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1. Introduction

1.1. The Classical Green Function

We define the fundamental solution for the LaplaciaRihas
log| x| if N=2,

Pl = { —Ix]7N if N =3
Let © be a bounded domain RY with Lipschitz boundary, and fix € Q. Then
Q is regular for the Dirichlet problem

Au(x) =0in Q,
{ u(x) = —p(x —y) on o<

thatis, there is a functioln, (x), continuous o2, that solves this problem. Define

G(x,y) = p(x —y) + hy(x).
This is theclassical Green functiofor the Laplacian, with pole at. It is negative
and subharmonic i€, harmonic inQ \ {y}, and tends to zero o#<2. Neary, it
behaves likep(x — y). Furthermore, it is symmetric, that i€,(y, x) = G(x, y).
Let U(L2, y) be the class of subharmonic functiomsn Q such thatu(¢) <
p(¢ —y)+ O(1) whent — y. Then, using the classical Perron method, one can
easily see that

G(x,y) =sup{u(x); ueU(2,y), u <0}.

REMARK. In most texts, the Green function is defined to bertegativeof our
Green function.

1.2. The Pluricomplex Green Function

Let Q2 be a bounded domain @". Let V(£2, y) be the class of plurisubharmonic
functionsu in  such that«(¢) < log|¢ — y| + O(1) when; — y. We define the
pluricomplex Green functiofor  with pole iny € Q:

g(x,y) =sup{v(x); ve V(RQ,y), v <0}
The definition is due to Klimek [K2].
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The functionx — g(x, y) is continuous ir2 \ {y} if Q is hyperconvexwhich
means that there exists a continuous, negative plurisubharmonic fupcsioch
that{z € Q; p(z) < c} is relatively compact irf2 for all ¢ < 0. For example,

a strictly convex set—or, more generally, a strictly pseudoconvex set (With
boundary)—is always hyperconvex.

The functionx — g(x, y) is a negative plurisubharmonic function that is max-
imal (see [K1]) in€2 \ {y}. It tends to zero on the boundary if and only(ifis
hyperconvex. Neay, it behaves like logx — y|.

Itis nottrue in general that(x, y) = g(y, x) [BD]. However, the pluricomplex
Green function is symmetric i is strictly convex [L].

1.3. The Quotient

In this paper, we study the quotigintx, y) = g(x, y)/G(x, y) of the two Green
functions. We letN = 2n, and will always assume that> 2 (n = 1 is trivial).
The functioni can be extended to a nonnegative continuous functida €,
sinceh(x,y) — 0whenx, y — ¢ € Q. The question is: When i& bounded in
Q x Q?

The case of the unit ball was treated in [C2], where it was shown/that
bounded by the constant23/(n — 1) and that this constant is the best possible.
In this paper we prove boundedness in strictly pseudoconvex domains (Sections
2-4). In fact, we have the following theorem.

THEOREM 1. Let Q be a bounded, strictly pseudoconvex domairCih Then
there is a constanf = C(2) > 0 such that

_ 8.y <C 2n—4

©G(x,y) T
for all x, y € Q. In particular, the quotient is bounded.

O0<h(x,y)

[x — vl

Itis obvious that hyperconvexity is a necessary condition for boundedness. How-
ever, it is not sufficient. In Section 5 we give a counterexample—namely, the
bidisc inC?, which has only Lipschitz boundary.

For the purpose of proving Theorem 1, we show an estimate for the pluricom-
plex Green function (Theorem 3). Some results of this paper can also be found
in [C1].

REMARK. Itisalso natural to consider— 1/h(x, y), for afixedpoley. Let2 be
bounded, withC? boundary. Then a classical lemma, due to Keldysh, Lavrent’ev,
and Hopf (see [P]), states tha (x, y) > CS§(x) for some constant = C(y),
whered(x) is the distance fromx to the boundary of2. Combining this with
well-known estimates fo6G (x, y) (e.g., (3) in Section 3), we conclude that->
1/h(x, y) is bounded neai2.

ACKNOWLEDGMENT. The author would like to thank Prof. Urban Cegrell for his
continuous encouragement and Peter Carlsson for making the figure.
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2. Some Estimates for the Classical Green Function

Let Q be a bounded domain R, N > 3 with C? boundary. LeB(£) = §q (&)
denote the distance frogto the boundary of2. We adopt the convention that

C is a uniform positive constant that may change in value from line to line. To
prove boundedness far we need an estimate 6f(x, y) away from zero. Such

an estimate was proved (far!* domains) by Zhao in 1986 [Z].

THEOREM 2 [Z]. The following inequalities hold for, y € Q:

, 5(x) 8(y)

—G(x,y) > m if [x—yl=< maX(T, T)’ 1)
Co(x)é(y) . 5(x) 8(y)

—G(x,y) > W it [x—yl> maX(T’T)' (2)

Inequality (2) is also proved in [C3], using a different method. In addition, that
paper contains sharper estimates in two special cases.

3. An Estimate for the Pluricomplex Green Function
in Strictly Pseudoconvex Domains

We define strictly convex and strictly pseudoconvex domains in the standard way
(see [Kr]). In particular, these domains hav&boundary. The main result of this
section is the following estimate.

THEOREM 3. Let Q C C”" be a bounded, strictly pseudoconvex domain. Then
there exists a constaiit = C(2) > 0 such that
8(x)3(y)
—g(x,y) =< C—y4
lx — I
forall x, y e Q.

The following similar estimate for the classical Green function,

8(x)8(y)

-Gx,y)=<C ,
lx — y|¥

®3)

was proved in [Ke] and can also be found in [Kr, pp. 324—331]. We will use some
ideas and notation from these sources in this section.

LeEmMa 4. LetQ be a bounded domain RY, N > 2, with C? boundary. Then

there exists am, 0 < n < diam(2)/2, such that

(1) for eachy € 92 there exist ball8(z,, n) C Q andé(zy, n) C Q¢ that satisfy
B(Zys n) NQe = {y} andB(zyv NN = {y}

(2) foreach pointt in U = {& € Q; 8§(¢) < n} there is a unique nearest point
in 92, and & — & is an inner normal to the boundary att.



402 MAGNUS CARLEHED

Proof. The idea is to apply the inverse function theorem to the mapping
9Q x (—1,1) — R,
(é"t) = C +tv{a

wherev, is the outer unit normal at. See [Kr, p. 325]. O

ReMARK. It follows from the proof of Lemma 4 that the mapping—> nx is ct
inU.
LemMma 5. For Q = B(0, R) there is a constan€ > 0 (depending on the di-

mension only; such that

R3(y)
lx — y|?’

—gpo,p)(x,y) <C

Proof. The pluricomplex Green function for the ba&l0, R) is

g(x,y) =1og|Ty/r(x/R)|,

whereT, denotes the M&bius transformation mappiranto the origin. Explicitly,

a— Py(x) — /1= [al2Q.(x)

Ta(x) =

1—(x,a)
where
(x,y) =Y xi¥i
i=1
and
(x,a)
P,(x) = a, Q.(x) =x — P,(x).
(a,a)

(See [K1, p. 148, p. 224].) Because both sides of the inequality are invariant under
the dilationx — x/R, we can takeR = 1. Furthermore, since they are invariant

under rotations, we may assume that (¢, 0, . . ., 0) wherer e R*. Then
. 9) 1 o |1 — tx1)?
—o(x,y) = =
s ¥ = 0 T P =)

1 (1— 0P - g)d—2)
_5'°g<l+ TR ") )

< 13- lx112 — ¢)(1 — t?)
T2 t—x1P+q(l—12) °

whereq = |x2]? + - - - + |x,|2. Hence

—g(x, y)lx =yl O |21 (It — x1)* + ¢)
5(y) T t—xlP+ql—1?)
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For fixeds and x; this is an increasing function af, as can easily be seen by
differentiation. Becausg < 1 — |x1|?, we obtain

—g(x, lx =yl _a- lxa®) (1 = xaf” + 1 |xf)

3(y) T o lr—xaP+ A - [xH A —12?)
21— |x1?) 1—|xq \°
=A—|xH(1+——"")<1+4 .
-l )( HTEr  \T pry
Since|l — txg] > 1 —t|x3] > 1 — |x1], the lemma is proved. O

LemMma 6. Let Q2 be a bounded, strictly convex domainGri. Then there exists
a constaniC > 0 such that

3(y)
lx — |2’

—gax,y) <C

Proof. There is a positive numbet with the following property: For each point
& € 0Q we can find a balBe, with radiusR, that is tangent t& at£ and such that
Q C B:. Use Lemma 4 to produce a neigborhd@dThen, for eacty € U N Q,

we use the balB,,. From the definition of the pluricomplex Green function, note
that if Q, C Q5 thengg,(x, ¥) > g2(x, y). According to Lemma 5, we then have

B (Y)
—ga(x, ) < —gp(x,y) < C—2,
lx — ¥l

But, asds,(y) = 8a(y), the lemma follows whery e U N Q. Fory e Q \ U, the

lemma is obvious. O
LEMMA 7. Theorem 3 is true if2 is strictly convex.

Proof. Leta > 0 and letT, be the half-ballB(0, «) N {Imz, < 0}. Let H,(z) =
Imz,/a?. H, is a pluriharmonic function, negative if. If X € 32, rotate and
translateT, such that O is sent t, the flat part of the boundary is tangeni®amt
y, and the rest of the boundary is partly inside We call the resulting half-ball
T* and the corresponding functidd}. Lett = {z T_a*; lz —X| = a} N Q; see
Figure 1.

*
7 Iy

Figure 1
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Let R be the greatest radius of curvaturedst. Then H)(z) < —1/(2R) if
z € 7, since in the worst case the portionds® inside 7" is a portion of a sphere
with radiusR. The estimate follows by an elementary calculation. Note that the
estimate is independent &f

Letn be the constant given by Lemma 4, andBet diam(€2). Recall that O<
n < D/2.1f §(x) > n|x — y|/(2D) then, according to Lemma 6,

—g(x. ylx —yl* _ lx — ¥
8(x)8(y) = nlx—yl/@2D) T
and we are done. §(x) < n|x — y|/(2D) then there is a unique nearest point
ato2, according to Lemma 4. Let = n|x — y|/D < |x — y|/2, and construct
T,; and the corresponding functidi’ atx = wx. Note that:
(1) x e TN, sinced(x) < «/2; and
(2) y¢ TN, since

lrx —y| = |y —x| =[x — x| = |y — x| — 8(x)
> |y —x|(1—n/@2D)) > 3|y — x| > a.
Assumer € . Then
ly—tl=|x =yl —|x —t] = |x — y| = (|x — x| + |7x — 1)
=|x—yl—=@x) +a) > |x—yl—3a/2
=|x — y|(1-39/(2D)) > 3|x — yl.
Hence, using Lemma 6,
—g(t,y) < Clt — y|28(y) < Clx — y| %8(y).
Since—2RH}(t) > 1, we have
g(t,y) = 2CR|x — y|28(y) H} (1) = Clx — y|28(y) Hy (¢) (4)

for all t € 7. The same inequality holds trivially fere 92 N 7, sinceg (s, y) =0
there. Hence it holds for alle 9(Q2 N 7*). Because (¢, y) is a maximal plurisub-
harmonic function of in Q N 7, andC|x — y|~28(y) H(¢) is plurisubharmonic
as a function of (in fact, it is pluriharmonic), the inequality (4) holds true in
QN T} In particular, it holds for = x:

g(x,y) > Clx — y|728(y) H (x)
—8(x)

= Clx =y —

> —Clx — y|7*8(x)8(y)

and the lemma is proved. O

REMARK. The estimate in the lemmais sharp in the sense that no similar inequal-
ity can hold with a smaller exponent than 4 in the denominator. This can be seen
from the examplé&2 = B(0,1) C C2, y = (¢,0), x = (t,/1—1), t e R™.
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In proving the general case, we will use the following embedding theorem. Itis a
special case of a theorem due to Fornaess.

THEOREM 8 [F]. LetQ be a bounded, strictly pseudoconvex domai@inThen
there exist a holomorphic map: C* — C™ for somem € Z* and a strictly
convex, bounded domasain C™ such that

(1)  is biholomorphic onto a closed subvariety 6f",
(2) ¥(Q) C & andy(92) C 39, and
(3) ¥(C") intersectsiS2 transversally.

We remark that, in general; is much larger than.

Proof of Theorem 3lt follows from the definition of the pluricomplex Green
function that if f: Q; — Q5 is a holomorphic mapping then

8aa(x, y) = 8a,(f(x), f(¥).
We apply this toyr from the preceding theorem, and use Lemma 7. We obtain

8o (U (x)) 84 (Y (y))
[ (x) =¥+
Sincey is biholomorphic onto its image in a neigborhoodnfthere is a constant

A > 1 such that
1 - [ (x) — ¥yl
A [x — y

—8o(X,y) = =g (V(x), ¥(y)) =C

< A

for all x, y € Q. Furthermore, for alk € U N  (for the notation, cf. Lemma 4),
we have

bW (X)) = [¥(x) = ¥(mx)| < Clx — x| = C8(x).

Forx € @\ U we haves(x) > n, and hence (by increasing if necessary) the
same estimate holds. Putting everything together, we obtain

8(x)8(y)

—8 (-xs )’)SC B
¢ lx —yl*

as desired. O

4. Proof of the Main Theorem

Proof of Theorem 1There are two cases. (i) When
§(x) 8(y)
2° 2 )

we use inequality (1) of Theorem 2 together with the trivial estimate

[x —y|l < max(

—g(x,y) < =l
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(if) When

|.X _yl > max<@ m>’

27 2
we use Theorem 2, (2), and Theorem 3. O

5. The Quotient in the Bidisc

In the bidisc inC?, the pluricomplex and the classical Green functions cannot be
compared, even when the pole is fixed. The quottewill tend to infinity when

z approaches a point at the distinguished boundary. To show this, we need the
following “boundary Harnack inequality”.

THEOREM 9 [W]. Suppose is a Lipschitz domainP is a pointinD, E is arel-
atively open set 08D, and S is a subdomain oD satisfyingdS N oD C E. Then
there is a constan€ such that, whenever; andu, are two positive harmonic
functions inD vanishing onE and u;(Py) = u2(Pp), it follows thatu,(P) <
Cuy(P) forall P eS.

TreoREM 10. In the bidisc inC2, h(z, 0) is unbounded.

Proof. Let
D={z=(21,22)€C% 1/3 < |z1l < 1, 1/3 < |z2| < 1},
E ={z=1(z21,22) €9D; |z1] = 1 or|z2| = 1},
S={z=(2.220€C?% 2/3 < |zl < 1, 2/3 < |z2| < 1}.

ThenD, E, andS fulfill the conditions of Theorem 9.
LetG(z, 0) be the classical Green function for the bidisc with pole in the origin,
and let—u1(z) be its restriction taD. Define
u2(z) = k(loglzal)(loglzz)),

wherek is chosen so that;(1/2, 1/2) = u,(1/2, 1/2). Thenu; andu, are as in
Theorem 9, and henag(z)/u2(z) < Cforallz e S.
The pluricomplex Green function for the bidisc with pole in the origin is

g(z, 0) = max{log|zi/, log|z2|}.
Thus

80 _ —gz0 _ —gE0uz) —max{log|z1/, log|z2|}
G(z,0) u1(z) ux(z) wui(z) - Ck(log|z|)(loglzz|)

forallze S. Letzy =z =t€R*. Then

g((,1),0) - —logt
G((t,1),0) — Ck(logt)?

whenr tends to 1 O

— 400
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