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1. Introduction

Let A; and A, be disjoint compact subintervals of,[0), and letL be the small-

est compact interval containing U A,. LetS: A;U A, — L be a mapping such
that the restrictions'| 4, are affine surjections ontb for eachi. Then we define

the affine Cantor sek’s by

Ks={xeL:S(x)C AUA,foralli >1}.

We call this atwo-branched affine Cantor sdf.we replace the restriction that
S be locally affine with the requirement thgt’| > 1, than K is called a two-
branchedyperbolic Cantor set(This is sometimes also called a dynamically de-
fined Cantor set, a self-similar Cantor set, or a “cookie cutter”}-Branched
affine Cantor set or hyperbolic Cantor set is defined similarly forkary2.

A different kind of Cantor set arises as follows. Lgtbe an orientation-
preserving homeomorphism of the cir® = R/Z. Poincaré showed that, if
f has no periodic orbits, then either:

(1) every orbit is dense in the circle arfdis topologically conjugate to the irra-
tional rotationR, (x) = x + «, wherew is the rotation number of ; or

(2) no orbit is dense and every orbit accumulates on a unique Cantby et
this case, the homeomorphism is calleBenjoy counterexampleecause of
Denjoy’s theorem).

The Cantor sefy is minimal for f, meaning that it is compact, non-empff
invariant, and has no compact non-emptynvariant subsets.

Intuitively, the Cantor sets; are fundamentally different from the self-similar
Cantor set g described previously. To make precise the sense in which this is
true, we introduce the following terminology. Fore= 0, denote byC(r) the class
of C"-minimalsets; that is,

C(r) ={C c S*: Cis a minimal Cantor set for som@’ diffeomorphism ofSt}.

Since any two Cantor sets 81 are ambiently homeomorphic, it is easy to see that
C(0) includes every Cantor set. On the other hai@) is empty forr > 2 owing
to Denjoy’s theorem.
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DenjoY’s THEOREM [1]. If f is a C* diffeomorphism ofS' without periodic
points, and if the derivativédf has bounded variation, thefi is topologically
conjugate to an irrational rotation.

Herman [3] produced Denjoy counterexamples of cla$s® for all « < 1, so
C(r)isnon-empty for all < 2. ClearlyC(r) C C(s) if s < r. The intuitive notion
mentioned before can now be stated as follows.

THEOREM A [5].  C() contains no affine Cantor sets. Moreover, if the generating
maps is C2-sufficiently close to affine, theiis ¢ C(1).

See also [4] and [6] for other results abgi(t).
In this paper we show that at least some affine Cantor sets do belGg tor
all r < 1 In fact we will prove the following theorem.

Tueorem 1. If Sis atwo-branched affine Cantor set apth| = |A3|, then there
is a bi-Lipschitz(i.e., Lipschitz with Lipschitz invers@omeomorphisny of the
circle such thatl’y = K.

The rotation number of th¢ is the golden mean.

In particular, the usual middle-thirds Cantor set (scaled down to fit inside the fun-
damental domain [@) of R/Z) is the minimal set for some bi-Lipschitz circle
homeomorphism, but not for ar@* circle diffeomorphism. Note that, whe$

is defined as in Theorem 1 wif,| = |A5|, we call K5 alinear Cantor set to
distinguish this special case from the more general affine case.

The method of proof of Theorem 1 will be as follows. A hyperbolic Cantor set
K has a natural tree structure; such a tree has a natural circular ordering and the re-
sulting order topology. The rotation number of a tree homeomorphism can be de-
fined in the usual way. We construct a tree homeomorphism with rotation number
equal to the golden mean. This can be lifted in a natural way to a circle homeo-
morphismf with Ty = K. The tree homeomorphism can be constructed in such
a way that it has bounded distortion in the sense that it changes the “depth” of any
node in the tree by a bounded amount. WI&is a linear Cantor set, bounded
distortion on the tree level lifts to a Lipschitz condition ¢n

REMARK. It might have been tempting to think that the reason for Theorem A
is an unbounded distortion forced by a conflict between the scaling of gaps of an
affine Cantor set and the order property of orbits for an irrational rotation. Theo-
rem 1 shows that this is not the case; instead, the difficulty rests more delicately
on the continuity of the derivative of.

2. Trees

Intuitively, a tree is simply a graph containing no closed loops; it can be specified
by giving a list of nodes, together with a description of which nodes are connected
by edges. In this paper we will be considering infinite binary trees where every
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node (except one isolated node) is the parent of two other nodes (its children), and
the only edges are those connecting parent and child.

Since our tree rotations will always take nodes to nodes, we will henceforth ig-
nore the edges of the tree and simply consider the nodes, along with the relation
of parenthood, as follows. (The whole discussion is determined by the structure
of Cantor sets on the circle.)

First, we define the complete circular binary t#eT is a countable set of ele-
ments callechodes,with a certain labeling. There are two special nodeand
r*, called the root node and the isolated node, respectively. The remaining nodes
are in one-to-one correspondence with the set of non-empty finite words from the
alphabef0, 1}. The node corresponding tp. . . iy (k > 1) is denoted-(iz. . . ir).

The noder(iz. . . i) is called the parent of each of the two nodés . . . i;0)
andr(iy. . . i;1); they are its children. Nodeis the parent of (0) andr(1). The
isolated node: has no children. Descendant and ancestor are defined in the obvi-
ous way. To visualiz& as a graph, connect every non-isolated node with each of
its children by an edge (see Figure 1).

To00 Too1 To10 Ton 00 To1 110 m

Figure1 The first four levels of the tre®

If u is the node (iz. . . ir), then we will use the notatiom(j; . . . j;) to denote
the noder(iy. .. ixj1. .. ji). Thelevelof a nodeu € T is defined by¢(u) = O if
u=rorr*; L(u)=kifu=r(,...i) for some choice of; . . . i.

There is also a natural (left-to-right) linear order structure that we can place on
T. The simplest way to specify this is to define an injectionT — (0,1]. We
letu(r) =1/2, u(r*) =1, and

k

pr(in, i) =274 Y0270
j=1
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The range of is the set of dyadic rationals if®, 1]. We pull back the natural
circular ordering on(0, 1] to 7 via u and denote it by . Thatis, ifu, v, w e T
thenu < v < wiff w(u) < w(v) < u(w)modl This ordering induces the usual
order topology orf, for which the open intervals form a basis. In this topology,
T is homeomorphic to a countable dense subset of the circle.

There are now effectively two orderings @h the “left—right” circular order-
ing and the “vertical” partial order induced by the relation of parenthood. We will
write u < v if v is a descendant of.

By asubtreewe mean a subset @f with the induced orderings. A subtréeof
T is called arideal (with respect to<) if S containg- andr* and if, moreover$
containsu whenever (af containsv and (b)u < v.

Let ¢ be an order-preserving bijection &f (relative to the circular ordek).
Theng is a homeomorphism, and the push-forwang;) defined byu(g)(x) =
w(g(nt(x))) is a homeomorphism of the dyadic rationals in the circle. There-
fore u(g) extends to an orientation-preserving homeomorphism of the circle, and
as such it has a rotation number. This will be our definition of the rotation number
of g onT. For this reason, we call any sugltatree rotation.

There is a natural one-to-one correspondenbetween? and the collection
T of connected components (intervals)f\ Ks. To describe this, we rotat&;
so that its left endpoint is at et A; = [0, a] and A, = [b, ¢], where O< a <
b<c<1Letgg: L - Ay andg,: L — A, be the two branches of the inverse
of S. Thent: T — 7 is defined by

T(r*) = (¢, D),
7(r) = (a, b),
t(r(iy... i) = ¢io---od;[(a, b)].
It is easy to check that is order-preserving.
Next, we say that the nodeimmediately precedebe nodev in a finite ideal

S of T if there is no nodew of S such thatt < w < v.
We need these lemmas for later use.

LemMma 1. If u immediately precedasin a finite idealS of T, thent(u) = £(v)
implies that¢(u) = £(v) = 0 and hence that = r andv = r*.

Proof. For contradiction, assunie:= £(u) = £(v) # 0. Then, for some choice
ofindices,u = r(iy...ix) andv = r(j1... ji). Let

m=min{n:i,# j,}>1

and let
I’(il. .. im—l) if m> l,
w = .
r if m=1
Thenu = w(@, . ..i) andv = w(j, ... ji). SinceS is an ideal and: € S, this

meansw € S. Also, w lies between: andv. This contradicts the choice afand
vin S. O
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LemMma 2. Supposs is a finite ideal of 7, and suppose immediately precedes
vin S. Then there is a unique node:= S(u, v) of T \ S such that

(i) SU{w}isanidealinT,
(i) w is betweeru andv (i.e., u immediately precedes and w immediately
precedew in S U {w}), and
(i) £(w) = max(tu), £(v)} + 1
Furthermore, any other node df between: andv has level greater thah(w).

Proof. If u = r andv = r*, letw = u(1). Otherwise, by Lemma Z,(1) # £(v).
Letw = u(@) if £(u) > £(v); otherwise, lew = v(0). Clearly, w satisfies (i),
(i), and (iii). We leave uniqueness and the remaining claim as an exercise.

LEMMA 3. Supposer, v, u’, v' are nodes ofT" satisfyingl(u) < £(v), £(u’) >
L"), andmax{|€(u) — L')|, |€(v) — £(v)|} < 2. If x, y are nodes with(x) =
L(v) +1andl(y) = £u') + 1, then|e(x) — £(y)| <L

Proof. For contradiction, suppogkx) > ¢(y) + 2. Then
L(x) > L) +3>LW)+4
and sot(v) > £(v') + 3, a contradiction (similarly i£(y) > £(x) + 2). O

LeEmMA 4. Letu, v, u’, v’ be distinct nodes of a finite ide8lof T such thatu is
adjacent tov, 1’ is adjacent tow’, and

max{|¢@) — L)), L) — LI} < 2.

Then
1€(S(u, v)) — (S, v')| < 2.

Proof. By Lemma 1,£(u) # £(v) and£(u’) # £(v'). There are four possible
cases.

Case 1.£(v) > £(u) and¢(v') > £®'). Then by Lemma 2£(S(u, v)) =
L) +1 eSW,v)=£0)+1 and

1€(S(u, v)) — (S, V)| = [€(v) —L)] < 2.
Case 2.The treatment of (v) < £(u) and£(v') < £(u’) is similar.

The remaining two cases are covered by Lemma 3. O

3. Proof of Theorem 1

Let « denote the golden mear/5 — 1)/2 = 0.61803 . .. Define the irrational
rotationR,: S* — S* by R,(x) = x + a mod1 and defineR: Z — S* by

R(n) = R,(0) = na modl

The following theorem will be proved in Section 4.
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THEOREM 2. There is a bijectiorh: Z — T with the same circular ordering as
the bi-infinite sequenceR(n) : n € Z } and with the property that, for alt,

[€(h(n)) —£(h(n +1)| < 2.

CoroLLARY. There is an order-preserving homeomorphigm? — T with
rotation numberx such thatl = { ¢g"(r) :neZ} and

[(gu)) — L) <2
forallueT.

Proof. Defineg: T — T by g = hoh™%, where# is the function given in The-
orem 2 anar: Z — Z is the shifto(n) = n + 1 Theng is an order-preserving
bijection of T'; since its orbit has the same ordering as gerbit of 0, it must
have rotation number. The rest of the corollary follows immediately. O

Our desired functiory will be the extension t&* of the natural lift ofg to the
intervals comprising the complement &f; in S*. To make this precise, we use
the functiont defined in the previous section. Recall thais the collection of
connected components 8t \ K. For eachl € Z, define f|; to be the unique
orientation-preserving affine map takidigontor o g o =X(7). In this way, f is
defined on all ofS* \ K. Sinceg is order-preserving off, it follows that f is
also order-preserving. SintgZ is dense inS%, f extends to a unique continu-
ous function, also called, on S*. By its contruction,f permutes the intervals of
7 and is a homeomorphism of the circle; alggKs) = K.

Let 8 denote the (constant) derivative §f Then the length of any interval at
level k is simply (b — a)/B*. Sinceg changes the level of any node by at most
two, this means thaf can expand or contract adye Z by at most a factop?.
Thatis, onS? \ Ky,

Y < [ < B

SinceK has measure zero andKs) = K, we have thatf is absolutely con-
tinuous onS™. The bound ory’ therefore yields a global Lipschitz constantgsf
for f and f L

Becausef is a homeomorphism with an invariant Cantor set and irrational ro-
tation number, it must be a Denjoy counterexample and hEnee K. If x is
any endpoint oK s then, sincé: is surjective{ f"(x) : n € Z } is dense iKg and
soI’y = K. This completes the proof of Theorem 1. O

4. Proof of Theorem 2

The proof is by induction. Recall the sequence of denominators of best approx-
imations to the golden mean (the Fibonnaci sequengg}= 1, g1 = 1, ¢, =
gn-1+ q.—2. (See e.g. Hardy and Wright [2] as a general reference for Diophan-
tine approximation.)

First we need a purely number-theoretic lemma.
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LemMma 5. Letn > 4 be a positive integer, and suppose thak’ are integers
satisfying
qn-2 =< k < {gn-1 =< k/ < {n-
Let
O={ieZ:—k<i<qg,—k-—1} and
Q' ={ieZ:—k'<i<qu1—k —1}.
ThenQ c Q’. Moreover,R(Q) partitions S* into ¢, open intervals, and each
such interval contains at most one pointRfQ’).
Equivalently, the two nearest neighborsigQ’) of any point of R(Q' \ Q) lie
in R(Q). In particular, if n is odd then (a) for eachi = —k’, ..., —k — 1,
R(gn +1i) < R(i) < R(gn-1+1);
and(b) foreachi = ¢, — k,...,qu1— k" —1,
R(i — gn-1) < R() < R(i — gn).
In each case, the three points are nearest neighbo(i’).
If n is even then the reverse inequalities hold.

Proof. A standard fact in the theory of Diophantine approximation is the follow-
ing: Forn odd andx € S%,

X+ R(gn) < x < x + R(gn-1)
and the interval

{yeSt:ix+R(@) <y <x+R(gn1)}
contains no other points of the set
{(x+RG@:i=1...,q,01—1}.

Forn even the same is true but the inequalities are reversed.

Now fixi e {—k’, ..., —k — 1}. From the definitions of andk’, it is straight-
forward to check that + ¢, € Q buti + ¢,+1 ¢ Q. This means that the near-
est neighbors iR(Q’) to R(i) areR(i + ¢q,) andR(i + ¢,_1), both belonging to
R(0Q). Also,

R 4+ ¢gn) < R(i) < R( + gu-1).
A similar argument works foir € {q, — k, . . ., g,41 — k' — 1}, using the fact that
i_qneQandi_Qn+1¢ Q/- U

In order to prove Theorem 2, we will actually prove the following: For every
n > 4, there is (a) a positive integéy, such that

qn-2 < kn < qn-1— 1
and (b) a functiork,,: 0, — T such that

(i,) the values ofi,, have the same circular ordering@R(i) : i € 0, },
(ii,) [€Ch, (D)) —L(h, (i + )| <2fori = —ky, ..., qn —k, — 2,
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(iii n) [€Chy(—ky)) — £(hn(gn —kn — D) <1,
(iv,) h,(Q,)isanideal inT, and
(Vn) hle,,_l =hp_1(n > 4),
whereQ,, :={—k,,—k,+1...,0,...,9, —k, — 1}.

It will follow from the proof that eacht,, is injective and the union of the sets
h,(Q,) is the whole tred’. Then (v) will imply that the,, define a well-defined
functionk onZ, and conditions (i) and (ii) will yield the conclusions of the theo-
rem. (Because of (§, we will henceforth writg: instead ofz,, for convenience.)

To start, seky = 2, h(0) = r*, h() = r, h(2) = r(0), h(-1) = r(01), and
h(—2) = r(1). This defines: on the setD4 = {—2, —1, 0,1, 2}, and the circular
ordering of these points ifi is

h(2) < h(=1) < h(d) < h(=2) < h(0),

which coincides with the circular ordering R’ (0) : i = —2,...,2,}. Condi-
tions(i)—(iv) areeasily verified (see Figure 2).

h(1) h(0)

Figure 2 The first five values of

Now assume by induction that,ji~(v,) hold. We wish to definé, ., so that

qn-1= knJrl =<gn— 17

and extend to Q11 = {—kuy1, —kni1+1...,0,...,¢ns1 — kyr1 — 1} SO that
(i 2+2)—(Va+1) hold.

Definek, 1 to be largestintegérin {g,,_1, . . ., g, —1} such that(h(g, —k)) >
£(h(g,—1—k)). (For convenience of notation in the rest of this proof, we will write
k for k,+1.) To extend: to the new domaim®,, . 1, by induction we need only define
newvaluesfohonQ, 1\ Q, = {—k, ..., —k,— 1L U{g.—k,, ..., qur1—k—1}.

Notice thath(Q,) divides the tred into ¢, intervals. Similarly, the seR(Q,,)
divides the circle intg, intervals. Each such interval contains at most one point
of the setR(Q, 11\ O.), by Lemma 5.
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Forj € Q,+1\ Qn, if R(j) falls into the interval with endpoint®(;’) and
R(j") (j', j" € On), we then defind:(j) to be the unique node (Lemma 2) of
T\ h(Q,) betweem (") andh(j") of least possible level. (This is known as the
“standard tree insertion”.)

This will guarantee properties (i), (iv), and (v) fer+ L, we need only verify
(i) and (iii). To do this, we need to be more explicit about where the new values
of h lie with respect to the nodes 6{Q,). Assume that is odd (otherwise, the
argument is similar with inequalities reversed).

By Lemma5, foti =g, —k,,...,q,+1—k — 1, we have
h(i = gn-1) < h(i) < h( —gn) @
and, fori = —k, ..., —k, —1
h(gn +1i) < h(i) < h(gn-1+1). (2)
By Lemma 4, it follows from (i},) that for
i=qy—kn,...,qn—k—2 and —k,...,—k,—2
we have

[€(h(i)) — €(h( +D)| < 2.
To complete the verification of (ji.;), it remains to show that
[€(h(—=ky, — 1)) — €(h(—kn))| = 2 3)

and
[€(h(gn — kn — 1)) — £(h(gn — k)| < 2. 4)

We will prove (3), leaving the similar proof of (4) to the reader. The nearest
neighborsofi(—k,—1)inh(Q,) areu := h(q,—k,—1 andv ;= h(g,_1—k,—1),
by Lemma 5. When the value was assigned at the previous stage, its nearest
neighborsim(Q,,_1) werev andh(g,_» —k, —1), again by Lemma 5. Therefore,
by Lemma 2¢(u) > £(v). This means (again by Lemma 2) that
h(—ky — 1) =Ll(u) +1
But by (iii,,), we have
|€() — L(h(—ku)| =1
These last two statements imply (3).
Finally, we verify (iii,1). From the order properties (1) and (2), we have
]’l(O) < h(Qn - qn—Z) < h(—%—z)
h(1) < h(gn — qn-2+1D < h(—gn-2+1

h(gn —k — D < h(qnyr—k — D < h(—=qn—2+¢qn — k — N
h(gn — k) < h(—k) < h(qm-1—k)

h(qn - qn—l) < h(_Qn—l) < h(O)
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It follows from our definition ofk that ¢(h(q, — k)) > €(h(g,-1 — k)) and
L(h(g, — k — 1) < L(h(—qn—2 + g. — k — 1)). Lemmas 2 and 3 therefore
give us property (iij+1). This completes the proof of Theorem 2. O

5. Final Remarks

In the end, the use of trees here is mainly as a convenient device for keeping
track of scales in a Cantor set. These results are clearly the tip of a large iceberg.
For example, we suspect that similar constructions would work for other rotation
numbers—we have only done the simplest case. The problem of handling affine
but nonlinear Cantor sets is untouched. One could also imagine using trees other
than the complete binary tree to model certain Cantor sets, and some trees could be
much better adapted to irrational rotation than the standard binary tree. To retreat
to the motivating question of this work, we note that a good geometric intrinsic
characterization of Denjoy minimal sets is still unavailable.
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