The Convex Hull of the
Interpolating Blaschke Products

MicHAEL D. O’NEILL

1. Introduction and Notation

In the sequel we prove that if a Blaschke product B is continuous in the closed
unit disk except on a closed set E C T of measure zero, then B is contained in
9K, where K denotes the closed convex hull of the interpolating Blaschke prod-
ucts. Moreover, we show that a generic Blaschke product is contained in 27K . By
the well-known theorem of Marshall, this implies that the unit ball of H* is con-
tained in 27K . The proofs employ a technical result, given in Section 3, which may
be of some independent interest. The results in the paper improve earlier work in
[8], [4], and [10]. We refer to these papers and to [3] for further background on
the questions treated here.
We shall employ the following notation:
D openunitdisk, D={zeC:|z] < 1};
T unit circle, T = oD
H® the space of bounded analytic functions in ID;
L the space of essentially bounded functions on T;
P,(w) the Poisson kernel in D, P,(w) = (1 — |z|®)/|1 — wz|%;
p(z, w) the “pseudo hyperbolic distance” between z and w in D,

Pz, w) =

.
b

1 —wz
d(z, w) the hyperbolic distance between z and w in D,
14 p(z, w)

d(z, w) = log o)

d(X,Y) forXCDandY CD,
dX,Y)=inf{d(x,y):x€eX, yeY};
A% an annulus of thickness 2¢ about the circle {|z] = 8§},
Ay ={zeD:§—-e<|z| <8+¢};
I  a half-open subinterval of T,

[={e%ecT:0, <60 <6,) forsome 0 <8 <0, <2x;
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|7] the arc length of 1, [I| = 0, — 61;
Q = Q) acCarleson “square” in D,

Q= {re:e%cl, 1—|I|<r<1} forsome I CT;

LQU)) L(Q)=I1];
BO for B eRT,

0 01402 0, — 6,
= io . — <0
BO [re 2 /3( > )_
0, + 6, 8, — 6,

l—ﬁ(92—91)5r51};

T(Q) TO)=0n{zeD:|zl <1-4£(0)/2};

u, for an inner function u and a € D, the inner function u,, is defined by

u-—a

ua= - ’
1 —au

B|y if B is a given Blaschke product with zeros {z,} and if U is a subset of
the open unit disk, then

—Zy — 2
Bly = . :
v=1] (1—232)

ZUGU |Zv|

Z the set of interpolating Blaschke products;
K the closed convex hull of 7;
JF the set of finite products of interpolating Blaschke products.

ACKNOWLEDGMENTS. This paper is based on part of the author’s UCLA disser-
tation completed in 1995 under the direction of John Garnett. I thank him for all
his help and encouragement. My thanks also go to the referee and the editor for
their help in clarifying the presentation.

2. Preliminaries

This section includes some background on the results presented in the paper and
on two interesting open questions. Several results recorded here will be referred
to later.

A holomorphic function u € H (ID) is called an inner function if its radial lim-
its (which exist a.e. on T by Fatou’s theorem) satisfy |u(¢??)] = 1 a.e. on T. An
example of an inner function is

oo fIE (22)

where the convergence of the infinite product is assured by requiring that
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> = lzn]) < +oo,
v

where each zero z,, is counted with its multiplicity. An inner function of this type
is called a Blaschke product.
There are nonconstant inner functions with no zeros in D, called singular func-

tions. They are
el +z ;
u(z) = exp(—f i0 d)“(ete)),
el —z

where dA denotes a positive measure on T that is singular with respect to the
Lebesgue measure. Now, by the canonical factorization theorem for H*°, the only
other examples of inner functions in D are constant multiples of products of the
above two types. The following theorem shows that the Blaschke products are
uniformly dense in the inner functions; see [3] for details.

THEOREM 2.1 (Frostman). Lef v(z) be a nonconstant inner function on the unit
disc. Then, forall ¢ with |{| < 1, except possibly for a set of logarithmic capacity
zero, the function

_v(@)—¢
v (@) = 1 —zv(2)

is a Blaschke product.

This paper is concerned with those Blaschke products that have simple zeros ly-
ing in an interpolating sequence, that is, a sequence of points in D such that each
interpolation problem

f(ZU)zw\M v:1’2s-°-s {wU}EEOOa

has a solution f € H*. The basic facts on interpolating sequences are contained
in the following theorem of Carleson.

THEOREM 2.2 (Carleson). If {z;} is a sequence in the unit disc, then the following
conditions are equivalent.

(1) The sequence is an interpolating sequence.
(2) Thereis ad > O such that

[

Jrj#k

ek — &

= >45, k=12,....
1 —2Zjzk

(3) The points z;j are separated,

Zj — Zk

—|>a>0, j#k,
1 —2Zjz

and there is a constant C such that for every “square” Q we have

> -yl < CQ).

zj€eQ
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A Blaschke product with simple zeros on an interpolating sequence is called an
interpolating Blaschke product. We write Z for the set of interpolating Blaschke
products and F for the set of finite products of interpolating Blaschke products. It
is known, for example, that every uniformly closed algebra between H and L*°
is generated by H* and the complex conjugates of a subset of Z; see [2] and [6].
The constructive proof of the Douglas—Rudin theorem, due to Jones [5], shows
that any unimodular function in L*°(T) may be uniformly approximated by a ratio
of products in Z.
The following two problems are posed in [3, p. 430].

PrOBLEM 1. Do the interpolating Blaschke products generate H* as a uniform
algebra?

PrOBLEM 2. Can every Blaschke product be uniformly approximated by inter-
polating Blaschke products?

It is known that the Blaschke products do generate H* and, in fact, that the closed
convex hull of the Blaschke products is the unit ball of H* (see [7]).

Problem 1 was recently settled in the affirmative in [4], following the work in [8]
wherein any Blaschke product with zeros that accumulate only at a set of measure
zero on T was shown to be in the linear hull of Z. The idea in [4] is to carefully fac-
tor a general Blaschke product into finitely many subproducts, to each of which a
version of the argument of [8] may be applied. This factorization technique solves
Problem 1 because of the following lemma from [8].

LEMMA 2.1 (Marshall, Stray). Given a Blaschke product B that is the product
of finitely many interpolating Blaschke products and given ¢ > 0, there exists an
interpolating Blaschke product B* such that

sup|B(z) — B*(2)| < e.
zeD

The lemma shows that we may as well pose Problems 1 and 2 for the class F
instead of Z. A characterization of F in terms of zero sequences is given in [4].

LEmMA 2.2 (Garnett, Nicolau). Let B be a Blaschke product and let {z,} be its
zeros, counted with their multiplicities. Then the following are equivalent.

(1) B = By... By, and each B; is an interpolating Blaschke product.
(2) There is a constant C such that for every “square” Q we have

D 1-lzl = CLQ).

ZjeQ

(3) There exist positive constants pg, 8o such that, for each z,, there is a w,, with

<po and (1 —|w,[»|B' (wy)| > So.

Problem 2 remains open as does the following, intermediate between Problems 1
and 2.
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ProBLEM 1.5. Is the unit ball of H®° the closed convex hull of Z?

In [10], @yma was able to show that K, the convex hull of Z, has nonempty inte-
rior in H*. Here, by expanding on some ideas from [1], we improve this resul: to
show that K contains all #* functions with norm not greater than 1/27. See also
[9] for some similar arguments.

In Section 4 we will need the following lemma and remarks. They are from the
exposition in [3] of Hoffman’s theory of the maximal ideal space of H*.

LEmMMA 2.3 (Hoffman). Let B(z) be an interpolating Blaschke product with zeros
S = {z,}, and suppose

inf(1 — |za)|B' (zn)| = 8 > 0.

There exist . = A(8), 0 < A < 1,andr =r(8), 0 <r < 1, satisfying
limA(S) =1, limr(@) =1,
§—1 §—>1

and having the following properties: The set B-'(A(0,r)) = {z: |B(z)| <r]is
the union of pairwise disjoint domains V,;; z, € V,,; and

<a}.

The product B(z) maps each domain V, univalently onto A0, r)={w : |lw|<r}.
If \w| < r, then

Z—Zn

1 -2,z

V,,C{z:

B(z) —w
1 — wB(2)

is an interpolating Blaschke product having one zero in each V,,.

By (Z) =

REMARK 1. Inthe proof of Lemma 2.3, the numbers A and r are chosen according
to:

(D A <2x/(14+2%) <6
(2) A=A(@) — land 6 —A)/(1 —A8) — lasd — I;
3) r@ = (¢ —1)/(1—-2r8))r — 1.

REMARK 2. Let u € F have the zero sequence {z,} where multiple zeros are
repeated, and write

N
u=[]B;, BieZ 1<i<N.
i=1
Then, if A > O is given and £(X) > 0 is sufficiently small, by Lemma 2.3 we have

N
{zeD:lu@)| <e}c| J{zeD: Bi@| <} | J{z: p(z z4) < 1)

i=1 n

If A > O is sufficiently small then, by the density condition on the set {z,}, there
is an M > O such that any connected component of | J, {z : p(z,z,) < A} is the
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union of at most M of the disks {z : p(z,z,) < A}. By the argument principle,
u, € F whenever |a| < €(A). This shows that if v is any inner function then the
set {aeD: v, € F}is open.

The last (well-known) lemma of this section gives us information on the modulus
of a Blaschke product in terms of its zero sequence. Its proof is an exercise with
the identity of Lagrange:

(1 =1z = [w?)

|1 — wz|?

I

forall z,weD.

1 —wz
LEMMA 2.4. Let0Q < a < 1 and let B be a Blaschke product in the disk with zero

sequence {z,}, where multiple zeros are repeated in the sequence. Suppose that

Z'_ZH,
1 —Zuz

>a >0 foreach n.

Then
1Zz(l—l2|2)(1—lzﬂlz)<1 1 1 )Z(l—IZIZ)(l—IzMIZ)‘

0 f—
11— Z,z|? ~ T IB@I T =3¢ 11 —Zz?

The left-hand inequality holds without any condition except 0 < a < 1, and we
have C(a) > lasa — 1.

Proof. See [3, pp. 288-289].

3. An Approximation Theorem

In this section we use ideas from Bishop’s characterization of the zero sets of
Blaschke products in the little Bloch space to prove a technical theorem (see [1]).
The theorem will be used in Section 4 to factor Blaschke products in a procedure
similar to that used in [4]. If # is any inner function with the canonical factorization

- 19
—2Zy Z2— 2y +z
— . _ dA. ig
u(z) |z| 0 (1 - Zz) exp( f o, dMe ))

then we associate with # a measure u, defined by

pu =) (1= lzuD8;, +dA.

Here A is the nonnegative singular measure occurring in the singular factor of «
and {z,} is the zero set of u. Multiple zeros are repeated in the sequence according
to their multiplicity.

THEOREM 3.1. Let u be a given inner function and let 1 > § > 0 be fixed. Let
Es ={zeD: |u(@)| = é}. The following two statements are equivalent.

(1) There exists an ¢ > 0 such that u, € F for each a € Aj.
(2) There are M > 0 and n > 0 such that, for each z € Es, there exists a square
Q with the following two properties:



The Convex Hull of the Interpolating Blaschke Products 425

(a) d(z, T(Q)) < M;
(b) 55 ¢ 5 (log 5 — ), 5 (log 5 +m)].

The theorem and Lemma 2.1 imply that if we can factor a given finite Blaschke
product into o(1/8) factors, each of which satisfies condition (2) with M and 7 in-
dependent of §, then we can solve Problem 2. This had been noticed independently
by K. @yma and communicated to the author in June 1996.

Before beginning the proof of the theorem we record, in the following lemma,
some remarks from [1].

LEMMA 3.1.  There exists a universal constant o with O < a < 1 such that, for
any inner function u, if 1, (16 Q) = 0 for some square Q C Dwith£(Q) < 1/32,
then for any e € Q and for w, = (1 —27"4(Q))e’ we have

lu(wy)| = Ju(wa-1)I*  foreach n > 1.
See [1, pp. 215-216] for a proof of the lemma.

Proof of Theorem 3.1. For any z € D, let O, be a square that has z at the center
of its top edge and let

Sz,n)={z'€Q,: 27U —[z) = (1 - |z') =27"(1 — |z}

Suppose that Condition (2) of the theorem fails for the given inner function «. This
means that, if we are given n > 0 and M > 0, we can find some z = z(n, M) €
Es such that all squares Q with d(z, T(Q)) < M satisfy

wu(Q) 1 | 1 1 | 1
2(0) E[E(Ogg_")’ﬁ(oggﬂ)]'

With 7 and § fixed, let N be a positive integer and let z = z(n, M). Factor u as
u = upiuy so that u,, is supported in D/NQ,.By Lemma 2.4,if N = N(8) > 01is
sufficiently large then |u;(w)| > /2 for all w on the top edge of Q,. We further
require that

6/2)*" > e,
where « is the constant from Lemma 3.1 and that

; 7
Py (e")d0 < ———— foreach z'€ S(z, N).
/T\NQZ ¢ 10 log(1/8)

Let Cy be the collection of N22¥ disjoint Carleson squares contained in NQ,,
with
£(Q;) =27"*N¢(Q,) foreach Q;eCy.

Note that any square S whose top half contains a zero has 1 (S)/£(S) differing by
at least % from some square of exactly half the size contained inside of it. Hence,

if M is large enough and n < % then p,,, is supported in |_J cy @j- We have
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pu(Q2)
£(Q.)
< |~ loglu(z")| + logui(z")||

1 1 —|z')?
NS S T
Sla@) Jyo, 1= w22
wu(Q;)

1 _ |Z/|2 0
+ / Lolel ) - P,(e™) do
no, |1 —wz'|? Q,Ze;N 2(Q) Jo,nt ‘

wu(Q7) i0 nu(Qz)
b, UCD Joor € ")

1—10g|u(z')l — 27

+

for any z’ € S(z, N). The first and fourth terms on the right are each smaller than
n by our choice of N. By application of Lemma 2.4 and properties of the Poisson
kernel, respectively, the second and third terms are each smaller than 5 if M is suf-
ficiently large. This shows that ||u(z’)| — 8] < 4n for any z' € S(z, N). As N can
be arbitrarily large, Schwarz’s lemma and Remark 2 (following Lemma 2.3) then
show that condition (1) of the theorem fails.

For the remaining half of the proof, let O, be, as before, the square with z at
the center of its top edge. Let I = @, N T denote the base of Q,, and let S,
denote the union of 2™ disjoint Carleson squares of length r,, = 27"£(Q,) con-
tained in Q,. Suppose now that, for any given T > 0 and integer n > 0, there
exists a point zo(7, n) € D such that |u(zg)| = é but |u(zp) —u(w)| < t forallw €
20, N{éeh:|§| <1~ 2‘2”£(QZO) }. By Lemma 2.2 and Schwarz’s lemma,
this is true for any inner function u# for which condition (1) of the theorem fails.
We will show that, given M > 0 and n > 0, if n is large enough and 7 small
enough then all squares Q with d(zg, T(Q)) < M have

mu(Q) 1 1 1 1 _
) E[E(“gr”)%(“)g@“)]’

that will finish the proof of the theorem. Choose a point z with d(z, zp) < M.
With sufficiently large n» and small t, we have

< Z: foreach & € %

n

/@ P (w) iyt () + log u(z0)|

In fact,

AR —laD | [ d—IEP)
fﬁpg(w)d“"(w)_; e R

and all values of |u(&)| are very near § for a very large hyperbolic distance around
zo- So, by Lemma 3.1, the zeros z,, that are outside of 2" Q,, make a small contri-
bution to the sum, and Lemma 2.4 implies

1
P di, ~1 )
f@ = (w) dp, (w) ~ log )]
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Let I = (1 +27/2)] and let ¢ = n/8|log 8|. For sufficiently large n, we have
do 1—(1—ry)? 1— | -r)w> d6

/P(l_r)eie(UJ)—: ( r) |( r)wl ""—‘Zl'—C

i " 2 1= —r)w) Ji |1 —e (1 —ry)wl|? 27

for all w € S»,, because the second integral is the harmonic measure at (1 —r,,)w
of the arc /. Therefore,

:uu(Qz) . )u‘ll(SZM) 1 _ do \
€0y~ HQ) T (-0t s{/1 Farmee ) o } At
I

<(1+420c) ] Py, yeior (w) dpey (w)

218(Q7) Js,,
(for the appropriate 6* with ¢’ € D

1+44c
< 2 Py ) dpta )

21 D

(for sufficiently large n)

14+ 4
< ——2*‘7{—"(— log|u(zo)| + {{)

1
< 3 loglu(zo)l + n.
14

Nowlet 7 = (1 —272)] and letr, = 27"¢(Q,). Let N be a positive integer
(to be chosen below) and, for any e’ € I, let Q.0 be the square with £(Q,i) =
Nr,, and base centered at e’®. By Lemma 2.4 and Lemma 3.1, if n is large enough
and t small enough then we may choose a large N < 2"/2 such that

n
/_ P_r,yeio (W) dﬂu(w)\ <3
D\ Q,is
We therefore have, for all ¢’ € I,

n
f P_pyeio (W) dpy (w) — f P_ryeio (W) disy (w)‘ < -
Sn/2 D 4

and therefore

mu(Q7) _ My (Sn) 1 _ d_9
00y | Uy — U0y s,,{/fp(“’")‘"g(w) 2n}d”' « ()

1

do
Q) 1{/s Pa—riyerr (W) dﬂu(w)} 2

] 7
= % ([H_) P_yyeier (W) dppy (w) — Z)

(for an appropriate 6* with ¢ € I)




428 MicHAEL D. O’NEILL

1 —271/2 n n
>—= (-1 L2
> 22 (- oghuteo - 2 - )

1
> ——loglu(zo)| — 7.
27T

‘We have shown that

mu(Q2)
2w ——= +loglu(zo)|| < 1.
‘ £(Q;)
Since z was an arbitrary point with d(z, zo) < M, this concludes the proof of the
theorem. L

4. On the Size of the Closed Convex Hull of the
Interpolating Blaschke Products

In this section we will use Theorem 3.1 to give proofs of the results stated in Sec-
tion 1. The line of argument follows [8] and [4], and the size of coefficients is
estimated in a manner suggested by [10]. We make use of a fixed net of dyadic
“squares”. By Lemma 2.1, we may assume that a square in the first level of the
net containing any zero has £(Q) < w/128.

THEOREM 4.1.  Let B be a Blaschke product, continuous on D\ E where E C T
has Lebesgue measure zero. Then B is contained in 9K .

Proof. Let M = {Q,} be the set of maximal dyadic squares that contain no zero
of B. We have
> Q) =27
QveM
Let N be an integer which will be made as large as required, and let z, be the
point at the center of the top edge of the square 27¥Q,,. Let By € Z denote the
Blaschke product with simple zeros at the points {z,}, and let

v [ 2— 2
B =[1- .
N 1;[ |zv|(1——az)

Let w, =2~ %" Q, and let a ~ b denote the relation a/b — 1 as N — oo. By
Lemma 2.4 we then have

(1 = lzo )1 = |z [*)
|2

log —————— ~ =
|BN0’(ZO')I 2 oy |11 — 252y

=2 2 (1~ Iz — |z]?)
n>N zy€w,\wy—) 11— 252z, |2
O Izv|2
< C 2 2n

n>N zy€wn\w,_1

< C-/ Z 2N

n>N
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(Note that the sum over z, € w, \ w,— is vacuous for large n.) Therefore, for a
given ¢ > 0, we will have

1By,o (zo)l = (1 = |25 [))|By(zo)| > 1 —¢  foreach o
if N = N(¢) is sufficiently large. Altering the previous notation, we write
w By —w
N1 wBy
By Lemma 2.3, there are positive numbers 0 < ry < 1 and 0 < Ay < 1, with
ry = land Ay — 1 as N — oo, such that By € 7 for all w with |w| < ry and

such that By has exactly one zero in each disk D, = {z : p(z,z,) < Ay }. ByRe-
mark 1 following Lemma 2.3, we may assume each D, is contained in the square

Q.
IfzeD\ U ; Qj then the dyadic square Q whose top half contains z has
M BBy (Q) > KBy (Q) >
£(Q) £(Q)

Otherwise, z is hyperbolically near some square with zero mass.
Let § > 0 satisfy (1/27)log(1/8) = 2~®™+D_ Then, by Theorem 3.1, we have
BBN “+a
1 + aBBy

2N,

e F foreach a with |a| = 4. (%)

Now choose w € D with 3 < |w| < ry. There exists an N’ depending only on
Ay such that
pee (Q) o 9N’

(e -
for all dyadic squares Q with

T(Q) C D\U 0;.
j

Moreover, since all zeros of By, are contained in the disks {z : p(z,z,) < An}, it
is clear that any point in [ J i 9j is near some square with zero mass.

With (1/27) log(1/8’') = 2~ WV'+D we therefore have
BBy +c

1 4+ cBBy

Fix a with |a| = 8, and let (BBy + a)/(1 + aBBy) = u € F. Then we have

e F foreach c with |c|] = 4. (%)

BBy = —a+ (1 + a1 — |laD @ + au® + a*u’® +--).
By Lemma 2.1 we know that F is contained in the uniform closure of Z, so that
BBy €(1 4+ 2)a])K C 3K.
Similarly, () implies

BBY € (1 +2|c)hK C 3K.
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Now we also have
BBY = —wB + (1 + |w))[(1 — |w|)(BBy + wB(Bn)* + w?B(By)* + - - ).

By Lemma 2.1 again, we know that each term B(By)" is contained in 3K, so
—wB € 9K and, since |[w| — 1 as N — oo, we have B € 9K. ]

Now we factor a general Blaschke product into two factors in such a way that a
version of the preceding argument may be applied to each.

THEOREM 4.2. If B is a Blaschke product defined in D, then B € 27K.

Proof. Let B be a Blaschke product with zero set {w,}. We may assume that
{w,} NAT(Q) = @ for every Q in a fixed dyadic net. It is clear that any Blaschke
product is the uniform limit of products with this property. By Lemma 2.1 we may
assume that all the zeros satisfy |w,| > 1 — /128 and, further, that each dyadic
square Q with £(Q) = n/128 satisfies

np(Q)
<
£(Q)

Let {Q}} = G be the set of maximal dyadic squares with
D)
¢(h

where M > 0 will later be chosen as large as needed and g¢ > 0 as small as
needed. We have

£0.

> ZMEO,

> eQ)y <2m27M.
g1

Now let {V}!} be the set of dyadic squares that are maximal among dyadic squares
contained in some Q Jl € G; with respect to the property that

M(Vkl)
<
247y
Because |B| — 1 nontangentially almost everywhere, we have

> V) =+£(Q)) foreach Q}€G.

1 1
vicol

EgQ.

To see this, let Q be a square such that z € D is contained in 7(Q). We then have
(1 — 1z = [wal?)

log|B@)| < —C )

Lo —wzp
< ' Z 1 — |w,|
- o 12l
<—CIMB(Q)
- L6Q)

and this implies what was claimed.
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Let
R} = le\ U Vv, foreach Q}€Gi.

i 1
vico!

Define G, = {QJ?} to be the set of dyadic squares that are maximal among squares
contained in V}! for some k with respect to the property that

wop
0o? =

2M80.

We have
> w@h <27MeV))  for each k.
a7
We form the set of squares {sz} and regions R j2 as before and continue to obtain
P, R, and VI IE 2Mey < % then our assumptions imply that all zeros of B are
contained in the interiors of the regions RJ?’. Let o and v index the pairs (1, k).

Choose an integer N > 0, and let By € 7 be the product with one zero z, =z k)
at the center of the top edge of each square 2~V for all n and k. We will also

write V' = V,. Let .
2y 2 2y
By, = — —.
e ‘,I;[, 2ol 1 =72
We claim that, given ¢ > 0, if N and M are sufficiently large then
|Bn,o(z5)| = 1 —&.

Let S, denote the square 2~ V=™V, . Then we have

1 1 —|zs1)A = |z, )?
log - Z ( |z )i 2]Zv| )
BroG)l A Il—Zoa]

v#£a
(1 —|zo )1 = |z, [*)
+ Z Z |1 - Z;Zv|2 :

n>N zp€S\Sn—1

As in the previous proof, the sum on the right is as small as we like if N is large
enough. The sum on the left is

1,12

<c) >y o™ 1=l

- N 1 - |Za|2
n< ZVESn\Sn_l

/ 2N —2Zn
=Cian 2 2. Y-l

AN zy€Sp\Sn-1

2N
< " 2—2)‘1 . 2—(M+N)£(Vo-)
W 2
< C/2-—M Z ="
n<N

and therefore is as small as we like if M is sufficiently large.
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As in the proof of the previous theorem, there are positive numbers 0 < ry < 1
and0 <Ay <1, withry — land Ay — 1 as N — 00, such that

BwE BN—w
N1 — wBy

and By has exactly one zero in each disk { z : p(z, z,) < Ay }. By the remark fol-
lowing Lemma 2.3, we may assume that each such disk is contained in the square
Q.. Taking M to be sufficiently larger than N we may also assume that each D,
is hyperbolically far from any region R

For a fixed Q}’ let 2 }1 be the unique dyadic square containing QJ? with £(2 }’) =
2¢(Q7). Notice that, by the maximality of the Q7, if there are two adjacent Q] of
the same size—say, Q) and Q;—then Q7 # Q7.

Let

€Z foreach w with |lw| < ry

G, =1{Q": 0/ €G,)

oo
G, = JH
i=l

where H; is the set of maximal dyadic squares in G, and, forn > 1, H, is the set

of maximal squares in
n—1
G, Hi
n L
i=1

In the terminology of [3] we have divided each set of squares G, into “generations”
H;. Note that, if 7 € H;, then

Do U@ = 3e@).

{Q;:EHi_l_z:QZCQ;'}

and write

Define

o0

Go=| {10 €G:QleHaur ), Gui=|J{Ql G, : Qe Hy)
i=1

i=1

and define
o.¢]
Wn,a = U Rna 0 = Oa 11 Ua == U WH,(J: o = 0, 1.

Q7 €Gn,a n=1

We will now use these definitions to factor the product B.
Let
Ba:BIU,,s a:()’ 19

and let

v [ 2— 2
B - - ’ azo, 1’
e [ |2, (1 —EZ)

{v=(n,k),j: anCGfegn,a }

and
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BN,O! = l-[ BN,n,a, o = O, 1.

n

Then B = B()B] and BN = BN,OBN,I-

Let
B}, = Balw,,  Bvna and B =]][B;, = BuBva.
n
We claim that
B —3§
—c F, a=0,1,
1 — 8B

forall § with (1/2m)log(1/|8]) = %2“” . This will follow from Theorem 3.1 once
we show that every point in [D is within bounded hyperbolic distance of some
dyadic square Q with

mpx(Q)

¢[227N,27N).
£(Q) !
Let a be fixed. If Q7 € Gn.o then
pag, (82F)
TR

2-N 4 oM, 1\ /2N 4 2M¢ 1\?/2~N 4 oM¢
<(EE2Te0 (LY (2260 (1Y (27 A2Te0N
2 4 2 4 2

< 2@V +2%).

Here the factor }1 is provided by the “odd—even” splitting within each set G,,.
Now, summing over all the sets G,,, we have

i (21

L <@+ 27 M2 ) 27N 1 2Mgg) < 227N
R

if £¢ 1s small.

Therefore, if z is not in any R} with QJI.V € G, o then it is hyperbolically near
the top half of a dyadic square Q with ugx(Q)/£(Q) < %2‘” . This is because the
point z is inside some square V,, but outside any R;’. Moving a fixed hyperbolic
distance away from the zero z,, if necessary, there are only squares with /¢ <
%2"” directly below.

On the other hand, if z € R Jf’ with Q]’.’ € G, then z is contained in the top half
of some dyadic square Q with ug=(Q)/£(Q) > 27V The claim is proved.

Following the proof of the previous theorem, we may replace By by By =
(By — w)/(1 — wBy), where ”1%/ < |w| < ry. The zeros of By and By, arein a
natural one-to-one correspondence since each product has exactly one zero in the
disk

{z:p@, ) <An}

We let By, be the factors of By corresponding to the factors By,q of By. Then
there exists an N’ depending only on Ay such that
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BaBﬁ,a -7

eF, =01,
1 — BBy, *

for all n with (1/2x)log(1l/|n|) = %2‘”’. This follows by a repetition of the
previous calculation.
As before, we obtain

B.Byo€(1+2|8)K and B,BY,e(1+2nDK;

therefore,
BBy € (1 +2|8))2K and BBY e (1 +2|n|)’K.

It follows that
—wB = BBY — (1 — (w|*)(BBy + wB(By)* + w?B(By)* +--+)

and hence, by Lemma 2.1, that —wB € 27K. Since |w| — 1 as N — oo we have
Be2IK. 0
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