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I. Introduction

For every n > 0, we define A™" to be the Banach space of all functions f analytic
in the unit disc U such that

I flla= = sup| F@|1 — |z]H)" < oo.

zelU

If fe A" and if I C U is any subset then we can define
£ Irllan = sup| F@IA = [z*)",

zel

Thus we always have

Nflrllas < [ flla=.

I' is called an A™" sampling set if there exists a constant L such that, for every
feA™,
Iflla-» = LI frlla-n.

The smallest such L, designated L(T", n) is called the sampling constant of T".
In an important paper, Seip [4] gave a complete characterization of A™ sampling
sets in terms of a certain density that he defined.

The space A~ is defined by

A=A
that is, it is the algebra of functions analytic in U satisfying

M
| f(z2)] < ————— for some constants M and .
(1 —|z)”
Equipped with the inductive limit topology, A~ becomes a topological alge-

bra. The zero sets and closed ideals of A™° were completely characterized in [2]
and [3].

Received September 25, 1996. Revision received November 26, 1996.

This research was partially supported by the Minerva Foundation in Germany through the Emmy
Noether Institute.

Michigan Math. J. 44 (1997).

389



390 C. HorowiTZ,B. KORENBLUM, & B. PINCHUK

For f € A=, we define the type of f by

_ : “ny _ = loglf(2)]
T(f)=inf{n: fe A }—I}Ilgllllog(l—lzl)l'

For every subset E C U such that sup, .z |z| = 1 and for every f € A=, we can
define

(1.1)

Te(f) = inf{n : sup| F@)I(1 — |z])" < o0}

zeE

— Tm loglf(z)l '
lz1=1 |log(1 — |z|)|
z€E

(1.2)

Thus we always have Te(f) < T(f).

(1.3) DEerINITION. E C U is called an A~ sampling set if, for all f € A7,
Te(f) = T(f). If E is also a discrete sequence in U then it is called an A=
sampling sequence.

At first glance one might conjecture that E is an A~*° sampling sequence if and
only if it is a sampling sequence for all A™. In fact, one of our main results is the
following.

(1.4) THEOREM. Let E be a sampling sequence for all A™". Then E is an A=
sampling sequence. However, there exists an A~*° sampling sequence that is not
a sampling set for any space A™".

The structure of the paper is as follows. In Section 2 we prove Theorem 1.4. Sec-
tion 3 deals with the characterization of certain circularly symmetric sampling
sequences. In Section 4 we prove a general necessary condition for sampling se-
quences and show that it is sufficient (in a certain sense) for symmetric sequences
of the type discussed in Section 3.

II. Comparison with A= Sampling Sequences

As stated previously, the purpose of this section is to prove Theorem (1.4). We
first treat its positive assertion—namely, that any sequence which is sampling for
all A™" is also sampling for A~°°. We wish to thank the referee of this paper who
suggested the very short proof which follows, replacing a much longer argument
constructed by the authors.

(2.1) LEMMA. Letn > 0 be given, and let I" be a sampling sequence for A" . If
feA®and T(f) =n, then Tr(f) = n.

Proof. Since Tr(f) < T(f) = n for any I', we need only prove that 71 (f) > n.
To that end, it suffices to show that for all m < n,

sup| f(D)I(1 — |z[*)™ < 00 = sup|f@)I(1 — [z]H™ < 00.  (2.2)

zel zelU
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To prove (2.2) we make use of a formula of Seip [4, eq. (30)], which for our
purposes can be stated as follows.

Let I' = {zx]2, be an A™ sampling sequence. Then, for ¢ > O sufficiently
small, there exist functions h(¢) satisfying ), [hx(¢)| < C where C is indepen-
dent of ¢, such that for every f € A~ with T(f) = n, for every s > 0, and for
all¢ e U,

1— |22
(1~~|c|2>"+£f(c)=2(1—|zk|2)"+">f<zk)(1 i )hk@). (23)

Now, for m < n we set s = n — m + & and rewrite (2.3) in the form

A= 1H™* f(&)
=Y (1 —lz™ f(z)
k

(1 _ 'ZkIZ)n—m-E-e
(1— Ezk)n—m+e
We conclude from this that if sup,, .| f(zx)|(1— |zx|$)™ < oo then, forall £ €U,

A= [P FE <MY 1)),
k

(4 kit M (3}

and thus sup, (1 — 1Z15)™| f(¢)] < oo. This proves (2.2) and hence Lemma
2.1). O

An immediate corollary of the lemma is the first part of Theorem 1.4.

We turn to the negative converse assertion of Theorem (1.4). Specifically, we
shall construct a sampling set for A~ (as in Definition (1.3)) that is not a set of
sampling for any A™". This example can easily be modified to a parallel result con-
cerning sampling sequences; the procedure for passing from arbitrary sampling
sets to sampling sequences will be described in detail in Section 3.

(2.4) ProrosITION. Let E = |, {z : |z| = r, ) where 0 < ri <ry--- and
lim,, o |log(l — rp+1)1/|l0og(l — r,)| = 1. Then E is a sampling set for A=°.

Proof. Let f € A=, and let ¢ > 0 be given. Then we can find #n¢ such that, for
all n > ny,

Hog(1 — rpy1)] log| f(§)]
<1+4+¢e and ——— < Te(f) +&.
llog(T — 1] o Tiog —ri = FY
Now, if n > ng and if , < |z| < r,4+; then we have
1 1 1 log(1 —r,
oglf@l _ - loglf@®| _ - loglf@&)]| [log(l = rus)

[log(1 —|z])| — ]EI=rI,,J+1 llog(1 — )|~ |g1mryy 1l0g(l — ruy1)] [log(l —7,)
< (A +&[Te(f) + €l

Since ¢ > 0 is arbitrary, we can conclude that T(f) < Tg(f) forevery f € A=,
therefore, E is an A~ sampling set. El

(2.5) ExampLE. Let E =|J,{z: |z| = r, } where
r,=1- exp(—e‘/ﬁ).
Then E is a sampling set for A=°°, but not for any space A™.
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Proof. It follows immediately from Proposition (2.4) that E is a sampling set for
A7, On the other hand, if E is a sampling set for some A™" then Seip’s charac-
terization in [4] shows that £ must have a uniformly discrete subsequence of pos-
itive lower density (as defined there). However, if F C E is uniformly discrete
then it is easy to see that, for each =,

1
> logl—z—l = 0(1).

ZeF
1z|=rn
Thus,
1
)3 g _ 0o _
1 — -
zeF log 1—r, eﬁ
[z]<rs

This implies that the set F has lower density zero, so it cannot be a sampling set
for any A™". O

III. Symmetric Sampling Sets and Sequences

We begin this section with a converse to Proposition (2.4). The proof will depend
on the following theorem, which is an immediate consequence of [1, Thm. 2].

(3.1) THEOREM. For r € [0, 1], let k(r) be an unbounded increasing function
such that supy_, 1 k(r) — k(r*) < 0o. Then there exists a function f(z) analytic
in U such that, for0 <r < 1,

max log| f(2)| = k() + O(D). (3.2)

Proof. In [1, Thm. 2] it was shown that, under our hypotheses, there exists f
analytic in U satisfying

log| f(2)| < k(lz]) + O(1)

and whose zeros {z;} satisfy

3 1ogl—|—k(r)+0(1), 0O<r<l.

|lzrl<r |Zk

Thus, (3.2) follows directly from Jensen’s formula. O

We note that in [1] there was a standing assumption that ¥ should be a convex
function of log r; however, this was not used in the proof of the result cited here.

(3.3) PROPOSITION. If O <ri<ry<---— landif

log(1 — ru41)
log(1 —ry,)

> 1

n—>o0

then E = J,{z : |z| = r, } is not a sampling set for A=°.
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Proof. Under our hypothesis we can define an increasing function k(r), 0 <
r < 1, such that

' 1
k(r,) = log 1 (3.4)

n

for each n and
—  k(r)
1 < lim

_— <2 (3.5
% Tog(l =)l = 5-3)

for example, forr, < r < ry4y, let
k(r) = min (Jlog(1 — raq0)|, 2llog(1 — r)| — [log(1 — r)|).

In particular, k(r%) — k(r) is bounded and so by Theorem (3.1) there exists a
function f analytic in U such that, for0 <r < 1,

sup log| f(2)| = k(r) + O(1).

Jzl=r

By (3.4) Te(f) = 1 while by (3.5) T(f) > 1. Thus E is not an A~ sampling
set. Ol

The following lemma will help us to pass from arbitrary sampling sets to sampling
sequences.

(3.6) LEMMA. Let f € A= and let {zi} be a discrete sequence in U such that

fexl = L and log| f(z0)]
0g|J (L

=T .

o, Tog(t — D] — )

(Clearly such sequences must exist.) Then if ¢ > 0, ¢ > 0, and {wy} is another
sequence in U satisfying

lzx —wi] < g1 = |z, k=1,2,...,

we have also

log| f(w)]
=T .
%% Tog( — lwe] — 1)

Proof. Define N = T(f). Thus,if N < N; < N +¢&/2then f € A~ and, by
[4, Lemma 2.1] for all £ we have

lﬂmm—mmW~uwmaﬂwﬂM5Mwmﬂfﬁﬁ%,@ﬂ

where M is a constant depending only on N. For each k and m define

Peom = 1 f@)IA = 12> and  grm = | Fwr)I(1 — [we»)™.

Then, for all k,

PN — aen = (Prn, — qeny) (1 — |z HYN M

+ g [(1 = [z YN — (1 = JueHY M. (3.8)
By our hypothesis, it follows that for all £ we have
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1—|wg| = 1 — |z + O — |zx])' ™.
Thus
(1 — |zx]) = 1 — |wg| < co(1 — [z])

and so, by the mean value theorem, for each real « # 0 there exists a constant ¢,
such that

| = JwelD® — (1 — [z&?)®] < call — |2k, k=1,2,....
Returning to (3.8), since f € AN, the numbers gy, y, are bounded and
|1 = 1zeHY ™™ — @ = [we)Y M| < e — [ze)V N (3.9)

Since |1 — Zzwi| > 1 — |zx)® — |z — z2)| = c(1 — |zx|?), we can conclude
from (3.7), (3.8), and (3.9) that, for all £,

| v = gin] < el = |zeH*2. (3.10)
Now our hypothesis in this lemma is just that

|log pi, w1 _
k—oo [log(1 — |zx])|

Thus, if 0 < § < &/2 then we have

log __1._

Pk.N
———————10 1 <4

& Tl

for all large k, which means that p; 5 > (1 — |zz])°. By (3.10) we obtain g; y >
c(1 — |zx])?, and it follows easily that

= |log gx, v
1 < 0.
k—oo |log(1 — [zx[)|

Since § > 0 is arbitrary, we have in fact

|log g, v _
k=00 [log(1 — |zx|)|

which proves the lemma. O

’

(3.11) PrROPOSITION. Let {zx} be an A~*° sampling sequence, and let {w;} be
a neighboring sequence as in Lemma (3.6). Then {w} is an A™*° sampling
sequence.

Proof. By hypothesis, if f € A7 then there is a subsequence {zi,} such that
log| f(zx,)1/11log(1 — |zx, )| = T(f). By the lemma, the same holds for the sub-
sequence {wg, }. L]

CONJECTURE. Proposition (3.11) is actually true under the weaker hypothesis

that - I
Zk— wWr| =0 . 3.12
i = el (Ilog(l - lzkm) G-12)
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We note that the analog of Lemma (3.6) is not true under the hypothesis (3.12).
Indeed consider the function

1 & wy—z2
o=

k=1

where, for all k, w; = 1 — 1/2F and z; are real numbers satisfying
1-— wy . 1
log(1 —wy)  k22%

Then {z;} “samples” f whereas {w;} clearly does not.

|z — wi| =

(3.13) DerFINITION. Let 0 < 1, /7 1, let sup[(1 — rp41)/(1 — r,)] < 1, and
let ¢ > 0. A symmetric sequence based on {r,} with exponent ¢ is a sequence
consisting precisely of [(1 — r,)~!~¢] points symmetrically placed on the circle
|z| = 7n.

(3.14) PROPOSITION. A symmetric sequence based on {r,} is an A=*° sampling
sequence if and only if

 llog( — )l _
w0 flog(1 1)

Proof. If the sequence is sampling then clearly E = |J,{|z| = r,} is sampling,
which by Proposition (3.3) implies our condition. Conversely, if the condition
holds then Proposition (2.4) shows that E is a sampling set. This means that, for
every f € A=, there is a sequence {z;} contained in E such that [z;| — 1 and

log| f(zp)|
=T .
o, Tiog (1 — 2Dl — )

Our given sequence (call it {w;}) is symmetric, so we can pair each z; with an ap-
propriate wy, such that [zx — w;, | < g(1 — |z&|)1*¢ for all k. Thus, by Lemma

(3.6),
log| f (wy)|
g f I — T(f)-
koo [log(1 — |wy,|)
It follows that {w,} is an A~* sampling sequence. L

IV. A General Necessary Condition

In this section we develop a general necessary condition for A~ sampling sets
and prove that it is sufficient—in a certain sense—in the case of symmetric sets.

(4.1) DEFINITION. £ = e'® € dU is a point of fast decline for a function f €
H® iflim,_,1(1 — r)™"| f(re’*)| =0 foralln > 0.

(4.2) THEOREM. If I' is an A~° sampling sequence, then for all &€ € dU, for all
B > 1, and forall g < 1/4, either I N\ G¢ g 4 is not a Blaschke sequence or § is a
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point of fast decline for the Blaschke product Bg g , vanishing on the subsequence
I' N Gg, g 4, where

Gepq=1{z€U:|z] <1—qlArgz/£)|"}.

Proof. Suppose that some &y € dU is not a point of fast decline for B = By, g ,.
Then there is a sequence r, /' 1 and a number m > 0 such that

|B(rnéo)| > 1 — )" (n=1,2,...). 4.3)
Now define
Fy() =B@E -2, NeN

Since Fy|rng; s, = 0,
Tr(Fn) < N/B.

However, (4.3) implies that

T(Fy) > N —m.
For N sufficiently large this implies

T(Fyn) > Tr(Fy),

and so I' is not an A~*° sampling sequence. U
(4.4) DErFINITION. We call the condition in Theorem (4.2) “condition C”.

(4.5) THEOREM. Let O < r, /' 1 in such a way that

1'_ n T —Ipn
Tl _ 1 ond  Tim [log(1 — 7p41)]
n 1—=ry, n—oo |log(l — ry)|

>1+42¢

forsomee,0 < € < %.Ifﬂ >1,8 >0,and1—-1/B+6 < &/3, then a symmetric
sequence S of exponent & based on {r,} (see Definition (4.11)) violates condition
C with exponent f.

Proof. We shall show that condition C fails on the real positive radius. Let G =
Gy p, 1 and let B be the Blaschke product vanishing at the points {z;} = SN G.

It will suffice to show that there exists a constant y > 0 such that, for every n
satisfying
llog(1 — rp41)]
[log(1 — ry)|

(i.e., for a full subsequence of {r,}), we can find a point 7/, such that

>1+4¢

rn<r, <rpy1 and |B@r))| > y.

Now, since

B(z) = l—[ _Zk_l g —<Z

1 - 9
zx€G 2k (474

if z > 0 is a bit distant from all of the {r,}, say
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2
inf | 2 >d >0,
n |1 —ryz
then
1 1 Zk—Z -2 1 Zk —Z 2
log = — log — < — - =
|B(z)| 2 Z; 1 —zxz 2d pre 1 —2Zz
1 (1—-z)(1—r?)
=2d2 2 imar

n 2k €CG

lzkl=rn

For a given n, we have approximately (1 — r,) ™!~ points {z;} on {|z| = r,,}, so
that the fraction c¢(1 — r,,)!/# of them belong to G. Hence we can conclude that

1 (1 =221 —ry)1/P~?
log {1 <€ 2 (=72

— — 1/8—é _ 1/8-8
Z(l (1 —r1y) +CZ(1 Tn) .

=¢ 1 —r)? 1-2)

=z 'h>2Z

Since, by assumption, the numbers (1 — r,,) decrease geometrically (at least) with
n, we can estimate each of the foregoing sums by its largest term. Thus, if we
choose N such thatry < z < ry41, then

1 (1-2) (1 — rysr) VA
bgwenfchl—mVAMM*' -2 }

Now, if (1 —ry41) < (1 — ry)1*¢ then we can choose z, ry < z < ry41, such
that (1 — ry4+1)17%3 < (1 — 2) < (1 — ry)'**/3 and so obtain

1
Io < o[(1 = ry)E/3~A=1B+0) 4 () _ po NE3-U-1/B+D)],
g BQ)| — [( N) ( N+1) ]
By hypothesis, 1 — 1/8 + 8 < ¢/3, so the last expression actually tends to zero
as N — oo, proving our theorem. |

The following theorem summarizes several of our results.

(4.6) THEOREM. Assume that

O<r, /1 and sup

Then the following are equivalent.

(a) Every symmetric sequence based on {r,} is an A~ sampling set.
(b) Every symmetric sequence based on {r,} satisfies condition C.

© fim 1080 =rasDl _

n—oo |log(l —ry)|
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