an orientation-
preserving homeomorphism of the circleS1 = R/Z. Poincaré showed that, if
f has no periodic orbits, then either:

(1) every orbit is dense in the circle andf is topologically conjugate to the irra-
tional rotationRα(x) = x + α, whereα is the rotation number off ; or

(2) no orbit is dense and every orbit accumulates on a unique Cantor set0f (in
this case, the homeomorphism is called aDenjoy counterexamplebecause of
Denjoy’s theorem).

The Cantor set0f is minimal forf, meaning that it is compact, non-empty,f -
invariant, and has no compact non-emptyf -invariant subsets.

Intuitively, the Cantor sets0f are fundamentally different from the self-similar
Cantor setsKS described previously. To make precise the sense in which this is
true, we introduce the following terminology. Forr ≥ 0, denote byC(r) the class
of Cr -minimalsets; that is,

C(r)= {C ⊂ S1 : C is a minimal Cantor set for someCr diffeomorphism ofS1 }.
Since any two Cantor sets inS1 are ambiently homeomorphic, it is easy to see that
C(0) includes every Cantor set. On the other hand,C(r) is empty forr ≥ 2 owing
to Denjoy’s theorem.
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Denjoy’s Theorem [1]. If f is a C1 diffeomorphism ofS1 without periodic
points, and if the derivativeDf has bounded variation, thenf is topologically
conjugate to an irrational rotation.

Herman [3] produced Denjoy counterexamples of classC1+α for all α < 1, so
C(r) is non-empty for allr < 2. ClearlyC(r) ⊂ C(s) if s < r. The intuitive notion
mentioned before can now be stated as follows.

Theorem A [5]. C(1) contains no affine Cantor sets. Moreover, if the generating
mapS isC2-sufficiently close to affine, thenKS /∈ C(1).
See also [4] and [6] for other results aboutC(r).

In this paper we show that at least some affine Cantor sets do belong toC(r) for
all r < 1. In fact we will prove the following theorem.

Theorem 1. If S is a two-branched affine Cantor set and|A1| = |A2|, then there
is a bi-Lipschitz(i.e., Lipschitz with Lipschitz inverse) homeomorphismf of the
circle such that0f = KS.

The rotation number of thef is the golden mean.

In particular, the usual middle-thirds Cantor set (scaled down to fit inside the fun-
damental domain [0,1) of R/Z) is the minimal set for some bi-Lipschitz circle
homeomorphism, but not for anyC1 circle diffeomorphism. Note that, whenS
is defined as in Theorem 1 with|A1| = |A2|, we callKS a linear Cantor set to
distinguish this special case from the more general affine case.

The method of proof of Theorem 1 will be as follows. A hyperbolic Cantor set
K has a natural tree structure; such a tree has a natural circular ordering and the re-
sulting order topology. The rotation number of a tree homeomorphism can be de-
fined in the usual way. We construct a tree homeomorphism with rotation number
equal to the golden mean. This can be lifted in a natural way to a circle homeo-
morphismf with 0f = K. The tree homeomorphism can be constructed in such
a way that it has bounded distortion in the sense that it changes the “depth” of any
node in the tree by a bounded amount. WhenK is a linear Cantor set, bounded
distortion on the tree level lifts to a Lipschitz condition onf.

Remark. It might have been tempting to think that the reason for Theorem A
is an unbounded distortion forced by a conflict between the scaling of gaps of an
affine Cantor set and the order property of orbits for an irrational rotation. Theo-
rem 1 shows that this is not the case; instead, the difficulty rests more delicately
on the continuity of the derivative off.

2. Trees

Intuitively, a tree is simply a graph containing no closed loops; it can be specified
by giving a list of nodes, together with a description of which nodes are connected
by edges. In this paper we will be considering infinite binary trees where every
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node (except one isolated node) is the parent of two other nodes (its children), and
the only edges are those connecting parent and child.

Since our tree rotations will always take nodes to nodes, we will henceforth ig-
nore the edges of the tree and simply consider the nodes, along with the relation
of parenthood, as follows. (The whole discussion is determined by the structure
of Cantor sets on the circle.)

First, we define the complete circular binary treeT : T is a countable set of ele-
ments callednodes,with a certain labeling. There are two special nodes,r and
r ∗, called the root node and the isolated node, respectively. The remaining nodes
are in one-to-one correspondence with the set of non-empty finite words from the
alphabet{0,1}. The node corresponding toi1 . . . ik (k ≥ 1) is denotedr(i1 . . . ik).

The noder(i1 . . . ik) is called the parent of each of the two nodesr(i1 . . . ik0)
andr(i1 . . . ik1); they are its children. Noder is the parent ofr(0) andr(1). The
isolated noden has no children. Descendant and ancestor are defined in the obvi-
ous way. To visualizeT as a graph, connect every non-isolated node with each of
its children by an edge (see Figure 1).

Figure 1 The first four levels of the treeT

If u is the noder(i1 . . . ik), then we will use the notationu(j1 . . . jl) to denote
the noder(i1 . . . ikj1 . . . jl). The levelof a nodeu ∈ T is defined bỳ (u) = 0 if
u = r or r ∗; `(u) = k if u = r(i1 . . . ik) for some choice ofi1 . . . ik.

There is also a natural (left-to-right) linear order structure that we can place on
T . The simplest way to specify this is to define an injectionµ : T → (0,1]. We
letµ(r) = 1/2, µ(r ∗) = 1, and

µ(r(i1, . . . , ik)) = 2−k−1+
k∑
j=1

ij2
−j .
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The range ofµ is the set of dyadic rationals in(0,1]. We pull back the natural
circular ordering on(0,1] to T via µ and denote it by≺ . That is, ifu, v,w ∈ T
thenu ≺ v ≺ w iff µ(u) < µ(v) < µ(w)mod1. This ordering induces the usual
order topology onT, for which the open intervals form a basis. In this topology,
T is homeomorphic to a countable dense subset of the circle.

There are now effectively two orderings onT : the “left–right” circular order-
ing and the “vertical” partial order induced by the relation of parenthood. We will
write u l v if v is a descendant ofu.

By asubtreewe mean a subset ofT with the induced orderings. A subtreeS of
T is called anideal (with respect tol) if S containsr andr ∗ and if, moreover,S
containsu whenever (a)S containsv and (b)u l v.

Let g be an order-preserving bijection ofT (relative to the circular order≺).
Theng is a homeomorphism, and the push-forwardµ(g) defined byµ(g)(x) =
µ(g(µ−1(x))) is a homeomorphism of the dyadic rationals in the circle. There-
foreµ(g) extends to an orientation-preserving homeomorphism of the circle, and
as such it has a rotation number. This will be our definition of the rotation number
of g onT . For this reason, we call any suchg a tree rotation.

There is a natural one-to-one correspondenceτ betweenT and the collection
I of connected components (intervals) ofS1 \KS. To describe this, we rotateKS
so that its left endpoint is at 0. LetA1 = [0, a] andA2 = [b, c], where 0< a <

b < c < 1. Let φ0 : L→ A1 andφ1 : L→ A2 be the two branches of the inverse
of S. Thenτ : T → I is defined by

τ(r ∗) = (c,1),
τ (r) = (a, b),

τ (r(i1 . . . ik)) = φi1 B · · · B φik [(a, b)].
It is easy to check thatτ is order-preserving.

Next, we say that the nodeu immediately precedesthe nodev in a finite ideal
S of T if there is no nodew of S such thatu ≺ w ≺ v.

We need these lemmas for later use.

Lemma 1. If u immediately precedesv in a finite idealS of T, then`(u) = `(v)
implies that`(u) = `(v) = 0 and hence thatu = r andv = r ∗.

Proof. For contradiction, assumek := `(u) = `(v) 6= 0. Then, for some choice
of indices,u = r(i1 . . . ik) andv = r(j1 . . . jk). Let

m = min{ n : in 6= jn } ≥ 1,

and let

w =
{
r(i1 . . . im−1) if m > 1,

r if m = 1.

Thenu = w(im . . . ik) andv = w(jm . . . jk). SinceS is an ideal andu ∈ S, this
meansw ∈ S. Also,w lies betweenu andv. This contradicts the choice ofu and
v in S.
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Lemma 2. SupposeS is a finite ideal ofT, and supposeu immediately precedes
v in S. Then there is a unique nodew := S(u, v) of T \ S such that

(i) S ∪ {w} is an ideal inT,
(ii) w is betweenu and v (i.e., u immediately precedesw andw immediately

precedesv in S ∪ {w}), and
(iii) `(w) = max{`(u), `(v)} +1.

Furthermore, any other node ofT betweenu andv has level greater thaǹ(w).

Proof. If u = r andv = r ∗, letw = u(1). Otherwise, by Lemma 1,̀(u) 6= `(v).
Let w = u(1) if `(u) > `(v); otherwise, letw = v(0). Clearly,w satisfies (i),
(ii), and (iii). We leave uniqueness and the remaining claim as an exercise.

Lemma 3. Supposeu, v, u′, v′ are nodes ofT satisfying`(u) < `(v), `(u′) >
`(v′), andmax{|`(u)− `(u′)|, |`(v)− `(v′)|} ≤ 2. If x, y are nodes with̀ (x) =
`(v)+1and`(y) = `(u′)+1, then|`(x)− `(y)| ≤ 1.

Proof. For contradiction, supposè(x) ≥ `(y)+ 2. Then

`(x) ≥ `(u′)+ 3≥ `(v′)+ 4

and sò (v) ≥ `(v′)+ 3, a contradiction (similarly if̀ (y) ≥ `(x)+ 2).

Lemma 4. Letu, v, u′, v′ be distinct nodes of a finite idealS of T such thatu is
adjacent tov, u′ is adjacent tov′, and

max{|`(u)− `(u′)|, |`(v)− `(v′)|} ≤ 2.

Then
|`(S(u, v))− `(S(u′, v′))| ≤ 2.

Proof. By Lemma 1,`(u) 6= `(v) and`(u′) 6= `(v′). There are four possible
cases.

Case 1.`(v) > `(u) and `(v′) > `(u′). Then by Lemma 2,̀ (S(u, v)) =
`(v)+1, `(S(u′, v′)) = `(v′)+1, and

|`(S(u, v))− `(S(u′, v′))| = |`(v)− `(v′)| ≤ 2.

Case 2.The treatment of̀(v) < `(u) and`(v′) < `(u′) is similar.

The remaining two cases are covered by Lemma 3.

3. Proof of Theorem 1

Let α denote the golden mean(
√

5− 1)/2 = 0.61803. . . . Define the irrational
rotationRα : S1→ S1 byRα(x) = x + αmod1, and defineR : Z → S1 by

R(n) = Rn
α(0) = nα mod1.

The following theorem will be proved in Section 4.
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Theorem 2. There is a bijectionh : Z → T with the same circular ordering as
the bi-infinite sequence{R(n) : n∈Z } and with the property that, for alln,

|`(h(n))− `(h(n+1))| ≤ 2.

Corollary. There is an order-preserving homeomorphismg : T → T with
rotation numberα such thatT = { gn(r) : n∈Z } and

|`(g(u))− `(u)| ≤ 2

for all u∈ T .
Proof. Defineg : T → T by g = hσh−1, whereh is the function given in The-
orem 2 andσ : Z → Z is the shiftσ(n) = n + 1. Theng is an order-preserving
bijection ofT ; since its orbit has the same ordering as theR-orbit of 0, it must
have rotation numberα. The rest of the corollary follows immediately.

Our desired functionf will be the extension toS1 of the natural lift ofg to the
intervals comprising the complement ofKS in S1. To make this precise, we use
the functionτ defined in the previous section. Recall thatI is the collection of
connected components ofS1 \ KS. For eachI ∈ I, definef |I to be the unique
orientation-preserving affine map takingI ontoτ B g B τ−1(I ). In this way,f is
defined on all ofS1 \ KS. Sinceg is order-preserving onT, it follows thatf is
also order-preserving. Since

⋃ I is dense inS1, f extends to a unique continu-
ous function, also calledf, onS1. By its contruction,f permutes the intervals of
I and is a homeomorphism of the circle; also,f(KS) = KS.

Let β denote the (constant) derivative ofS. Then the length of any interval at
level k is simply (b − a)/βk. Sinceg changes the level of any node by at most
two, this means thatf can expand or contract anyI ∈ I by at most a factorβ2.

That is, onS1 \KS,
1/β2 ≤ f ′ ≤ β2.

SinceKS has measure zero andf(KS) = KS, we have thatf is absolutely con-
tinuous onS1. The bound onf ′ therefore yields a global Lipschitz constant ofβ2

for f andf −1.

Becausef is a homeomorphism with an invariant Cantor set and irrational ro-
tation number, it must be a Denjoy counterexample and hence0f ⊂ KS. If x is
any endpoint ofKS then, sinceh is surjective,{ f n(x) : n∈Z } is dense inKS and
so0f = KS. This completes the proof of Theorem 1.

4. Proof of Theorem 2

The proof is by induction. Recall the sequence of denominators of best approx-
imations to the golden mean (the Fibonnaci sequence):q0 = 1, q1 = 1, qn =
qn−1+ qn−2. (See e.g. Hardy and Wright [2] as a general reference for Diophan-
tine approximation.)

First we need a purely number-theoretic lemma.
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Lemma 5. Let n ≥ 4 be a positive integer, and suppose thatk, k ′ are integers
satisfying

qn−2 ≤ k < qn−1 ≤ k ′ < qn.

Let

Q = { i ∈Z : −k ≤ i ≤ qn − k −1} and

Q′ = { i ∈Z : −k ′ ≤ i ≤ qn+1− k ′ −1}.
ThenQ ⊂ Q′. Moreover,R(Q) partitionsS1 into qn open intervals, and each
such interval contains at most one point ofR(Q′).

Equivalently, the two nearest neighbors inR(Q′) of any point ofR(Q′ \Q) lie
in R(Q). In particular, if n is odd then: (a) for eachi = −k ′, . . . ,−k −1,

R(qn + i) ≺ R(i) ≺ R(qn−1+ i);
and (b) for eachi = qn − k, . . . , qn+1− k ′ −1,

R(i − qn−1) ≺ R(i) ≺ R(i − qn).
In each case, the three points are nearest neighbors inR(Q′).

If n is even then the reverse inequalities hold.

Proof. A standard fact in the theory of Diophantine approximation is the follow-
ing: Forn odd andx ∈ S1,

x + R(qn) ≺ x ≺ x + R(qn−1)

and the interval

{ y ∈ S1 : x + R(qn) ≺ y ≺ x + R(qn−1) }
contains no other points of the set

{ x + R(i) : i = 1, . . . , qn+1−1}.
Forn even the same is true but the inequalities are reversed.

Now fix i ∈ {−k ′, . . . ,−k − 1}. From the definitions ofk andk ′, it is straight-
forward to check thati + qn ∈ Q but i + qn+1 /∈ Q′. This means that the near-
est neighbors inR(Q′) toR(i) areR(i + qn) andR(i + qn−1), both belonging to
R(Q). Also,

R(i + qn) ≺ R(i) ≺ R(i + qn−1).

A similar argument works fori ∈ {qn − k, . . . , qn+1− k ′ −1}, using the fact that
i − qn ∈Q andi − qn+1 /∈Q′.
In order to prove Theorem 2, we will actually prove the following: For every
n ≥ 4, there is (a) a positive integerkn such that

qn−2 ≤ kn ≤ qn−1−1

and (b) a functionhn : Qn→ T such that

(i n) the values ofhn have the same circular ordering as{R(i) : i ∈Qn },
(ii n) |`(hn(i))− `(hn(i +1))| ≤ 2 for i = −kn, . . . , qn − kn − 2,
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(iii n) |`(hn(−kn))− `(hn(qn − kn −1))| ≤ 1,
(ivn) hn(Qn) is an ideal inT, and
(vn) hn|Qn−1 = hn−1 (n > 4),

whereQn := {−kn,−kn +1, . . . ,0, . . . , qn − kn −1}.
It will follow from the proof that eachhn is injective and the union of the sets

hn(Qn) is the whole treeT . Then (v) will imply that thehn define a well-defined
functionh onZ, and conditions (i) and (ii) will yield the conclusions of the theo-
rem. (Because of (vn), we will henceforth writeh instead ofhn for convenience.)

To start, setk4 = 2, h(0) = r ∗, h(1) = r, h(2) = r(0), h(−1) = r(01), and
h(−2) = r(1). This definesh on the setQ4 = {−2,−1,0,1,2}, and the circular
ordering of these points inT is

h(2) ≺ h(−1) ≺ h(1) ≺ h(−2) ≺ h(0),
which coincides with the circular ordering of{Ri(0) : i = −2, . . . ,2, }. Condi-
tions(i)–(iv) areeasily verified (see Figure 2).

Figure 2 The first five values ofh

Now assume by induction that (in)–(vn) hold. We wish to definekn+1 so that

qn−1 ≤ kn+1 ≤ qn −1,

and extendh toQn+1 = {−kn+1,−kn+1+ 1, . . . ,0, . . . , qn+1− kn+1− 1} so that
(i n+1)–(vn+1) hold.

Definekn+1 to be largest integerk in {qn−1, . . . , qn−1} such that̀ (h(qn−k)) >
`(h(qn−1−k)). (For convenience of notation in the rest of this proof, we will write
k for kn+1.) To extendh to the new domainQn+1, by induction we need only define
new values forh onQn+1\Qn = {−k, . . . ,−kn−1}∪{qn−kn, . . . , qn+1−k−1}.

Notice thath(Qn) divides the treeT into qn intervals. Similarly, the setR(Qn)

divides the circle intoqn intervals. Each such interval contains at most one point
of the setR(Qn+1\Qn), by Lemma 5.
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For j ∈ Qn+1 \ Qn, if R(j) falls into the interval with endpointsR(j ′) and
R(j ′′) (j ′, j ′′ ∈ Qn), we then defineh(j) to be the unique node (Lemma 2) of
T \ h(Qn) betweenh(j ′) andh(j ′′) of least possible level. (This is known as the
“standard tree insertion”.)

This will guarantee properties (i), (iv), and (v) forn + 1; we need only verify
(ii) and (iii). To do this, we need to be more explicit about where the new values
of h lie with respect to the nodes ofh(Qn). Assume thatn is odd (otherwise, the
argument is similar with inequalities reversed).

By Lemma 5, fori = qn − kn, . . . , qn+1− k −1, we have

h(i − qn−1) ≺ h(i) ≺ h(i − qn) (1)

and, fori = −k, . . . ,−kn −1,

h(qn + i) ≺ h(i) ≺ h(qn−1+ i). (2)

By Lemma 4, it follows from (iin) that for

i = qn − kn, . . . , qn − k − 2 and − k, . . . ,−kn − 2

we have
|`(h(i))− `(h(i +1))| ≤ 2.

To complete the verification of (iin+1), it remains to show that

|`(h(−kn −1))− `(h(−kn))| ≤ 2 (3)

and
|`(h(qn − kn −1))− `(h(qn − kn))| ≤ 2. (4)

We will prove (3), leaving the similar proof of (4) to the reader. The nearest
neighbors ofh(−kn−1) inh(Qn)areu := h(qn−kn−1)andv := h(qn−1−kn−1),
by Lemma 5. When the valueu was assigned at the previous stage, its nearest
neighbors inh(Qn−1)werev andh(qn−2−kn−1), again by Lemma 5. Therefore,
by Lemma 2,̀ (u) > `(v). This means (again by Lemma 2) that

`(h(−kn −1)) = `(u)+1.

But by (iii n), we have
|`(u)− `(h(−kn))| ≤ 1.

These last two statements imply (3).
Finally, we verify (iiin+1). From the order properties (1) and (2), we have

h(0) ≺ h(qn − qn−2) ≺ h(−qn−2)

h(1) ≺ h(qn − qn−2 +1) ≺ h(−qn−2 +1)

...

h(qn − k −1) ≺ h(qn+1− k −1) ≺ h(−qn−2 + qn − k −1)

h(qn − k) ≺ h(−k) ≺ h(qn−1− k)
...

h(qn − qn−1) ≺ h(−qn−1) ≺ h(0).
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It follows from our definition ofk that `(h(qn − k)) > `(h(qn−1 − k)) and
`(h(qn − k − 1)) < `(h(−qn−2 + qn − k − 1)). Lemmas 2 and 3 therefore
give us property (iiin+1). This completes the proof of Theorem 2.

5. Final Remarks

In the end, the use of trees here is mainly as a convenient device for keeping
track of scales in a Cantor set. These results are clearly the tip of a large iceberg.
For example, we suspect that similar constructions would work for other rotation
numbers—we have only done the simplest case. The problem of handling affine
but nonlinear Cantor sets is untouched. One could also imagine using trees other
than the complete binary tree to model certain Cantor sets, and some trees could be
much better adapted to irrational rotation than the standard binary tree. To retreat
to the motivating question of this work, we note that a good geometric intrinsic
characterization of Denjoy minimal sets is still unavailable.
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