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1. Introduction

It is well known that the fundamental group of the complement of a complex pro-
jective algebraic curve depends on the position of its singularities [4; 6; 9]. Let
Y. C CP? be a union of projective lines and let G = 71 (CP? \ X). We ask under
what conditions will G be independent of the position of the singularities of 2.
The purpose of this paper is to give such a condition. First, we define a topolog-
ical invariant (%) for X. To describe 8, we introduce a graph I' that lies on the
arrangement of lines ¥ and connects higher singularities (multiplicity > 3) of X.
This graph in general has more than one component and is not uniquely defined.
However, we show that the homotopy type of I' is independent of our choice,
and we define B(X) to be the first Betti number of I'. In Section 3, we prove the
following theorem.

THEOREM 1. If B(X) =0, then G = m1(CP?\ ) is independent of the position
of the singularities and G is a direct product of free groups.

In Section 4, we study the fundamental group of the complement of an arrange-
ment of six lines. An arrangement of six lines can have at most four higher singu-
larities. In case an arrangement of six lines has three or four higher singularities,
all these higher singularities must be triple points. In Section 4 we also show the
following.

THEOREM 2. For an arrangement of at most six lines, G does not depend on the
position of the singularities.

Theorems 1 and 2 together imply that: if two arrangements of lines have the same
number of lines and the same local topology, and if their complements have non-
isomorphic global fundamental groups, then they must both have at least seven
lines and three higher singularities. In [4], the author gave an example of a pair of
arrangements of seven lines where both have three triple points and twelve dou-
ble points and where their complements have nonisomorphic global fundamen-
tal groups. We see here that in this example both the number of lines and higher
singularities (and their multiplicities) are smallest possible.
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2. Definition of S(X)

Let ¥ = L;U---UL, C CP?be aunion of n distinct projective lines, let D be
the set of all double points, and let S be the set of all singularities of X of mul-
tiplicity > 3. Foreach line L;, i = 1,...,n,let S; = L; N S, let the number
of points of S,- be ¢;, and let S; = (a{, cees a;'i}. If S; = @ then #; = 0. For each
j=1,. -1, choose a simple arc (i.e., an arc without self-intersection) Aj- C
L;\ D to connect a and a; ,, and require that the interiors of Ai and Al have

empty intersection for I # 5. Note that A; = AjU... U A’ _1 is itself a simple
arc and that A; C L; goes through all points of Si and aV01ds double points on
Li.Incaset; <1,weletA; =@.Letl’' =SUA;U---UA,, and note that I' is
a graph that lies on X. We call S the set of vertices and {A;'., i=1,...,n j =
1,...,% — 1} the set of edges of I'. Call I" an S-graph. We can have different
choices for A; and ordering on S;, so I' is in general not uniquely defined. Let us
now show the following lemma.

LEMMA 2.1. Let I" and T'* be S-graphs on X. Then T and T'* are homotopy
equivalent.

Proof. LetI' = SUA;U---UA,and '™ = SU AT U .-- U A} with A;, AT C
L,~ be two S-graphs on X. LetI' = I'g, andfor j = 1,...,nletI; = SU AT U

U A7 U Aj;1 U Ay. Note that T'; is an S-graph. For j = 1,...,n, I';_; and
I'; have the same chosen arc on L; except wheni = j. If t; <1 then Aj= A7 =
@ and hence we have I';_; = T';. If ; > 1, then A; and A} are both 31mp1e arcs
on L;. Choose a point b on S;. Note thatbisa deformatlon retract of both A; and
A?, so retractions of A; and A}‘ to the point b extend to a homotopy equivalence
of I'; and I'; to the same graph. Hence I'; and I'; are homotopy equivalent. In-
ductively, this shows that I" and I'* are homotopy equivalent. L]

LEMMA 2.2. Let 1, B, C CP? be arrangements of lines and suppose that there
is a homeomorphism f:%, — X,. Then S-graphs on X, and Y., have the same
homotopy type.

Proof. Let f:%; — 3, be ahomeomorphism. The assertion follows since f and
£~ map line to line, m-fold point to m-fold point, and S-graph to S-graph. O

Let X be a topological space that is homeomorphic to X, and let f: ¥ — X be a
homeomorphism. Then the image f(L;), i = 1,...,n, is homeomorphic to S?
and the image of an m-fold point lies on the image of m lines. Hence the con-
cepts of m-fold point and S-graph can be carried over to X via the homeomor-
phism f. This shows that the homotopy type of an S-graph on % depends only on
the topological type of Z. Since the homotopy type of a finite connected graph is
decided by the first Betti number of the graph, it follows that the homotopy type
of an S-graph is decided by the number of components of the graph and by the
Betti numbers of corresponding components. Choose an S-graph I" on X, and let
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B(X¥) =rank Hi(I") = by (T") be the first Betti number of I". By Lemma 2.1, 8 is
independent of the S-graph chosen and depends only on X.

LEMMA 2.3. Let %1, Xy C CP? be arrangements of lines, and suppose that there
is a homeomorphism f: X — X,. Then B(Z1) = B(X)).

Proof. This a corollary of Lemma 2.2. U

LEMMA 2.4. Suppose that ©., ©* C CP? are two arrangements of lines that
intersect in nodes only. Then

B(Z U T®) = B(Z) + B(X).

Proof. An S-graphon X UX* is a disjoint union of an S-graph on X and an S-graph
on X*, and the first Betti number is additive with respect to disjoint union. C

LEMMA 2.5. Let ¥ C CP? be an arrangement of lines. Then (Z) = 0 if and
only if S-graphs on X are disjoint unions of trees.

Proof. LetT be an S-graphon X. Then (X)) =0 = bj(I') =0<«<=Tisa
union of disjoint trees. O

Let us recall some basic facts about a tree. The degree of a vertex v of a graph
is the number of edges incident with v. A vertex v is isolated if deg(v) = 0, and
v is an endpoint if deg(v) = 1. For a tree that has at least one edge, an endpoint
always exists.

3. m,(CP> \ ¥) for Arrangements of Lines with 8(X) =0

In this section, we compute G for arrangements of lines with (%) = 0. The
following result of Oka and Sakamoto [7] is crucial to our calculation.

THEOREM 3.1. Let Cy, C; be two distinct algebraic curves in the complex affine

plane C? of degree ny, n,, respectively. Suppose that C; and C, intersect at nn;
distinct points. Then 1(C?\ C1U C3) = m1(C?\ C1) @ m1(C?\ C>).

For arrangements of lines, let us show the following lemma.

LEMMA 3.1. Let ; C CP%,i = 1,2, be an arrangement of n; lines, and let
Y = LU X UX, C CP? be an arrangement of 1 + ny + ny lines. Let C? =
CP?\ L, and suppose that $, and %, intersect at nin, distinct points in C2. Then

m(CP?\ ) 2 7 (CP2\ Z{UL) ® mi(CP2\ =, UL).

Proof. Let C; = C*N X; and C; = C? N X,. Since C; and C, intersect at nyn5
distinct points, by Theorem 3.1 we have

m(CP2\ T) = my(C%\ C1U C2) = 1y (C%\ C1) @ m(C?\ Ca)
=~ 7 (CP?\ ZiUL) ® mi(CP?\ Z,UL). O
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Denote a free group of rank ¢ by F;, a free Abelian group of rank r by A,, and the
multiplicity of a point P on X by m(P).

THEOREM 3.2. Let X be an arrangement of n lines, and let S = {ay, as, ..., a;}
be the set of all singularities of X with multiplicity > 3. Suppose that (%) = 0;
then

T(CPP\X) = A, ® Fruga))-1 @ - - - ® Fungap-1,

wherer =n+k—1—m(a)) —--- —m(ay).

Proof. We proceed by induction on k. Suppose that k = 0; then X is n lines in
general position and we have G = A, _; [9]. Suppose that our assertion is true for
k = s > 0, and assume that X has s + 1 higher singularities. Let I" be an S-graph
on X. By our assumption, I' is a union of disjoint trees with s + 1 vertices. There
are two cases.

(1) T has an isolated vertex. Let a; be an isolated vertex of I', and note that
a line that goes through a; will not go through any other point of S. Let
Ly, ..., Ly, be lines that go through a;.

(ii) T has no isolated vertex. Then I has at least one edge and hence has an end-
point. Let a; be an endpoint of T", and let L; be the line that contains the
edge connecting a; and another vertex of I'. Let Ly, Lo, ..., Ly4,) be lines
that go through a;.

In either of these two cases, X \ L; C CP?\ L, splits into two components and
one of these components is m(a;) — 1 parallel lines. These two components inter-
sectin CP?\ Ly in (m(ay) — 1)(n — m(ay)) points. Let ©; = L;U.-- U L, and
2ro=L;U Lm(a1)+1 U Lm(a1)+2 U---UL,. Note that ¥, has s higher singularities
and B(X;) = 0. By Lemma 3.1, we have

w1 (CP*\ X) = m1(CP? \ %1) @ 71(CP? \ T2)
= m(a;)—1 @ Ar & Fm(ag)—l b---D Fm(as.H)—l
= Ar &b Fm(al)—l @D Fm(az)—l b---D Fm(as_H)—I,

where

r=n—(@ma)—1)+s—1-mla)—--- —m(a1)
=n+@+1)—1—ma))—- - —m(asy1). O

Let us give examples of two classes of arrangements of lines with 8(X) = 0.

(1) Suppose that in X there is a line L that goes through the set S of all higher
singularities. Then any other line of X can go through at most one higher singu-
larity. Hence an S-graph on X is a simple arc on L that goes through all points of
S, and B(X) = 0. For this class of arrangement, G is known (see, e.g. [4]) and
Theorem 3.2 is a generalization of [4, Cor. 2.1].

(ii) Assume that 3 has two higher singularities. Then these two singular points
either lie together on a line of the arrangement or they do not. In the former case,
an S-graph on X is a simple arc with two vertices. In the latter case, an S-graph
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on X is a union of two isolated points. In both cases, S(%) = 0. We sum this up
with the following corollary.

COROLLARY 3.1. Let X be an arrangement of n distinct complex projective lines
in CP? such that X has two distinct singular points ay, a, with multiplicities > 3.
Letr =n+1—m(ay) — m(ay). We then have

G =m(CP?\ Z) = A, ® Frap-1 ® Fry-1-

An arrangement X of at most five lines has at most two higher singularities. Hence
Corollary 3.1 shows that, for an arrangement of at most five lines, G does not de-
pend on the position of the singularities.

4. Arrangements of Six Lines with
Three or Four Triple Points

For areal arrangement, a presentation of the fundamental group of its complement
in CP? can be obtained as in [8]. In this section, we show that: (i) for any ar-
rangement of six lines with three triple points, G is isomorphic to the fundamental
group of the complement of W; whose configuration is given by

xy(x —y)(x+y—-32)(x+3y —32)3x +2y — 62) =0; 4.1)

and (ii) for any arrangement of six lines that has four triple points, G is isomor-
phic to the fundamental group of the complement of W, whose configuration is
given by

xy(x —y)(x+y—6)(x+2y —62)2x+y—6)=0. 4.2)

1

First, we consider an arrangement of six lines with four triple points. Such an ar-
rangement is completely determined by the coordinates of its triple points. Let
these four points be Py, P,, P3, P4. No three of these four points are collinear, for
if this happens then the arrangement will have at least seven lines. There are six
choices of pairs of points among these four points, and each pair of points gives
us a line; their union gives us the arrangement.

LEMMA 4.1. Let %1, £y C CP? be arrangements of six lines with four triple
points. Then there is a projective transformation T such that T(X;) = Xs.

Proof. Let Ay, Az, A3, A4 be triple points of ¥, and let By, B,, B3, B4 be triple
points of 3,. Since no three points are collinear in each set of triple points, there
is a unique projective transformation 7 of CP? such that T(A;) = B;. Because a
projective transformation preserves projective lines, we have 7(X;1) = X». [

The arrangement W, given by equation (4.2) has four triple points. By Lemma
4.1, we have our next corollary.
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COROLLARY 4.1. If ¥ C CP? is an arrangement of six lines with four triple

points, then
G, = m(CP?\ ) = m1(CP?\ W).

Proof. Let T be a projective transformation such that 7(X) = W,. Then T serves
as a homeomorphism of a pair that maps CP? to itself and X to W,. Hence we
have a homeomorphism from CP? \ X to CP? \ W,, and this induces an isomor-
phism between 71 (CP? \ X) and 71 (CP? \ W>). O

1
Let 3 be an arrangement of six lines with three triple points.

LEMMA 4.2. Let ¥ C CP? be an arrangement of six lines with three triple points.
By performing a finite sequence of smooth equisingular deformations, we can de-
Jorm X to W;.

Proof. Let Ly, ..., Lg be the lines of . Note that ¥ has six double points. Let
01, O,, O3 be triple points and Dy, ..., D¢ double points of 3. By counting the
number of lines, we see that there are three lines, say Ly, L,, L3, such that L;
goes through O;, O3, L, goes through Oy, O3, and L3 goes through O, O,. Let
the third line that goes through O,, O3, O3 be L4, Ls, Lg, and let the defining lin-
ear equation of Ly, Ly, ..., Lg be Fy, F>, ..., Fg, respectively. Let the point of
intersection of (i) L4 and L be Dy, (ii) Ls and L, be D,, (iii) L¢ and L3 be D3,
(iv) Ls and Lg be D4, (v) L4 and Lg be D5, (vi) L4 and Ls be Dg.

If we know coordinates of (say) D4, Ds, O1, O,, O3 in CP2, then their coor-
dinates determine X. However, if we know the coordinates of only four of these
points then we cannot determine the arrangement.

Assume that the coordinates of Dy, Ds, O1, O, are fixed. Using the coordi-
nates of Op, O,, we obtain the linear equation F3 of L3. Using the coordinates of
D4, Ds, we obtain the equation Fg of L¢. Using the coordinates of Oy, Ds, we ob-
tain the equation Fy4 of L4. Using the coordinates of O,, D4, we obtain the equa-
tion Fs of Ls. Using F4 and Fs, we obtain the coordinates of Dg. Equations F3
and Fg together determine the coordinates of D3. To determine equations Fi, F;
and the coordinates of Dy, D, we need to know the coordinates of O3; by writing
equations down directly, we see that all coefficients of F; and F,, as well as the
homogeneous coordinates of Dy and D,, are polynomial functions of coordinates
of 03.

Consider the arrangement W; given by equation (4.1), where coordinates of the
triple points are £y = [0, 3, 1], E;, = [3, 0, 1], and E3 = [0, 0, 1]; coordinates of
two double points are E4 = [%, %, 1land E5 = [g, —g-, 1]. Note that no three points
of Eq, E,, E4, Es are collinear. There is a projective transformation 7* such that
T*(D4) = E4, T*(Ds) = E5, T*(Ol) = E1, T*(Oz) = Ez, and T*(E) is an ar-
rangement of six lines with three triple points E;, E; and T*(03). Denote V =
T*(03), and note that V lies on the line given by x — y = 0.

Fix D4, Ds, O1, O and move O3 in L4 slightly (hence X must deform accord-
ingly) if necessary. We assume that the coordinates of V are [b, b, 1] and that b is
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not real. Let C? = {[x, y, 1] € CP?}. Connect V and E3 by a real line segment
J = {A, = [th,tb,1] | t € [0, 1]} in C2. Note that Ag = [0, 0, 1] = E; and
A; = V. Let ¥, be the vanishing set of

Fr(x,y,2) =(x+y—32)(x —y)(x +3y —32)(3x +2y — 62)
X [(B —tb)x +tby — 3tbz][tbx 4+ (3 — tb)y — 3tbz].

Because b is not real, one sees that X, is an arrangement of six distinct lines for
eacht € [0, 1].

Coordinates of triple points of X, are [0, 3, 1], [3, 0, 1], and a; (t) = [tb, tb, 1].
Coordinates of double points are [3, 3, 11, [£, £, 11, [3, 3, 11, [, 3, 1], a2()) =
[6th,9 — 6tb,9 — 41b], and a3(¢) = [18 — 12¢b, 3tb, 9 — 5tb]. Note that X,
may have more than three triple points only if ax(f) = as(t), but if this hap-
pens then %, will have fewer than six distinct lines, which is not possible. Since
F, ay(t), ax(t), a3(t) depend smoothly on ¢, the family {F;, ¢t € [0, 1]} givesus a
smooth equisingular deformation from 7*(X) to W;. The Lie group PGL(2,C)
is connected, so we can deform X to 7*(X) via a smooth equisingular deforma-
tion. Hence we have a finite sequence of smooth equisingular deformations that
carries X to Wj. 0

COROLLARY 4.2. If & C CP? is an arrangement of six lines with three triple

points, then
G1 = m(CP?\ ) = 7,(CP?\ Wy).

Proof. If we perform a smooth equisingular deformation on an algebraic curve
C C CP?, then, up to isomorphism of groups, 7;(CP? \ C) is unchanged [3].
Hence the combined effect of a finite sequence of equisingular deformations that
deform ¥ to W, will leave r;(CP? \ X) unchanged up to isomorphism. Hence
7 (CP?*\ %) = G;. O

Corollaries 3.1, 4.1, and 4.2 together imply our final result.

THEOREM 4.1. Let ¥ be an arrangement of at most six lines. Then G =
71 (CP? \ X) does not depend on the position of the singularities.

5. Some Arrangements of Seven Lines

Let X1, &, be two arrangements of # lines in CP? that have same local topol-

ogy. Suppose that their complements have nonisomorphic fundamental groups.

By Corollary 3.1 and Theorem 4.1, n > 7 and each arrangement must have at least

three higher singularities. In [4], we gave the following pair of arrangements of
lines:

yx = y(x+y)2x —y —22)2x +y —22)
XBx—y—-62)Bx+y—62) =0, 5.1
xy(x —y)(x+y—22)(x —2y — 22)
Xx2x4+y—-22)B3x—y—92) =0. 52)
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Both arrangements have seven lines, three triple points, and twelve double points;
their complements have nonisomorphic fundamental groups. In [4], we showed
that: (i) for the arrangement of lines V; given by (5.1), we have ;1 (CP? \ V;) =
F, ® F, & F,, where F; is a free group of rank 2; and (ii) for the arrangement
Vs given by (5.2), w1 (CP? \ V) has a nontrivial center. These two facts together
imply that 7r;(CP? \ V;) and 7;(CP? \ V) are not isomorphic. By Corollary
3.1 and Theorem 4.1, we see that—among all pairs of arrangements of lines that
have same local topology but have complements with nonisomorphic fundamen-
tal groups—the pair V; and V, have the smallest possible number of lines and sin-
gularities. Moreover, multiplicities of higher singularities of V; and V, are also
lowest possible.

The arrangement V; has the property that all three higher singularities lie on one
line of V1. We point out that there is another arrangement of seven lines with three
triple points and twelve double points such that w; (CP?\ X)) = F, ® F, ® F;, and
that these three triple points do not lie on one line of the arrangement. Consider
the arrangement V3 = L U U; U U, of seven lines, where (i) L is given by x = 0,
(ii) Uyis given by y(x — y)2x —y —22)(2x +y —22) = 0, and (iii) U, is given
by (x —2y 4 8z)(x + 2y — 8z) = 0. This arrangement has three triple points and
twelve double points; coordinates of the triple points are [0, 4, 1], [0, 0, 1], and
[1, 0, 1]. No line of V3 contains all these three triple points. However, an S-graph
on V; that connects these three triple points is composed of two arcs that lie on
the X axis and the Y axis, respectively, and the graph has the form of the capital
letter V. Hence B(V3) = 0, so

T(CPP\ V) =Ko Ko F.

To end this paper, we ask: Is the condition that 8(X) = 0 also a necessary one
for G = m(CP?\ X) to be a direct product of free groups? We surmise that this
question has an affirmative answer.
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