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1. Introduction

This paper deals with the structure of the set of sums of a conditionally convergent
series in locally convex metrizable topological vector spaces. The problem goes
back to the well-known theorem in analysis due to Riemann [19] asserting that the
set of sums Sy, of a conditionally convergent series » ;.| ax, ax € R, under all
its convergent rearrangements fills the whole real line R. This was generalized to
the case of finite-dimensional spaces by Levy and Steinitz.

THEOREM 1. Let Y .o, ax be a conditionally convergent series in a finite-
dimensional normed space X.

(a) [14] The set S(a,) has the form
Say = E +a, 1)

where E is a linear subspace and a € X is a fixed element; equivalently,
Stay) together with any points x,y in S,,) contains the whole straighi line
ax+ (1 —a)y, xeR.

(b) [21] x € S, if and only if, for each linear functional x* on X, there
exists a permutation o of N (which may depend on x*) such that x*(x) =

Z}Zl x*(asw)); equivalently,
S = F* +s, )

where F = {x* e X* : Y |x*(ay)| < o0} and Fr = {x € X : x*(x) =0
forall x* € F } with s € S(g;).

There is an extensive bibliography devoted to the generalization of the Levy and
Steinitz theorems to the case of infinite-dimensional spaces (cf. [8]). We note here
some of the results.

Let X be a locally convex topological vector space (Hausdorff, over the field
of real or complex numbers). We say that a series Z‘,Zo:l ax, a; € X, converges
unconditionally if it converges for all rearrangements (automatically to the same
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element s € X ). We call a series Y _ | ax conditionally convergent if it converges
but does not converge unconditionally. Let Y 7, ax be a conditionally conver-
gent series in X. We consider all possible rearrangements of the series such that it
converges, and denote by S(,,) the set of sums of the series obtained in this way.
We say that a conditionally convergent series Y o ; ak, ax € X, satisfies the Levy
theorem if S, has the form (1), where E C X is a closed linear subspace and
a € X is a fixed element, and that it satisfies the Steinitz theorem if S(,,) has the
form (2), where X* is the space of all continuous linear functionals on X. Itis easy
to see that if > . | a; satisfies the Steinitz theorem then it also satisfies the Levy
theorem.

In the early 1930s Banach (see [20]) questioned the validity of the Levy theo-
rem in an infinite-dimensional normed space. Marcinkiewicz [20] constructed an
example of a conditionally convergent series in infinite-dimensional Hilbert space
with a nonconvex set of sums. V. Kadets [12], making use of the Marcinkiewicz ex-
ample along with the Dvoretzky lemma, has shown that examples of this type can
be constructed for any infinite-dimensional Banach space. Today we know more:
For any fixed elements x, y of an infinite-dimensional Banach space there exists
a conditionally convergent series Z‘;O:l ay such that S,y = {x, y} (cf. [11]).

In the light of previous results it was expected that, in the class of locally convex
metrizable spaces, the Steinitz (and the Levy) theorem is true for nuclear spaces
and only for them. The problem turned out to be difficult, but was solved in the af-
firmative by Banaszczyk [1]. The result for the particular case of R* was obtained
by Wald as early as 1940 (cf. [22; 13]).

Along with the above results, the problem on additional conditions on the series
in an infinite-dimensional space under which it satisfies the Levy and Steinitz the-
orems has also been solved. The first such restrictions were found by M. Kadets
[9], who showed that a conditionally convergent series Z‘,f__l ayin L,(T, &, v)-
spaces, 1 < p < oo, satisfies the Levy theorem provided that ), |lak |14 < oo,
where d = min(2, p). Nikishin [16] later found a refined condition

oo p/2
/ (Z|ak<r)|2) dv(e) < o0 3)
T\ k=1

for the case 1 < p < 2 (although (3) turned out to be the proper condition for the
whole scale 1 < p < ©0).
It was noticed by Chobanyan [2] that the condition (3) can be given the invariant

form
the series Zaksk is a.e. convergent in X, G

where (g;) is the sequence of Rademacher random variables, and that condition
(4) is sufficient for validity of the Steinitz theorem in the general case of a normed
space X.

One disadvantage of the listed conditions is that they are not automatically sat-
isfied in the particular case of X = R”; in other words, the Steinitz theorem is not
a particular case of the corresponding results. The search for a condition weaker
than (4) has led to the following: We say that a series ) | a; in a topological vec-
tor space X satisfies the (o, 0)-condition if, for any permutation o: N — N, there
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exists a sequence of signs & = (6;) such that the series ) a,x)0k is convergent
in X.

It is easy to see that condition (4) implies the (o, 8)-condition. In [18] and [4]
the (o, 8)-condition has been shown to be sufficient for the validity of the Steinitz
theorem in the general case of normed spaces. In the particular case of X = R”
this implies the Steinitz theorem, since the (o, 8)-condition in this case is auto-
matically satisfied: for any null sequence (x;), x; € R”, there exists a sequence
of signs 6 = (6;) such that the series ) _ xz6; is convergent (cf. [6; 10]).

In [3], Chobanyan announced without proof that the (o, 8)-condition is alsc suf-
ficient for validity of the Steinitz theorem for series in locally convex metrizable
topological vector spaces. One of the aims of this paper is to bring a complete
proof of this result (Theorem 3). The application of Lemma 1 and making use in
it of a special permutation seems to be the shortest way (even for the case of R")
of proving the Steinitz theorem.

Theorem 3 can be regarded as an assertion uniting most known results on the
Steinitz theorem. One of the exceptions so far is the aforementioned result of Ba-
naszczyk [1]. Its derivation from Theorem 3 is related to the following conjecture,
which seems to be true but to date remains open: For any null sequence (x,) in a
nuclear metrizable locally convex space X, there exists a sequence of signs § =
(6r) such that ) xz6; converges in X.

2. The Series Subsequence Problem
and the Main Inequality

As a first step, all methods of proving the Steinitz and Levy theorems deal with
an assertion of the following type. Suppose a series Y _ ;- a in a topological vec-
tor space X is such that a subsequence of the sequence of partial sums tends to a
certain limit s; then, under some conditions there exists a permutation 77: N — N
such that the series Y ;- ; - converges to the same limit s. Assertions of this
type are of independent interest and are also considered in connection with other
analytical problems (cf. [15; 24]).

THEOREM 2. Let X be a locally convex metrizable topological vector space and
let Z;o:] ay, ar € X, be a series such that a subsequence S,, = Z{”‘ a; of the
sequence of partial sums converges to a limit s. If Y 7., ax satisfies the (o, 0)-
condition, then there exists a permutation w: N — N such that Zi‘;l Ary = S.

The proof of Theorem 2 is based on the following (main) inequality, which is a
modification of a result of Chobanyan [3].

LEMMA 1. Leta,,...,a,beafixedcollection of elements of alinear space X, and
let || - || be a seminorm on X. Then, for each collection of signs 60 = (61, ...,0,),
0; = %1,

max ||azqy + -+ azpl < llar +-- -+ a,ll + max ||as1)01 + - - - + acwfill,
1<k<n 1<k<n
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where r: {1,...,n} — {1, ..., n}is a permutation minimizing the left-hand side
andok)=m(n—k+1),k=1,...,n.

Proof. Lets =) [ a; and consider the seminorm defined by
k

>,
[

By the triangle inequality, for any permutation o: {1,...,n} — {1,...,n} and
any collection of signs 8 = (61, ..., 6,) we have

@1, -, b)| = max

[(—s, sty - - +» Go@m)| + [(=5, asyB1, . . ., GomyOn)|
> [(=2s, oty + Ae)01s - - - » Aom) + Aom)On)| = 2](—s, a))|

and

[(=s, asqtys - - - » o) | + [(—$, @601, - . ., Ao(2)0n)]
> (0, a1y — @o(1y015 - - - » Qo(n) — o)) = 2|(a; )|,
where (a}) is the subcollection of (a,) corresponding to indices with §; = 1 while

(a;) is that corresponding to §; = —1.
It follows that

|(=s, sty - - - » Qo) + [(=5, ay)b1, . . ., Gomy6n)|
> 2max(|(—s, aD)l, [@)]) = 2|(—s, as*@)l, (1)

where the permutation o*(@) is defined as follows: First are indices o (i) of the
subcollection (a}) and then, in reverse order, those of the subcollection (a}).
The validity of the key inequality (1) follows from the following observation. If
b1, ..., b, 1s a collection of elements from X with Z{' b; = O then, forany k£ (0 <
k < n) we have

max{|(b1, ..., b, |(bn, bu_1, ..., b1}

= max{l(bl’ ey bk)l’ ”bn” ”bn + bn—l”’ ey ”bn + - +bk+1”}
= max{|(b1, ..., b, |by + -« + brgall, ..., |b1 + -+ + bull}
= (b1, ..., bp)l.

Hence (1) is satisfied for any permutation ¢ and any collection of signs 6. Take
now as o the permutation minimizing |(—s, a,)|. From (1) we then obtain

2|(=s, as)| = |[(=s,as)| + [(—s, as0)|
and hence
|(=s, as)| < |(—s,as0)|,
or
[(@xctys -« s @z | < S|l + 1(@s1y015 - - - s @om)On)l,



On Rearrangements of Series in Locally Convex Spaces 611

where 7 is the permutation that minimizes |(a,)| and is related to o by o(k) =
rn—k+1),k=1,...,n
This proves the lemma. [

Proof of Theorem 2. Let || - ||, be an increasing sequence of seminorms inducing
the topology of X. For each p we can introduce the quantities

Z Af oy B

where the supremum is taken over all finite collections of distinct indices exceed-
ing N and the infimum over all collections of signs 8 = (04, ..., 6,); o is the per-
mutation determined by the minimizing permutation for ay,, . .., ay, as described
in Lemma 1. Fulfillment of the (o, #)-condition implies that Q,(N) — 0 as
N — oo for any fixed p. Thus we can choose a subsequence (7;) of (i) such
that Q,(ny) < 1/p and ||S,,,, — Su.llp < 1/p for any [ € N. For each collection
Anptls - o5 Anpyy s choose the minimizing permutation 7,: {n, + 1, ..., 7,11} —
{np +1,...,n,41}. Then, according to Lemma 1,

k
E Ay (np+i)
P

1=

’

Qp(N) = sup 1nf max
flownfg>N 0 15i=q

max
1<k<npi1—np

Z adp("p+’)0

= ”Snp_H - Snp "p + Il})in

l<k<np+1—np

=< ”San - Sn_,, "p + Qp(np),

where o), is uniquely determined by 7,. The collection of permutations (7z,) de-
fines in a natural way a permutation 7:N — N. Now we prove that the series,
rearranged according to 7, converges to s. It suffices to prove that the series is
| - I ,-Cauchy for every p € N. Take any integers u < v withn,, <u <n, ;and
Np, <V =< np,y1. Then, if p < p; < p»,

1S0 = Sullp < IS0 = Sup, Il + 1Sn,, = Sw, np + 1184 = S, n,,
<1180 = Sy, llps + usn,,z = Sup, lp 1S4 = Sy 1
< Snyy0 = Sy s + @pa2p)

1Sy, = Sy, o1 + 1S 11 = Sapy oy + (1)
2 3

<—+—-0
P2 D1

as u, v — 00. The theorem is proved. O
The following statements are obvious consequences of Theorem 2.

COROLLARY 1. Theorem 2 remains valid if the (o, 8)-condition is replaced by the
condition of convergence a.e. in X of the series ) _ ay&y, where (g}) is a sequence
of Rademacher random variables.
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COROLLARY 2 [15; 24). If X is a Banach space of type p, 1 < p <2, then The-
orem 2 remains true provided the following condition is satisfied instead of the
(0, 8)-condition: ) _ |lai||? < oo.

As pointed out in Section 1, the (o, 8)-condition does not imply the convergence
of the series ) _ ax&x, even in the case of scalar series ) | ay when the general term
goes to zero sufficiently slowly. A source of more useful examples is provided by
the following construction.

ExaMpPLE. Let X be a locally convex topological vector space. Let ) a; be an
unconditionally convergent series such that for some x* € X*x*(ay) # 0, k €
N. Then consider the integers n; such that ng|x*(a;)| > 1. Construct now the
series Y b; consisting of a; n; times, —a; n; times, ..., a; n; times, —a; ny
times, ... . Then the series ) _ bie; is obviously not convergent. In order to make
sure that ) by satisfies the (o, 6)-condition, consider any rearrangement » b«
of the series and arrange the signs 6 = (6;) as follows. If b,x) = a; then it is
positive or negative according as the previous term a; in ) b, was negative or
positive, respectively; if a previous a; does not exist then b is given an arbi-
trary sign. Clearly, Y 7o bz@ 0k Will be convergent—that is, Y by satisfies the
(o, 8)-condition.

3. Steinitz Theorem in Locally Convex Spaces
The aim of this section is to prove the following assertion.

THEOREM 3. If ) 7>, ay is a conditionally convergent series in a locally con-
vex metrizable topological vector space X satisfying the (o, 8)-condition, then it
satisfies the Steinitz theorem.

Proof. We follow the scheme suggested by Pecherski [17]; the main tools are The-
orem 2 and the inequality of Lemma 1. Without loss of generality, we may assume
that the topology of X is generated by an increasing sequence of seminorms || - || ,,
p € N. By X,, we denote the class of finite subsets of the set {m, m+1,m+2, ...}
along with the empty set, and by S(T'), T € X,,, we denote the sum » _, _; ay if
T is nonempty and O if T is empty. S(X,,) stands for the set S(T'), T € %,,. We
denote by conv M the closure of the convex hull of M in X.

LEMMA 2. Let Z‘zozl ay be a series in X satisfying the (o, 0)-condition, and let
m, p € N. Then, for any A, B € X,,, there exists T € %, such that

1S(T) — 2(S(A) + SB)lp < 30,(m).

Proof. Let us first prove that there exists a C C AAB = (AN B°) U (A°N B)
such that

IS(C) — 1S(AAB)|, < 5Q,(m). (D
If AAB = ¢ then one can put C = ¢. Suppose AAB # ¢, and denote by
by, ..., b, the clements a;, k € AAB. Then there exist signs 6;,...,0, = %1

such that
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Z 0.by
k=1

Setting &; = %(1 + 6;), we obtain

n 1 n
2_eibi=3 ) b
i=1 i=1
Now, as C one can take the subset of AA B corresponding to the indices for which
g = 1.For T = (AN B) U C we will then have
IS(T) — 3(S(A) + S(B)l, = IS(AN B) + S(C) — 5S(AAB) — S(AN B,
= S(C) = 3S(AAB)Ip < 3Qp(m),

< Qp(m).

1
< -Q,(m).
p 2 g

and the lemma is proved. U

COROLLARY. For any x € conv S(Z,,) and any g,, > 0, there exists x' € S(X,,)
such that
Ix —x'll, < Qp(m) +em, peN.

This corollary is a consequence of Lemma 2 and the following statement (due to
Pecherski [17]).

PROPOSITION. Let X be a ring of sets, v an additive set function on X with val-
ues in a normed space X, M the set of all values of v on X, and § an arbitrary
nonnegative number. Suppose M has the property that, for any two vectors a, b €
M, there exists a vector ¢ € M such that

lc — 3(a+b)Il <38.
Then M is a (28 + €)-net for conv M for any € > Q.

Proof of Theorem 3. We shall carry out the proof in three steps as follows.
(1) First we show that §(,,) coincides with the set

P = [ n+SEu)).

m=1

(2) We then show that S, coincides with

oo
L= () Comv(Su + S(Sm+1))-

m=1

(3) Finally, we prove that
Sapy=T'={seX :Vx"eX "Imst.) x"(Arp) =x"(s) }.

Step 1. If s € S(,,) then there exists a permutation 0:N — N such that
Zz":l asxy = s. For each fixed m there exists a partial sum of Zzozl aq k) that
contains aj, ..., a,. Consequently, all the partial sums of the rearranged szries
with sufficiently large indices are in S,,, + S(X,,41); that is, s € S, + S(Z,41)-
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We construct an increasing sequence of finite subsets of N as follows. Let T =
{1} and consider a finite subset 7, D {1, 2} such that ||S(T3) — s|» < % Such a
T, exists, because s € S, + S(X3). Suppose now that the number m’ is such that
T, U{3} C{1,...,m'}). Because s € S,y + S(Z,u/11), there exists a finite subset
T3 O T, U {3} such that ||S(T3) — s]j3 < % Continuing this construction yields a
nondecreasing sequence 77, 73, ... of finite sets of N such that ||S(7}) — sz <
1/k. Moreover, the union U1°° T, exhausts all of N, since k € T} for each k € N.
We now consider the sequence Ty, I, — T, ..., T,, — T,,—1, . . . of disjoint sets and
form a permutation A of N as follows. First go the elements of T}, then the ele-
ments of 7, — T;, then those of 75 — T, and so forth; the order of succession in
each of these sets is immaterial. Clearly, (S(7%)) is a subsequence of the sequence
of partial sums of Zf’zl axy- Since S(Ty) — s, according to Theorem 2 there

exists a permutation o of N such that Y 7o | @owy = s.

Step 2. Obviously, if s € P then s € L. Suppose s € L. Then s — §,, €
conv S(X,,+1) for each m. Let us choose (n,,)men such that n,, > m and
Om(n,,) < 1/m. By the Corollary to Lemma 2, there exists x,,4+1 € S(X,,,+1)
such that )

||S - Snm — Xnp+1 ” < Qm(nm) +— < —.
m m

It follows that S, + x,,+1 — s. Since n,, > m, we have that S, 4+ x,,_ 41 €
Sm + S(Z+1). Further, if k > m then clearly S, + xp,+1 € Sy, + S(Zj41) S
Sm + S(Xm+1)- Consequently s € S, + S(X,,+1) for each m, so that s € S,), as
proved in the first step.

Step 3. We must show that s € S(,,) if and only if, for each x* € X*, there exists
a permutation o such that

x*(s) =Y x*(aea)- @)

If s € S4,) then (2) clearly holds. Conversely, suppose that (2) holds and assume
the contrary—that is, that s ¢ S(4,). As proved in Step 2, this means that

oo
s ¢ () V(S + S(Bms1);
m=1
in other words, s ¢ conv(S,, + S(X,,41)) for some m. It is well known (see {3,
Cor. V.2.12]) that a point and a closed convex set can be separated by a hyper-
plane. This means that there exists an element x} € X* and a number € > 0 such
that
x, (1) +¢e < x,(s)

forall y e conv(S,, + S(Zn+1))- On the other hand, x} (s) = ) x}(as)) for some

permutation o. From this it follows that there exists a finite set 7 2 {1, ..., m}
such that |x*(s) — x*(S(T))| < €/2.Itis clear that S(T') € S, + S(X;,+1), which
contradicts (13). The proof is complete. O

REMARK. Theorem 2 remains valid under the following (weaker) modified (o, 6)-
condition: For any seminorm || - || that is continuous in the topology of X and for
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any permutation o of the series, there exists a collection of signs 8 = (6;) such
that the series ) _ a,)6k is || - ||-convergent. The proof can be carried out exactly
as before.

The following example shows that the (o, 8)-condition is not necessary for the
Steinitz theorem to hold.

ExXAMPLE. Let X be an infinite-dimensional Hilbert space, and let e, , €441,
.» mgy1—1 (k € N) be nonoverlapping parts of an orthonormal system such that
myy1 — my —> oo. Define the vectors

+ __ -1/2
Yei = (Miy1 — my) / Emptis

_ —1/2 ;
Vg = — (Mg — my) /emk+i, keN, i=0,1,...,mpy —my — 1.

Our series Y ay, is made up of yis and yg;s. It is evident that this series will con-
verge to zero if each y;; is followed by a y;;. It is easy to see that S, = {0}
and that ) _ a; satisfies the Steinitz theorem. However, the (o, 6)-condition is not
satisfied: if the arrangement of the series is such that, for each k, the positive
terms occur in succession, then no arrangement of signs will enable the series to
converge.

Although the (o, 8)-condition is not necessary, the authors do not know any re-
sult dealing with the Steinitz theorem where a weaker condition is imposed. One
possible exception, due to Banaszczyk [1], states that no condition is needed in the
case of metrizable nuclear spaces. However, this result will also be a consequence
of Theorem 3 if the following conjecture is true.

CONJECTURE. Let X be a metrizable nuclear space, and let (a;) C X be a null
sequence, that is, a — 0 as k — 00. Then there exists a sequence of signs ¢ =
(6x) such that the series ), a;0y is convergent.

THE LEvY THEOREM. For the case of non—locally convex spaces we have only the
result of [7], which states that the Levy theorem holds under the (o, 8)-condition
for locally bounded metrizable topological vector spaces. It is not known, for ex-
ample, whether the Levy theorem holds under the (o, 8)-condition for Ly. The
case of nonmetrizable spaces is not well studied, and the authors do not know of
any method for dealing with it. The following particular result of a negative na-
ture is known (V. Kadets, personal communication): There is an example of a
series in a Hilbert space equipped with the weak topology possessing a noncon-
vex set of sums. However, this kind of counterexample was expected in the light
of Banaszczyk’s theorem. It is worth noting also that the (o, 8)-condition makes
sense for series in topological groups. One can investigate when it implies that
S(a,) 1s a closed subgroup of the group.
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