Polynomial Hulls with Disk
Fibers over the Ball in C?

MARSHALL A. WHITTLESEY

Let Y be a compact set in C". We denote by Y the polynomial (convex) hull of Y;
that is,
Y ={ze€C" | |P(z)| < sup|P(w)| for all polynomials P on C"}.
weY
Let B, denote the open unit ball in C2. We shall be interested in the polynomial
hulls of compact sets Y in C3, where Y projects onto S = 9B;.

The analogous problem of describing the polynomial hull of a compact set
fibered over the unit circle I' in C has been studied in [1; 3; 8; 9; 11]. A major
issue in all of these works is to describe the extent of analytic structure—that is,
when there exist analytic varieties contained in the polynomial hull with boundary
contained in Y. One reason for this is that discovering such a variety in Y explains
why the points on that variety lie in Y by virtue of the well-known local maximum
modulus principle on analytic varieties. In this work, we shall examine when one
can expect a higher degree of analytic structure, that is, when there exist analytic
manifolds of dimension 2 in ¥ with boundary in Y. In particular, we shall examine
when such an analytic manifold is in fact the graph of an analytic function over B,.

Let A denote the closed unit disk in C. In [11] Wermer showed that, for hulls
of sets fibered over the circle, there need never exist analytic structure. However,
it was shown by Alexander and Wermer in [1] and by Stodkowski in {8] thatif Y
has convex fibers Y, (A € I') over the circle then YN {]A] < 1} is the union of
analytic graphs over int A of functions f in H*°(A) such that f(A) € ¥, fora.e.
A € I'. Furthermore, Alexander and Wermer proved the following.

THEOREM [1, Thm. 2]. Suppose that « is a continuous complex-valued function
onl ={]A| =1}, |ldlloo < 1. Put Y = { (A, w) I lw —a(A)] <1, Ael}) As-

sume there is a b with |b| < 1 such that I’}b contains more than one point. Then
there exist functions A, B, C, analyticon {|A| < 1} andin H? (0 < p < 1), as
well as a ¢y € H*® such that

; _ AQY@ — go() +CO)
roti=i= {(k’w) | ’B(A)(w “goan+em| =M= }
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We shall prove a similar result for Y fibered over dB; (Theorem 2); however, we
will need to assume more about the set Y because in general there is no reason
to believe that ¥ contains any analytic graphs over B,. We illustrate this with the
following example.

ExaMPLE. Consider the function w = f(z;, z2) = Z, on dB; and its graph Y as
a set fibered over S. Then ¥ is nontrivial (since it contains the graph of f over
B5); however, no point on this graph over B, can lie on an analytic graph with
boundary in Y, because no analytic function on B, has the same boundary values

as f.

Suppose that A is a 1-dimensional complex affine subspace of C? that meets B,
and let p be the point on A nearest to (0, 0). Then the points on A that meet S
form a circle in A with center p, and A N B, is a disk embedded complex affinely
in C2. We write L = A N B, and refer to L as a complex affine slice of Bs.

A key requirement for being able to find an analytic graph X over B, passing
through a point p in Y with boundary in Y is that, given any complex affine slice
L of By, p liesin the polynomial convex hull of the part of Y that lies over L. This
condition is necessary because the part of X lying over L is a Riemann surface and
so p must lie in the polynomial hull of its boundary. In a sense, p must be very
strongly in the polynomial hull of Y. We shall be able to satisfy this requirement
with the next definition.

Let I1: B, x C — B, be a projection and let z = (z1, z2) be a typical element
of B,. If X is a compact set in C3 such that I[T1(X) = B,, then we shall say that
X is pseudoconcave if (B; x C) \ X is pseudoconvex. In order to obtain ana-
lytic graphs in Y, we shall assume that ¥ is pseudoconcave. In particular, we
shall show later that the points of X satisfy the strong condition of the previous
paragraph with respect to X N {|z] = 1}.

We shall prove the following.

THEOREM 1. Let Y be a compact subset of (0B,) x C of the form
Y={(z,w) |lw—-a@| =1, z€dB:},
where « is a continuous complex-valued function on 0B, |||l < 1, and
Yn {z = b} has more than one point for some b € B,. (D

Suppose also that (B, x C) \ Y is pseudoconvex. Let (0,0, wq) € aY . Then
there exists a unique ¢ € H°(B;) such that ¢$(0,0) = wq and, for all z € B,,

(z, 9 (2)) €8Y.

THEOREM 2. Let Y be as in Theorem 1. Then there exist analytic functions
A, B, C, analytic on B,, such that

AR (w —¢(2)) + C()
B(z)(w — ¢(2)) + C(z)

where ¢ is the function found in Theorem 1.

Y NIT™!(By) = { (z,w) |

<1, Izl<1},
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One consequence of Theorems 1 and 2 is that YN I1-!(B,) must be the union
of analytic graphs over B;. We note then that the condition that (B, x C) \ Y
be pseudoconvex is necessary for the following reason. Given any point p in
aY N I1~!(B,), suppose there exists an analytic F whose graph is in Y and con-
tains p. The function 1/(w — F(z)) is then analytic in (B; x C) \ Y and singular
at p; since p was arbitrary, this means (B, x C) \ ¥ must be pseudoconvex.

Our main approach is to apply what is known about polynomial hulls over the
disk in C to the part of Y that lies over L, where again L is any complex affine
slice of B;. In Lemmas 1-3 we rewrite Alexander and Wermer’s expression for
hulls over the disk in two ways that will be convenient later. In Lemmas 4-10 we
move to the case at hand and show that, if Y sits over B, and has the properties
stated in Theorem 1, then in fact ¥n {lz] < 1} has disk fibers and has smooth
boundary. This is the main technical difficulty in proving Theorems 1 and 2. We
shall prove in Theorem 3 that essentially all sets having the form given in The-
orem 2 are polynomially convex. Finally, in Theorem 4 we shall generalize the
results of Theorems 1 and 2 to include compact sets Y with disk fibers ¥, whose
radii may vary.

LEMMA 1. LetY be as in Theorem 2 of [1]. Choose (Ag, wo) € oY with [Ao] < 1.
Then there exists a unique ¢ analytic in int A such that
A, M) eY forall LeintA, ¢ (o) = wy. 2)

Note. This lemma is a direct consequence of work of Forstneri¢ [3] and Stod-
kowski [9]. We provide here a short proof for the special case at hand.

Proof. 1f we solve
AMw+CQR)  Adg)wo + C(Ao)
B()w+ D) B(ho)wo + D(Ao)

for w as a function of A, then

=k 3)

" — kD) — C(A)
T AQ) — kB’
we call this last function ¢ (1). Since (Ao, wq) € aY N {]A] < 1}, it follows that
|k] = 1. Because Y \ Y has bounded fibers, the denominator of (4) is never zero.
Hence (4) defines an analytic function with graph C Y N {JA| < 1}, since
AM)p() +C()
BR)¢()+ D)

C)

= |kl =1

forall A €int A.

Furthermore, ¢ () is the value we get for w if we let A = Ay in (3) and solve
for w; clearly w = wy is a solution, and is the only one because in (4) this solution
is unique. Thus ¢ (Ao) = we and ¢ has the desired properties (2).

To show that ¢ is unique, suppose that ¢ also has the properties in (2). Let

_AMw+C)

MO w) = e T Do)
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Then
|M (o, d(Ao))| = |M (Lo, wo)| = 1. ()

The mapping A — M(A, d()) is analytic for [A|] < 1. By (5) and the local
maximum modulus principle, |M (A, q~5()»))| > 1 forsome A, |A| < 1, if A >
M(A, qS(A)) is not constant. This is impossible, because if the graph of @ is in
Y N{|A| < 1} then |M (X, (L))| < 1forall A, |A| < 1. Thus M2, (1)) is con-
stant and, in fact, equal to M (X, qz(lo)) = M (Ao, wo) = k. Referring to (3) and
(4), we see that this means ¢ = gZ), as desired. L]

Note that the graph of ¢ over int A lies in aY N {Ir] < 1}.

LEMMA 2. Leto andY be asin Theorem 2 of [1]. Let ¢ be any one of the analytic
functions whose graph is in 3Y N {|A| < 1}. Then

?n{|x|<1}={(;\,w)l"?O‘)(w—qb(k)wr(f(}”) <1, 1A1<1}, (6)
B)w — o) +CH)
where C = 2F,

F/|Fl=a—¢ onT, |F|;=1, (7)

F is an outer function (and so is nonzero on int A), F is the only element in H'
with properties (1), and

A=-f—-1, B=-f+1,

where

~ 1 el A - .
A) = — : F@'%do, |r| < 1.
A Znﬁ%w_k|@)l Al <

Proof. If ¢ has the smallest real part at zero of all the analytic functions whose
graphs are C dY N {|A| < 1} then this lemma is just Theorem 2 of [1]. If not, then
pick w € I'" such that, in the hull

o N{Al <=0 N(Al < 1} ={( ow) | R, wyeP Nl < 13},

w¢@ has the smallest real part at zero of all the analytic functions with graphs in
d(wY) N {]A| < 1}. Then we proceed as in [1]: If F is the unique element of H'
such that

F
|F|i =1 and l—ﬁza)(x—wrp (8)

and we define A, B, C as before, then

Aaxw—w¢a»+ca><llﬂ<1]
BV —0p() +CO) |~

of N{A| <1}={(k,w) |‘

from Theorem 2 of [1], so
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X ~ o AR @ = 0 () + c)
Y N{A] 1_{1, !
<= em o e e esn s e | = P W<1,
A (@w — 0p (L) + CO)
=1,
{( D s @w—esin 1 em| = '”<1}
- AR W — $()) + 0~
=1,
{( | 3w =s09) Tacey| = " ”"<I}' ®

Now note that, from (8), w~!F is the unique element of H'! with

o \F

-1
w Fll{=1 and
I 1 o TF]

=a—¢.

Also, o™ 'F is an outer function. Let F = w™!F, C = 2F (= 0~1C),

- 1 i0 +A‘ » .
ﬂ()»)=——f ¢ 2 Feiyde, <1,
27 Jr ef — A

and

A=-f—-1, B=-f+1.
Now B(A) = B(1) since |F| = |FF|, so A = A and B = B. Combining this with
the third equality of (9), we get

P (Al < 1}={(x w) | lff(’“"’”“‘f’(")”?(“ <1, Al < 1}
’ BM)w—oM)+C)|~

as desired. )

LEMMA 3. LetY be asin Lemma 1. Let R()\) and S(\) be unique functions such
that

YoM < 3 =(Q,w) | lw—SWI < RO, Al < 1}.
Then

cH) ICM]

where ¢, B, C are the functions that appear as ¢, 3 , C in Lemma 2.

Proof. Since |B(A)] < |A(Q)|forall |[A| < 1 (JA]>—|B|> =4ReB > Ofor|A| <
1), it follows that A(L) # O for [A] < 1. Thus B/A is a well-defined function on
[A] < 1 with modulus < 1. We have

AM(w—-¢o@A)+CQR)
B)(w — o)) +CA)

f’ﬂ{lkl<1}={(k,w)| <1, |A|<1}.

Now

IA(X)(w—f.b()»))—l-C(l) -
BM)(w—¢(A)+C@A)| ~

if and only if
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AN —¢MW)+CHA)  BR)

B —¢M)+CR)  AQ)
B(A) A (w — ¢ + cm]

- [A(A) BL)(w — M) +CM)

if and only if
IB()»)I2) A ( B(?»))
- —— — +CA 1 — —=
(A(?») X (w—¢@) +CQA)

AQ)
CAM 1 ——B(K)
”( _A(x))

Thus

B(\) AQ\) — B(A)
C(")(“m) CO‘)( AQ) )

R() = 2 |~ 2 _ 2
AQ) — | B(A)] A" = [B(AD)]

AQ) AQ)

C(’“)(A(x)) col
4Re (1) 2Re B(A)

AQ)

B(A)
M1 — ==
“ )( A(A))

1BO)P
AQ)

CQ)(AL) — BQ)) c)

= (A .
AWE— 1B M iRepm

Note that, since Re S(A) > 0 for |A| < 1, R and S are both C* functions.
Now we move to the case of a Y fibered over B, in C3.

and

SA) =0¢@) -

A(A) —

= o) -

LEMMA 4. Let Y be as in Theorem 1. Then there exist C*® functions R and S on
By such that

YO{lzl <1} = {Gw) | lw— 5@ < R@), |zl <1}, (10)

where R is positive.
Proof. Let I be projection on B,, and let L be a complex affine slice of B,. Then
YN (L) is polynomially convex, (11)

as the intersection of polynomially convex sets. Let Z = ¥ N IT~!(L). We shall
show that ) _ .
Yynn-in) = z. (12)
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Since (B, x C)\ Y is pseudoconvex )\ (Y NIT~Y(L)) is pseudoconvex
in TT~!(L). Hence we can say that ¥ N I1-'(L) is pseudoconcave in L x C. Now
we use a theorem proved by Wermer in [10] and Stodkowski in [7]: On a compact
pseudoconcave set X projecting onto A, polynomials satisfy a maximum modu-
lus principle with respect to X N {|A| = 1}. Thus, polynomials in T1~!(L) satisfy a
maximum modulus principle on Y N TI~YL) with respect to Z, where we regard
L as a copy of A. This means that

ynu (L) cz. (13)
We also have Z ¢ ¥ N T171(L), so
Zcynn (), (14)

by (11). Combining (13) and (14), we have (12).

If ¥ has property (1), then by the 1-dimensional theory applied to any L pass-
ing through b, Y N{A = b} has more than one point for all b € B;. From Theorem
2 of [1], this means that every fiber of Y is a disk with positive radius, so Y has
the form (10) where R is indeed positive on B;.

From the remark after the proof of Lemma 3, we know that R|; and S| are in
C°(L). Thatis, R and S are C* on every complex affine slice of B,.

LEMMA 5. Infact, R and S are locally Lipschitz in B,.

Proof. Fix a concentric subball B), of B; such that Bé C B;. We show R and S
to be Lipschitz in B,. It will suffice to show R and S Lipschitz on every complex
affine slice of B), where the same Lip constant works for every slice.

Let r denote the radius of B;. Fix aslice L = {a + Ab | A€ A}, wherea,be
By, a L b, |al®> + |b|*> = 1, and |a| < r. This is a slice of B, that cuts Bj. Let
I:A — LN Byand I(A) = a + Ab, so that I parameterizes L. The part of L in
B/ is parameterized by those A with

A < _r_—_la_lz =r, where r' <r.
Vi laP

If we let
L={ww | @), wyeY}) and (M) ={(,w)|UTR),w)e¥},

then Y* is a subset of I' x C and (Y)L is a subset of A x C. From (12) and the
fact that I is an affine transformation we get that (Y)L = (Y L) and from now
on we will write Y% to mean either of these. From Lemma 3, we derive C*
functions Ry, Sr, C, ... such that YX N {jA] < 1} = { (A, w) | |w — SL(A)| <
RL(A), || < 1}. Furthermore, if z € L N By then S(z) = S;.(I™!(z)) and R(z) =
R;(I7(2)). Thus,

Lip(Slznag) < Lip(Selgri<r) Lip( ™' [Lngy)
1

< Lip(SLlyn<r) —/——, (15)
1—1r2
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because ¥’ < r and
1 1

<
JiolalE = JT=r

Now we must bound Lip(Sy |y <-}). We have S; = ¢, + Cr/(2Re ) from
Lemma 3. Since C;, has H! norm < 2, C;, has Lipschitz constant K| on {|A]| < r}
where K; depends only on r. We will write Lip(Cr) < K;(r). Because |¢.| <
¢ —op|+ o] <141 <2a.e.onT, similarly Lip(¢.) < Ky(r). For |A| =1,
Re B8; = |F;| so Lip(Re B.) < K»(r), since Re f; is harmonic. We also claim
that, on {JA] < r},

Lip(~ ') =

Re B > K3(r) > 0. (16)

This is a consequence of Harnack’s inequality; on {|A| < r},

Re g, =

L RepL(0) = Ks(r) f |F1d6 = Ks(r),

so (16) follows.

Now if |A1 — Ay| < 68 for |Aq], |A2| < r, then

Coh)  Cr)
2ReBr(AM)  2ReBr(r)

ISL (A1) — SL(A2)| =< lprL (A1) — oL (A2)| + {

< Ki(1)8 + (CL(M)ReﬁL()vz) CL()kz)ReﬁL(M))
2 Re B (A1) Re BL (A7)
|CL(A) Re Br(A2) — Cr(A1) Re B (A1)

+Cr(A)Re (A1) — Cr(Az)Re ﬂL(M)|
K3(r)?

1
=< Kl(r)5+‘2—

Now C; and Re $; both have maximum moduli < K4(r) for |A| < r, so the
foregoing inequality is

I K
< Ki(r)é + 3 K4(r)2 (IRe Br(A2) — Re BL(My)]
3(r)
+ [CL(h2) — CL(M)])
1 K4
(Ka( )+ 5 X (( ))2 (Ki(r) + Kz(r)))

= K5(F)5.
Thus Lip(Si[{jaj<r}) < K5(r), and from (15) we obtain
Lip(Slnpy) < Ke(r);

since this is true for all L, we find that S, is Lipschitz on Bj, as desired.
To do the same for R;,, we can sholep(RILnB ) < L1p(RL|{|A|<,})(1 —r?)~
following (15). Then Ry, = |S. — @], the absolute value of a Lipschitz function
on {|A] < r}, where again the constant depends only on r. Proceeding as with S,
we conclude that R is Lipschitz on Bj. This proves Lemma 5. O

1/2
2
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Our next goal will be to show that the partials

0"R a"s
a n an a n
X X1
are continuous, where again z = (21, z2) and x; = Re z;. In a manner similar to
that of Lemma 5, let

I.:A— By and A+ (A/1—[¢2,0).

Also, let
YE={(w | (G),w)eY} and @) ={G,w) | LM, w)el}

Then Y* is a subset of I' x C and (Y)? is a subset of A x C. From (12) we have
that (Y)% = (Y 0 ), and from now on we will write Y to mean either of these.
From [1] and Lemma 2 we get associated functions (,bo, F%, C*%, and B¢, where
qbo satisfies the extremal property given in [1]—namely, that qbo has the small-
est real part at zero of all analytic functions whose graphs lie in YEn{Al <1}
Define
do(L, 0) = do (I (X, 1))

for all (A, ¢) € B,, and define

FA,0),CA,0), B, 0) (17)
similarly.
LEMMA 6. o
0 are continuous, n > 0,
oxy

as functions of z; and 7, on B, where x1 = Re z;.

Proof. Suppose not. Then, for some n there exists a sequence {(3*, %)} —
(29, ¢9) such that, if we let

34’0

a = 5ot X, eh,
then either
{ar} converges to something other than 3):[:0 0, % (18)
or
no subsequence of {a;} converges. (19)

We may assume without loss of generality that {(A*, £¥)} and (A%, £°) are contained
in the interior of some polydisc {(z;, z2) I lz1]l < r1, |z2] < r2}. Now

n¢0 1 "8"¢f)2
ox” - (21, 22) = (ﬁ——_lz?__lf) o’ (z1)- (20)

k
Since the {qbf) } are uniformly bounded, there exists a subsequence converging uni-
formly on compact subsets of int A. Call the limit ng . Passing to this subsequence,
we also have
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k 0
on ¢ o e
® (U

oxy oxy 1)
uniformly on compact subsets of int A. For all £* we have
{1 — |2k 2, &5, ¢§k(x)) | Aeint A} C a¥ NTT7Y(By),
since the left side is the graph of (,bo o ;k over B, N {z3 = ¢*}. Because

Y NI~ 1(B2) is relatively closed in IT~!(B,), we may say the same for the

graph of 1/;0 ol {01, that is,

(W1 =292, 2%, w8 () | Aeint A} € 97 NTI71(By).

Hence o .
(M ¥ 0)) | Aeint A} caP N{Al < 1. (22)

Furthermore,
85 (0) = ¢ 0130, %) = 50, £%) — R(0, "),

by the extremal property of the ¢§ functions. By continuity of R and S (from
Lemma 5),

wE'(0) = wé“ 150, £% = 50, £% — R(0, £°). 23)

However, from Lemma 2 ¢0 is the only analytic functlon on mt A satisfying the
same properties that 1//0 does in (22) and (23). Thus ¢’0 = 1,00 , S0 (21) implies

o"gh  0"¢h
—_
oxy oxy

uniformly on compact subsets of int A. Therefore

(=) o~ ()
1— g/ o -2/ o

uniformly on compact subsets of int A and hence, from (20),

"o "®o
an(x" ) — 3,,09 9,
which contradicts (18) and (19). This proves Lemma 6. ]
LEMMA 7.
ans ) )
— is continuous, n > 0.
X1

Proof. We have shown that 3"¢¢/0x{ is continuous, so it suffices to show that the
partials of

C
Rep 2(S — ¢o)

are continuous. (See (17) for definitions of C and 8.)
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Recall that, for |¢| < 1, C¢ has H'-norm < 2 and Re 8¢ has L!-norm 1 on 3A.
Thus F* and Re B¢ are locally uniformly bounded as a class of functions indexed

by ¢. Now suppose that
9" C
dx{ \Re B

is not continuous. Then, as in Lemma 6, there exists a sequence {(A*, ¢¥)} —
(2%, £9) in B, such that, if we let

a" C

_ Ak ey,
Tk oxy Reﬁ( &)
then either
" C
{ax} converges to something other than — —— 0, %) 24)
ox{ Re B
or
no subsequence of {a;} converges. (25)

Choose subsequences {C t/Y of {C**} and {Re Bt} of {Re B} that converge uni-
formly on compact subsets of int A, to €4” and Re B¢°, respectively.

On compact sets, Re A ¢° is bounded away from zero since the Re ﬂgj are uni-
formly bounded away from zero. Thus all partials of C% and Re ﬁfj tend to the

respective partials of C* ® andRe 8¢°, and since Re B%° is bounded away from zero

we have .
" cv o €%
- > .
ox{' Re B¢ ox{ Re B¢°

(20)

uniformly on compact subsets of int A. However,

alds ct®
Reft® Reps®’
since c
=S —
Re B (S — ¢o)

is continuous from Lemmas 5 and 6. Thus (26) gives

a c? g C¢
— —> ,
ox] Re g5/~ 0x] Re B%°

SO _
() s (ees) = (=) a7 ()
- rd
1—[z712/ 3x \Re p¥’ 1—[£92/ 9x] \Rep*’
and so g -
——— (A, ) > —=—A, &9,
dx{ Re B 0x;' Re B

contradicting (24) and (25). U
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LEMMA 8.
0"R

n
dx]

is continuous, n > 0.

Proof. Since R = |§ — ¢¢| and S = ¢¢ is never zero, this follows from Lemmas
6 and 7. [

LEMMA 9. Let f:R" — R.If3"f/0x]{ (n > 0) exists pointwise and is continu-
ous, then the pointwise derivatives with respect to x, are the weak derivatives.

Proof. Let ¢ € C°(R"). Then

Jrsgee= [ ] rag o

(by Fubini, since f is continuous)

=[] () 5

(where 3" f/0x{ denotes the pointwise derivative)
o"f
= (=" d
v [ G

(by Fubini, since 3" f/0x{ is continuous). Thus the pointwise 3" f/3x] serves as
the weak partial of f, by definition. ]

)dxz---dxn

If p is a smooth function on R” and u € R” then let

ap
o = (Vp) - u.
U

Lemma 9 now shows that R and S have continuous weak partials with respect to
X1 on B;; however, these arguments hold not only for 9”/3x{ but also for 9" /du"
in any direction u, simply because our arguments apply in any direction. Lemma
10 will allow us to conclude that all mixed weak partials of R and S are continuous
functions.

LEMMA 10. Let ¢ = (a1, ®2,...,a,) be a multi-index of nonnegative inte-
gers, |a| = k. Then there exist vectors uy, us, ..., u, in R" and real numbers
ai, as, . .., ap, such that, for any distribution ¢ on an open set in R",

8k¢ 14 ak¢

— = i (27)

ax® du*

i=1 I

where the partials taken in (27) are weak partials.

Proof. 1t suffices to prove the lemma for classical partials of C* functions ¢. Let
D*¢ be the kth derivative of ¢ (as defined in [6, Chap. XIII]), so that D*¢ (x) €
L¥(R"; R), the set of real symmetric k-linear maps on (the tangent space of) R".
In this notation, we have
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3 9 3 9 d 9\ "¢
A oxy? - Axy

Dk ’ R R N BRI ’
('b(x)(axl 0x 0xy 0x2 ox, 0x,
(where each d/0x; appears «; times) and extend multilinearly. In particular, if
d/du is some element of the tangent space to R” then

2 2\ ok
ou’ " ou) ouk’

By Lemma 4.4.19 [4, p. 122] (the k-dimensional polarization formula), the value
of a symmetric k-linear form (such as D*¢ (x)) on an arbitrary k-tuple can be com-
puted as a linear combination of the values of the form on constant k-tuples, where
the linear combination is independent of the given k-linear form. Thus, there exist
u; € R” and g; € R independent of ¢ and x such that

d
k D —
D ¢(x)<au,

Dk¢(x)(ela e]! LR ] 621627 LA ] 63’ 633 L] en; en)
P
=Y a;D*¢(x)(ui, i, ... ),  (28)
i=1

where ¢; = d/0dx; and e; appears «; times. In standard terminology, (28) is ex-
actly (27), which is what we need. ]

Conclusion of Proof of Lemma 4. Given an arbitrary mixed weak partial de-
rivative operator, we now have that it can be written as a linear combination of
nonmixed operators. Hence, from Lemmas 7-9 and the Remark after the proof of
Lemma 9, all weak partials of R and S will be continuous and so in leoc(BZ)' From

Sobolev’s embedding theorem (see [5, Thm. 4.6.3]) and the fact (from Lemma 5)
that R and S are continuous, we conclude that R and S must be C* functions. O

We now prove Theorems 1 and 2, which we state again for the reader’s conve-
nience.

THEOREM 1. LetY be a compact subset of (0B,) x C of the form
Y={(@w)||lw—a@| <1, z€dB,},
where o is a continuous complex-valued function on 0B, ||a|ls < 1, and
yn {z = b} has more than one point for some b € B,.

Suppose also that (B, x C) \ Y is pseudoconvex. Let (0,0, wg) € dY . Then there
exists a unique ¢ € H(B,) such that ¢(0,0) = wqy and for all 7 € B, and

(z, p(2)) €Y.

Proof. Lemma 4 shows that 3¥ N {|z| < 1} is a C™ hypersurface in C3. We show
that it is Levi flat. Let M = 8Y N {|z] < 1}. Let p(z, w) = |w — S)| — RQ),
where R and § are defined in Lemma 4. Then M is defined by the vanishing of p,
which is C* in a neighborhood of M in B; x C. Also note that p has nonzero gra-
dient on M for the following reason: if we fix z; and z, then the radial derivative
in w is nonzero.
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Now suppose that u € C satisfies
3

dp
> —(@u; =0, (29)
i=1 dz;
where ¢ € M and z3 = w. We wish to show
9%p _
> o (@i = 0. (30)
k=1 ZjO0Z

Now if we write

ap d
—(21,22,23) = L (21, 22, 23) + AQuy, usz, u3))
ou oA

then (29) is the same as

op
a—(q) =0 31)
Uu
and (30) is the same as
P =0 32)
guon VT

Consider a diametrical slice L of B, such that the direction of (i, u;) is in L.
Then Y N IT~!(L) is Levi flat, as a hypersurface of I1~!(L). This means (31)
implies (32), which is what we want.

By Exercise 9 [5, p. 308], a Levi-flat hypersurface in C? is foliated by analytic
manifolds of complex dimension 2; thus there exists an analytically embedded ball
in 9Y N TT~(By) passing through (0, 0, wo):

I: By — 3Y NI~ YBy), 1(0, 0) = (0, 0, wp).

We want to make this analytic ball a graph over B;. Let T(g gy B> be the tangent
space to B, at (0, 0). We note that

dl0,0)(T(0,0B2)
= the entire space of complex tangents to M at (0, 0, wp). (33)

Claim. dIl|,0,we) © dI|0,0)(T(0,00B2) = T(0,0)B>.

Consider L; = {(z1,0) | lz1] < 1} and Ly = {(0, z2) | lz2| < 1}, as well as
the corresponding unique ¢;(z1), $2(z2) such that ¢(0) = ¢,(0) = wp and the
graphs of ¢, ¢, over L, L, are contained in ay N I1-1(B;). Then (1, 0, d¢1/3z1)
and (0, 1, 3¢, /0z,) are linearly independent complex tangents in 7(g 9,wq) (M), s0O
by (33) they generate dI | 0)(7(0,0)B2). Then

0 0
dIT]©,0,we) (Cl (1, 0, a—¢l-) + c2 (0, 1, —E)) = (c1, €2, 0),

21 027

which equals zero if and only if ¢; = ¢, = 0. Thus dTI1|,0,.,) has image equal to
all of Tp,0) B2, as claimed.

We conclude, by the inverse function theorem, that IT o I has a local in-
verse. That is, there exist open balls B2((0, 0), ), B2((0, 0), r;) and analytic
f:B»((0,0),r1) — B»((0,0), r) such that (ITo I) o f = id on B,((0, 0), ry).
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Then I o f = ((I o f)1, (o f)2, (Lo f)3): B2((0,0), r1) = C*> maps (z1, z2) -
(21, 22, (I o f)3(z1, 22)), and the graph of (I o f)3 lies in ¥ N TT~!(B,). Note
also that (1 o f)3(0, 0) = wy. We claim that g = (I o f)3 extends analytically to
all of B,.

Before verifying this, we note that we need not have chosen the point (0, 0, wp) €
ay ; we could have chosen any other point in (BIA’ )\ Y and similarly found a (unique)
local analytic graph in @)\ Y passing through that point.

Suppose that r is the radius of the largest open ball centered at (0, 0) to which
g extends analytically. Then we claim » = 1. Suppose that r < 1. Take any point
p = (p1, p2) on the sphere of radius r. Let L be the complex 1-dimensional linear
diametrical slice of B, passing through (0, 0) and (p1, p2).

Consider the point (0, 0, g(0, 0)) on 9Y . Then there is a unique analytic graph
{w = g1 ()} over L, lying in Y N I1~!(B,) and passing through (0, 0, g(0, 0)).
Consider the point (py, p2, gL(p1, p2)) on aY N I1-!1(B,). Then we can find a
neighborhood N of (p;, p,) and an analytic function £ defined on N such that the
graph of & passes through (py, p2, g.(p1, p2)) and is contained in Y. Then hand
g1 coincide on L in some neighborhood of (p;, p2), and so coincide on L N N.
However, g and g; coincide on L N B,((0, 0), r). Further, we assumed g to be
analytic in B,((0, 0), r), and the graph of g is contained in aY . It follows that g
and A& coincide on some open set contained in N N B,((0, 0), r). Thus, 4 provides
an analytic extension of g to B,((0,0),r)UN.

This argument holds for any p in the boundary of B,((0, 0), r). Finitely many
of such N cover the boundary of B,((0, 0), r). Consider two such neighborhoods
N, and N, (where p and g are points in the boundary of B,((0, 0), r)) with cor-
responding functions /1, and /, analytic on them. Then 4, and h, coincide with
each other on N, N N, N B,2((0, 0), ), since both equal g there. Hence 4, and k,
coincide with each other on all of N, N N, by uniqueness of continuation. Con-
sidering all functions &, together, we conclude that g extends to be analyticin a
ball of radius greater than r about (0, 0). This is a contradiction, so the assump-
tion that r < 1 is false. Thus g extends to be analytic in all of B;, providing the
desired analytic ¢». The graph of ¢ is in Y because, given any diametrical affine
slice L of B;, the graph of ¢|;, over L N Bj is an analytic disk that passes through
a point in the boundary of Y \ ¥, so it is entirely contained in (aY) \Y.

To show that ¢ is unique, suppose we have another ¢ that satisfies the require-
ments of Theorem 1. Then, over every diametrical slice L, the graph of ¢ , is
the unique analytic graph in Y NII-Y(L) passing through (0, 0, we). Thus ¢|; =
Y|, forall L, so ¢ = ¢ and we are done. O

THEOREM 2. Let Y be as in Theorem 1. Then there exist analytic functions
A, B, C analytic on B,, such that

AW —¢(2)) +C(z)
B(z)(w — ¢(2)) + C(2)

where ¢ is the function found in Theorem 1.

YNIT7Y(By) = { (z,w) | |

=1L [z| <1 } (34)
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Proof. From Lemma 3 we note that, if L is any complex linear slice of B, and L
is identified with the unit disk A, then we can apply the 1-dimensional result to
obtain Cy, and B;, such that, on L N B,,

CL(2) |ICL(2)]

S@)=—>7""—4+¢k and R(z)=—"—.
(2) TRe B, (2) ¢(2) (2) 7Re B, (2)
Hence, regardless of which L we take through a particular z € B5,
CL(2)
= S(7) —
7Re BL(2) (2) — ¢ (2)

is well-defined. Thus arg Cy (z) is independent of the choice of L through z, and
arg Cy, is a well-defined pluriharmonic function on B;. Hence there exist analytic
C on B; such that arg C(z) = arg Cr(z) for all z € B, and all L passing through
Z. (C 1s unique up to multiplication by a positive constant.)

Onevery L, C is a positive multiple of Cy, and C(z) £ 0 for all z € B,. Define
P(z) (to be our 2Re B(z)) as

_ C(2)
S — 9@

on Bj. Since S(z) # ¢(z) and C(z) is never zero, P (z) is well defined and nonzero
on B,. Because C is a positive multiple of C;, on every L, it follows that P is a
positive multiple of Re B;, and is thus positive harmonic on L. Thus P is positive
pluriharmonic on B,. Choose § analytic on B, with Re 8 = P, and let

A=—-B—-1, B=-B+1

on B;. We claim that (34) holds for the A, B, and C just defined. To verify
this, we merely go through the procedure of Lemma 3 to obtain the center and
radius of the region defined by the right side of (34). We find the radius at z to
be |C(z)|/(2Re B(z)), which is equal to |C1(z)|/(2Re BL(z)) on every slice L,
as required; we find the center at z to be ¢ (z) + C(z)/(2 Re 8(z)), which is equal
to ¢(z) + Cr(z)/(2Re BL(z)) on every slice L, as required. Thus (34) holds, as
desired. ]

P(z)

We are now in a positive to verify the remark made earlier that ¥ N TT~!(B,) must
be the union of analytic graphs over B, whose boundaries lie in Y. For (z, w) €
B> x C, let
_A@w —¢(2) + C(2)

B()(w — ¢(2)) + C(2)

Choose any point (zg, wg) € YN IT~1(B,); then M (z9, wo) = k where |k| < 1.
Since A(z)C(z) — B(z)C(z) # O for all z € B,, we can solve M (z, w) = k for w
in terms of z:

M(z, w)

- C@)(k—1)
" A(z) — kB(2)

This is a well-defined complex analytic function of z, because |A(2)|> — [B(z)|> =
4 Re B(z) > Ofor |z| < 1 guarantees that | B(z)| < |A(z)}andso A(z) — kB(z) # 0.

+¢(2) = f(2).
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Since M(z, f(z)) = k for all z € B,, we have that the graph of f over B; is
contained in Y. Thus f € H*®(By). Also, M(zp, f(z0)) = k and so, because
M:{zo} x C — C is invertible for fixed z¢g € B3, we have f(z¢) = wp. Finally,
we claim that the boundary values of f on 8B, are in Y, for a.e. z € 3B,. Se-
lect a sequence of points z, in B, tending radially to z € B, such that {f(z,)}
converges. Then {(z,, f(z,))} converges as well; since Y is closed, {(z,, fz N}
converges to an element of Y that sits over z. This means that { f(z,)} converges
to an element of Y,, as desired.

THEOREM 3. Suppose that Y is a compact subset of B> x C of the form

y — { (& w) | A(@Qw + B(2)
- ’ C(2)w + D(z)
where A, B, C, D are analytic in a neighborhood of By, A(2) D(2) —B(2)C(2) #

0 on By, and |A(2)| > |C(2)| for z € B, (so that Y is compact with disk fibers.)
Then Y is pseudoconcave and polynomially convex.

sl, Zeéz},

Proof. For fixed €', 0 < 6 < 27, we may solve
A)w+ B(z) o
C@w+ D(2)

for w; this shows that the boundary of Y over B, is foliated by graphs of func-
tions analytic in a neighborhood of B,. From this we easily obtain the fact that ¥
is pseudoconcave: Given an analytic ¢ whose graph is in the foliation, the func-
tion 1/(w — ¢ (z)) is analytic in (B, x C) C Y and singular at every point of the
graph of ¢. Since the graphs of such ¢ foliate 3Y N {|z| < 1}, this shows that
(B, x C) C Y is pseudoconvex and hence Y is pseudoconcave.

Let us consider any two different functions ¢, and ¢, whose graphs lie in the fo-
liation of 3Y N{|z| < 1}. Since the fibers of Y are strictly convex, (¢1(z) + ¢2(z))/
2 lies in the interior of Y, for all z € B,. Hence we may assume without loss of
generality (by change of variable in w) that O € int Y, for all z € B,. We also note
that, since Y is the union of graphs over B, of functions analytic in a neighborhood
of Bz,

Y is contained in the polynomial hull of ¥ N {|z] = 1};

hence A
Y is contained in the polynomial hull of ¥ N {|z|] = 1}. (35)

Now suppose that Y # Y. We proceed to a contradiction using an argument of
Oka. Consider the class of sets tY given by

tY ={(z,tw) | z,w)eY).

Since 0 eintY, forall z € B,, there exist ¢ > 1 such that ¥ C tY. Let us choose
the smallest such z. If we assume ¢ # 1 then Y and ¢Y have a boundary point p =
(zo, wo) in common that sits over B,. Choose a ¢ whose graph lies in 3Y NT17!(B)
such that p lies in the graph of #¢. We shall be interested in the functions vy, =
1/(w — s¢) for s > t. We note that i is analytic in a neighborhood of Y ard so
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is uniformly approximable by polynomials on Y. Because (zo, wop) € Y we have
that, forall s > ¢,

hbs (ZOa wO)I
=< sup  [¥s(z,w)| from (35)

(z,w)eYnN{lz|=1}

1
= sup _—
@wern{lzl=1}| W — s¢(2)
1 i .
< sup —— | since Y, is closer to t¢(z) than s¢(z)
@wern{izl=1}| W — 1¢(2)

=M,

where M 1is independent of s. However, if we choose s arbitrarily close to ¢ then
[¥s(zo, wo)| can be made arbitrarily large, since s¢(z9) — wo as s — ¢. This is
a contradiction, so the assumption that # > 1 was falseand wehave Y =Y. [

We note that Theorem 3 is a partial converse to Theorem 2: the former shows that
sets of the form (34) are pseudoconcave and polynomially convex for reasonably
general A, B, and C. The latter shows that sets of the form (34) are essentially all
of the pseudoconcave polynomially convex sets over B, that have disk fibers.

We now generalize Theorems 1 and 2 to compact Y with disk fibers Y, of vari-
able radius.

THEOREM 4. Let Y be a compact subset of (0B3) x C of the form
Y ={(z,w) | lw—a(z)| < R(), z€0B,},

where o is a continuous complex-valued function on 0B;, R is positive and in
C?%(3By), |la(2)| < R(z), and

¥n {z = b} has more than one point for some b € B,.

Suppose also that (B, x C) \ Y is pseudoconvex. Let (0, 0, wg) € oY . Then there
exists a unique ¢ € H*®(By) suchthat ¢ (0, 0) = wo andforallz € By, (z, $(2)) €
Y. Furthermore, Theorem 2 holds for such Y.

Proof. One may proceed as in the case where R = 1. We sketch how the details
are different; essentially, one must use Theorem 3 of [1] instead of Theorem 2 of
[1]. The proof of Lemma 1 is the same. We replace Lemma 2 with the following.

LEMMA 11. Let«, R, and Y be as in Theorem 3 of [1]. Let ¢ be any one of the
analytic functions whose graph is in 3Y N {|{A| < 1}. Then

AW — () +CM)
BAM)(w —oA)+CQ)
where C € H'(A), C is never zero onint A, ||IC|l; < 2R |lco, and we have

A=—-f—-1, B=-B+1,

f’ﬂ{lk]<l}={(k,w)|l <1, ;x|<1}, (36)

where
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< 1 feP4r -
N=— | = F(e'9))ds, |r] <1,
B 2Hfre,f,__)tl(en Al <
and F is an outer function with H' norm equal to 1.

Proof. We follow Alexander and Wermer’s arguments in [1], keeping track of the
properties that A, B, ... will possess. We have

Y ={(,w)|lw—a@] < RG), rel}.
As in [1], we write R(A) = e*® = |e%W|, where G = u + iv € A(T"). Then

_ {(A,w) | w a())

2GRl  gG)
If welet w = w/(e®®) and o’ = a/(e%P), then
Y ={(weP) | lw —a'W)| <1, 1el}.
We denote by Y/eS® the set { (A, w’) | (A, w'e®®) e Y }, so that

_<_1,)L€F}.

—m = (0, 0) [ [w —'Q) <1, 2€T).

Then Y /e®® satisfies the properties of Theorem 2 of [1] and hence (according to
our Lemma 2) there exist analytic A, B, C, F, and 8 such that

Y
(ecm) N{Al < 1)

A

Y
= G N{IA] < 1}
~ A
A()L)(w’ - d’cf(g) +CO)
=1 Ow) ‘ 1, M <1},

~ ¢()
B@( e RS
where we note that the graph of ¢/e€ is C 8( Gm) N{|A| < 1}. Further, we have
that A, B, F, and B satisfy the requirements of the lemma and C = 2F. Then

~

s NMIA < 1)

.

Ao (v - 55+ co)

5 , 90
B(A)(w - ecm) +CM)

( < w ¢(A)
| oy [ ) <

~ w ¢ (A)
B(x)(ecm —~ eGm) +CM)

=4(qu’ <1, <1

L, Al <1

and
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~ A
n A(}‘)(eg:m n fcg(AZ) +CO)
Yo(r <1) = ()»,w)} - R—ry <1, Al <1
B()‘)(ec;(x) - eG(k)) +C0)
( AW — ¢() + C(A)e®
= 9 )\,, — 1, A 1 .
) | Fmw —po + coyesm| = 1 1M <

Now, if we let C = Ce€, we find that ||C||; < ICll11€€ oo = 2|| R |loo and that C
is never 0 on int A; hence we have (36). O

Conclusion of Proof of Theorem 4. Replacing Lemma 2 with Lemma 11, we find
that Lemma 3 follows for our more general Y. The only remaining differences oc-
cur in Lemmas 5 and 7. We must replace the bound of 2 on the H!-norm of Cj,
and C*? by the bound 2| R|| . Here, || R||o, remains constant through our discus-
sion and so functions as a uniform bound on the C;, and C¥¢, just as 2 did before.
Also, in Lemma 5, in obtaining a bound on Lip(¢;) we find instead that |¢; | <
|¢pr —ar| + o] < R+ R < 2||R||«. Hence we still obtain Lip(¢;) < K;(r).
Otherwise we may proceed as before and prove Theorem 4. Ol
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