Coherentlike Conditions in Pullbacks

STEFANIA GABELLI & EVAN HOUSTON

1. Introduction and Preliminaries

Let M be a (nonzero) maximal ideal of a domain 7, let kK = T/M be the residue
field, let ¢: T — k be the natural projection, and let D be a proper subring of £.
Let R = ¢ !(D) be the domain arising from the following pullback of canonical
homomorphisms:

R — D

L :

T —% 5 k=T/M.

We use K and F to denote the quotient fields of R and D, respectively. The case
k = F is of particular interest; in this case, we say that the diagram O is of type O".

The goal of this paper is to characterize certain coherentlike properties of in-
tegral domains in pullback constructions of type 0. In one sense, this work is a
sequel to that of Brewer and Rutter [BR], in which coherence and several other
properties are studied in so-called generalized D 4+ M constructions—that is, pull-
backs of type O in which it is assumed that T = k 4 M. ([BR] was in turn at least
partly inspired by the work of Dobbs and Papick [DP] on coherence in the classi-
cal D + M construction, in which 7 = k 4+ M is assumed to be a valuation do-
main.) Our work in this more general context is partly motivated by the fact that
results which hold for the D 4 M construction do not always extend to pullbacks
of type O. For example, [FG, Thm. 4.2(b)] shows that the characterization of the
GCD-property given in [BR, Thm. 11] requires modification, and [FG, Example
4.3] exploits pullbacks to give a counterexample to a conjecture of Anderson and
Ryckaert [AR, Question 3.10].

The notion of v-finiteness figures prominently in [FG]. An ideal 7 of a domain
R is said to be v-finite if I~' = J~! for some finitely generated ideal J of R. We
denote Section 2 to a study of divisoriality and v-finiteness in pullbacks of type
0. We show, for example, that if T is quasilocal with maximal ideal M, then each
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nonprincipal divisorial ideal of T is a divisorial ideal of R; we also prove a par-
tial converse. We then give a complete characterization of when M is v-finite as
an ideal of R.

A domain R is said to be v-coherent if I ! is a v-finite divisorial ideal for each
finitely generated ideal / of R. This concept was introduced in the thesis of Nour
El Abidine [N1], where it was proved that Nagata’s theorem for class groups of
Krull domains can be extended to v-coherent domains. Section 3 begins with a
brief review of known facts, most of which are contained in [N1]. We then proceed
to characterize when R is v-coherent. On the one hand, we show that in a pull-
back diagram of type O*, R is v-coherent if and only if D and T are v-coherent
and M is a t-ideal of T'; on the other hand, in a pullback diagram of type 0O where
it is assumed that k properly contains the quotient field of D, we show that R is
v-coherent if and only if D and T are v-coherent and M is either not a ¢-ideal of
T or is a v-finite divisorial ideal of 7. We also use our characterization to give a
counterexample to a conjecture that appears in [N1].

In Section 4, we use results and techniques from Sections 2 and 3 (and from
[FG]) to characterize several other coherentlike conditions in pullbacks of type C.
For example, we extend to this more general context the characterization of co-
herence given in [BR], and we also give characterizations of quasicoherence and
the finite-conductor condition. The characterizations are as follows: R is coherent
(quasicoherent, a finite conductor domain) if and only if exactly one of the follow-
ing conditions holds: (1) k is the quotient field of D, D and T are coherent (qua-
sicoherent, finite conductor domains), and T} is a valuation domain; or (2) D isa
field, [k : D] < oo, T is coherent (quasicoherent, a finite conductor domain), and
M is finitely generated in 7. We also extend to v-domains the characterization of
Priifer v-multiplication domains (PVMDs) in pullbacks given in [FG], and we usz
this to give an example of a non—completely integrally closed v-domain that is nct
a PVMD. Finally, we summarize what is known for Mori domains in pullbacks,
and we study the class of domains in which each divisorial ideal is v-finite.

Our methods throughout are ideal-theoretic.

2. Divisorial Ideals in Pullbacks

We begin by reviewing some terminology. Let R be a domain with quotient field
K. For a nonzero fractional ideal I of R, the inverse of I is the fractional ideal
I"'=(R:I) ={x € K | xI C R}, the v or divisorial closure of I is given by
I, = (I"H7!, and the ¢-closure is given by I, = U{Jy | J is a finitely generated
subideal of I }. Recall from Section 1 that [ is v-finite if ™! = J~! (equivalently,
I, = J,) for some finitely generated ideal J of R. For properties of the v- and
t-operations, the reader is referred to [Gi, Secs. 32 and 34].

When studying pullbacks of type 0, it is often necessary to take inverses and v’s
in both R and T'. For a fractional ideal I of R, we shall usually write ! for the in-
verse (R: I) of I withrespectto R and (7T : IT) for the inverse of I7 with respect
to 7. However, because it is so convenient, we often write (IT), for (T : (T : IT))
(the danger of confusion is slight).
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We shall freely use the following properties of flat extensions (see [FG, Prop.
0.6]): If T is a flat overring of the domain R and J is a finitely generated ideal
of R, then (JT), = (J,T),; moreover, if J~! is also v-finite in R then (JT), =
JoT = (JyT)y.

Recall that in the pullback diagram 0O, M is the conductor of T, that is, M =
(R:T). It follows that R and T have the same quotient field K, that each ideal of
T which is contained in M is also an ideal of R, and that M is a prime divisorizl
ideal of R with M~' = (M : M) D T. Moreover, for each prime ideal P of R for
which P ¢ M, there is a unique prime ideal Q of T such that P = Q N R, and
for this Q we have Rp = Typ. In particular, for each maximal ideal N = M in T
we have Ryngr = Ty; if k = F then Ry, = Tyy.

If T = (T, M) is quasilocal, then every ideal of R is comparable with M; in
particular, if D is also quasilocal (or a field) then R is quasilocal.

A general reference for basic facts about pullbacks is [F]. The term “ideal”
means “integral ideal,” and we often tacitly assume that an ideal is nonzero. Fi-
nally, because we refer to it so often, the reader is advised to have a copy of [FG]
in hand.

LemMA 2.1.  Consider a pullback diagram of type Q. Then:
(1) M is invertible in T if and only if M~} ; (T:M); and
(2) if M is invertible in T, then M i

Proof. Wehave M € M(T: M) C T. Hence M is not invertible in T if and only
if M = M(T:M)ifandonlyif (M: M) =M"! = (T: M), and (1) follows. Now
suppose that M is invertible in 7', and write 1 = mu; + - - - + mpuy withm; € M
andu; € (T:M) fori =1,... ,k Thenforx € M~ = (M: M) we have x =
(xm)uy + - - + (xmp)uy € T, from which it follows that M~ = T. O

PROPOSITION 2.2.  Consider a pullback diagram of type 0. Then M is divisorial
in T if and only if exactly one of the following conditions holds:
(1) M is invertible in T; or
(i) M~' 2 T.
Proof. Note that by Lemma 2.1, the two conditions cannot hold simultaneously.
(=) If M is divisorial but not invertible in 7 then, by Lemma 2.1(1), M~ =

(T:M)2T.
(<) If M is invertible then it is divisorial. If A ~! ; T then (T : M) 2 T and,
since M is maximal in 7', this implies that M is divisorial. O

In the case where T is quasilocal and D is a field, Proposition 2.2 is essentially
[B, Remark 2.7].

PRrOPOSITION 2.3. Consider a pullback of type O*. If M is invertible in T, then
M is not v-finite in R.

Proof. Let J be a finitely generated ideal of R with J € M. We shall show that
M=' £ J7'. Foru € (T: M), we have Ju C T, so that ¢(Ju) C k. Since J
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is finitely generated and k = F (the quotient field of D), there is an element
r € R\ M with ¢(rJu) = ¢(r)¢(Ju) C D, whence rJu < R. It follows that
r(T: M) € J~'. On the other hand, r(7 : M) 7¢_ T,sincer ¢ M = (T:(T:M)).
Because (by Lemma 2.1) T = M~!, we have J~! £ M~!, O

PROPOSITION 2.4. In a pullback diagram of type 0O, the following are equivalent:
() k#F;

(2) thereis an element x € T\ Rwith xRN R C M;

(3) thereis an element x € T \ R with xRN R = xM,

(4) thereis an element x € T \ R with M = (R: (1, x)).

Proof. (1) = (2) Weuse ~ to denote images modulo M. Choose x € T \ R with
x¢ F.If y =xrfory,r € R,theny = xr € D, so that ¥ = 0 and we have
yeEM.

2) = (1) If k = F, then Tyy = Ry, is flat over R. Hence forx € T \ R, we
have (x ¢ M and) (xRN R)Ty = xTpy N Tayy = Ty, whence xRN R € M.

3) = (2) Clear.

(2) = B)Letx e T\ RwithxRNR C M.If y = xr with y, r € R, then the
assumption xR N R € M implies that y € M, whence r € M and we have y €
xM. Thus xR N R € xM. The reverse inclusion is clear.

(3) & (4) Clear. O

REMARK. In a pullback of type O, let S = ¢~!(F). Then it is clear from the
proof of Proposition 2.4 that statement (4) can be replaced by “for each element
x € T\ Swehave M = (R: (1, x)).” Statements (2) and (3) have similar replace-
ments. In particular, if D = F then the assumption k # F is automatic (since
we have assumed throughout that D is a proper subring of k), and we have M =
(R:(1,x)) foreachelementx € T \ R.

COROLLARY 2.5. Consider a pullback diagram of type 0. If M is finitely gener-
ated in the ring (M : M) and k # F, then M is v-finite in R.

Proof. Write M = J(M : M) for some finitely generated ideal J of R with J C
M. By Proposition 2.4, M~! = (M: M) = (1, x), for some x € T \ R. Hence
M=J{,x), € (J,Jx), €M, and we have M = (J, Jx),. (W

From Proposition 2.3 and Corollary 2.5, we obtain the following.

COROLLARY 2.6. Consider a pullback diagram of type O, and assume that M is
invertible in T. Then M is v-finite in R if and only ifk # F.

The following technical result is the key to proving the main results in this paper.

ProrosiTION 2.7.  Consider a pullback diagram of type O, and let I be a frac-
tional ideal of R.
(1) If ITy; is not principal, then
@ WM:D=1I"=WR:ITY=WM:IT)=(T:IT)=I1""T and
(b) I, =1,T C (IUT)U = (IT)U"
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(Note that the latter two v’s are taken with respect to T.) Moreover, if T = (T, M)
is quasilocal and (IT), is not principal in T, then

Iv = IvT - (IUT)U = (IT)U'

QIfFI™' =W :1)and I(M: M) = J(M: M) for some invertible fractional
ideal J of R withJ C I, then M = JI7' = J(M : I).

Proof. (1) If IT); is not principal then ((IT)(T:IT))Ty S ITy(Ty: 1Ty) C
MTy. Hence 117! € (IT)(T:IT) € M and we have I~! = (M:I). It fol-
lows that (T:IT) = (M:IT) € (R:IT) C I™' = (M:I) C (T:IT). Also,
I7' € I7'T C (T:IT). This proves (a). Now IT C I,T = (R:I™H)T C
(T:17'T) = (T:(T:IT)) = (IT),; hence (IT), = (I,T),. On the other hand,
ICWM:M:D)y=M:(R:1)) CI,,sothat I, = (M:(M:1)). Thus I,T =
M-M:INT CCM:M:-DTYC(M:(M:I))=1,, and (b) follows.

Now assume that T = (T, M) is quasilocal and that (IT), is not principal.
Then, since IT is also not principal, it suffices by (b) to show that (IT), C I,.
However, (IT),I™' = (IT),(T:IT) € M C R, whence (IT), C I, as desired.

(2) Assume that /~! = (M: 1) and that J is as stated. From I (M: M) =
J(M : M) we obtain IM = JM < J. Thus (since J is invertible) we have MJ ! C
I7' whence M C JI"'=JM:1) C M.Itfollowsthat M = JI~' = J(M: I).

d

REMARK 2.8. (1) In Proposition 2.7, suppose that T is quasilocal, /Ry is not
principal, and IT is principal. It then follows (since T is quasilocal) that IT =
yT for some y € I and, since T € (M : M), we may apply Proposition 2.7(2)
to conclude that M = yI~!. We shall make use of this fact several times in the
remainder of the paper.

(2) By Proposition 2.7(1)(a), if 1Ty, is not principal then I~! = I~'T, whence
I~ is not principal (as a fractional R-ideal). It follows in this case that I, is also
not principal.

(3) In Proposition 2.7(1), it is possible to have I, ; (IT),. Indeed, if M = IT
for a finitely generated ideal I of R, but M is not divisorial in T, then I, C M g
T = (IT),. (It can actually be shown that I, = M.) For an explicit example, see
Example 3.6(2) in the next section.

COROLLARY 2.9. Consider a pullback diagram of type O, and assume that T =
(T, M) is quasilocal. Then each nonprincipal divisorial ideal of T is a diviso-
rial ideal of R. If, in addition, T = (M : M), then each divisorial ideal of T is
divisorial in R.

Proof. Let I be a nonprincipal divisorial ideal of 7. Then (7 is also an ideal of R
and), by Proposition 2.7(1)(b), we have I, = (IT), = I (where the first v is taken
with respectto R). If T = (M : M) (= M YHand I = yT is principal, then I =
yT = yM~! is a principal multiple of the divisorial ideal M ~! and is therefore di-
visorial. 0
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CorOLLARY 2.10. Consider a pullback diagram of type O, and assume that T =
(T, M) is quasilocal. Let I be a nonprincipal divisorial ideal of R. Then I = IT
in each of the following cases:

(1) IT is not principal in T
(2) D is afield.

Moreover, JT is divisorial in T for each divisorial ideal J of R if and only if
M is divisorial in T.

Proof. If IT is not principal in T then, by Proposition 2.7(1)(b), we have I =
I, = I, T = IT. For (2), we may assume that /7 = yT is principal. Then, since
T and R are quasilocal, we may apply Remark 2.8(1) to obtain M = yI~!. Invert-
ing both sides and using the fact that / is divisorial in R, we obtain M -1 = y" 1,
or I = yM~! = y(M: M), which is an ideal of T

Now assume that M is divisorialin 7', and let J be a divisorial ideal of R. We may
assume that JT is not principal in 7. Then (JT),(T:JT) € (JT(T:JT)), <
(MT), = M. Hence (JT), is also not principal, and by Proposition 2.7(1)(b) we
conclude that J = (JT), is divisorial in 7. The converse is clear. O

REMARK 2.11. Inthe case where D = F, Corollary 2.9 yields [B, Prop. 2.4] and
Corollary 2.10 is similar to [B, Prop. 2.6]. If, in addition, T is a valuation domain,
then much more can be said. Recall that a pseudo-valuation domain (PVD) is a
quasilocal domain (R, M) for which M~! is a valuation overring of R satisfying
Spec(M~!') = Spec(R); according to [AD, Prop. 2.6], a domain R is a PVD if
and only if R arises in a pullback diagram of type O, where T is a valuation do-
main and D = F. In this case we have by [HH1, Thm. 2.13 and Prop. 2.14] that
every ideal of T is a divisorial ideal of R, and if J is a nonprincipal ideal of R
then J, = JT. It follows that every nonzero ideal of R is divisorial if and only if
every nonprincipal ideal of R is an ideal of 7.

We end this section with a complete characterization of when M is v-finite in R
in a pullback of type O. It is convenient to separate the cases k = F and k # F,
since in the former case v-finiteness of M in R precludes invertibility of M in T
(by Corollary 2.6). See Examples 3.6 for simple examples relating to Proposition
2.12 and 2.14.

ProposITION 2.12.  Consider a pullback diagram of type O*. The following state-
ments are equivalent:
(1) M is v-finite in R;
2) (T: M) = (T :JT) for some finitely generated ideal J of R with J C M,
and M is not invertible in T;
(3) either M is not a t-ideal of T or M is a v-finite divisorial ideal of T that is
not invertible.

Proof. (1) = (3) Suppose that M is a ¢-ideal of T. Write M = J,, with J a
finitely generated ideal of R, J € M. Since T is flat over R [FG, Lemma 0.3],
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we have M = J,T € (J,T), = (JT), € M, whence M = (JT),. Thus M is a
v-finite divisorial ideal of T and, by Corollary 2.6, M is not invertible in 7.

(3) = (2) Suppose that M is not a ¢-ideal of 7. Then 1 € I, for some finitely
generated ideal I of T with I € M, and we have (T: M) = (T:1) = T. Of
course, we may write I = JT for some finitely generated ideal J of R. The other
case is straightforward.

Q=W (T:M)=M"'byLemma2.l. Thus J™! C (T:JT) = (T: M) =
M tcJ ! whence M~ ! =J Vand M = J,. O

REMARK. Proposition 2.12 shows, in particular, that M is v-finite in R when M
is finitely generated but not invertible in 7.

LEMMA 2.13. Consider a pullback diagram of type O, and assume that T is
quasilocal and that k # F. If M is v-finite in R, then (T : M) = (T : JT) for some
finitely generated ideal J of R with J C M.

Proof. Write M = I, with I finitely generated. Then /™! = M~ = (M : M).
We may assume that M is not invertible in 7, whence M~! = (T: M). If IT is
not principal then, by Proposition 2.7(1)(a), (T:IT) = I"! = M~ = (T: M)
as desired. Suppose that IT = yT is principal. By Remark 2.8(1), we have
M = yI~' = yM~!. Thus, since M is not principal in T, we have M~ #£ T,
and we may choose x € M~} \ T. It is easy to see that M = (T: (1, x)). Thus
M= =(T:M) = (T:(T:(, x))), whence M = yM~' = (T:(T: (y, yx))),
from which it follows that (T: M) = (T:(y, yx)). Hence we may take J =
(¥, yx). O

PROPOSITION 2.14.  Consider a pullback diagram of type O, and assume that k
F. Then the following statements are equivalent:

(1) M is v-finite in R,
2) (T:M) = (T :JT) for some finitely generated ideal J of R with J C M,
(3) either M is not a t-ideal of T or M is a v-finite divisorial ideal of T.

Proof. (1) = (2) Split the diagram O into two parts:

R —— D

U

S —— F

Lo

T —— &k

(here S = ¢~ !(F)). Since M is divisorial (and therefore a 7-ideal) in S, the im-
plication (1) = (3) of Proposition 2.12 guarantees that M is v-finite in S. Thus
(for this part of the proof) we may assume that D = F. Write M = J,, where J
is finitely generated in R. We may as well assume that M is not invertible in T.
Localizing at M, we obtain the following pullback diagram:
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RM——-—>F

L

TM — k.

Hence MR, is divisorial in Ry,. Since Ry, is flat over R, we have MRy =
JoRy S (JRy)y € MRy, whence MRy, = (JRy),. By Lemma 2.13, we have
(Tar: MTy) = (Tp: ITyy) for some finitely generated ideal 7 of R with I C M.
Replacing J by I + J if necessary, we may assume that (T : MTyy) = (Ty: JTy)
(and we continue to have M = J,)). We claim that JT), is not principal. Suppose,
on the contrary, that JTy; = yTy for some y. Then we have MTy; = yTyy also.
By Lemma 2.1, (Ry: MRy) = Ty, whence M~! = ({Rp | @ € MaxR,
O#FMINRy:MRy) =Ty | N e MaxT, N # M} N Ty = T. Since
by assumption M is not invertible in 7', Proposition 2.2 ensures that M is not di-
visorial in 7. Hence M~! = T = (T : M). However, this leads to a contradiction.
Indeed, since J is finitely generated and JT); = yTy, there is an element s €
T\ M withsJ € yT = yM~'. Thus sM = sJ, € yM~! = yT (since M~! is di-
visorial), and we have s/y € (T': M) = T. Thatis, s € yT C M, a contradiction.
Hence JT), is not principal. Thus, by Proposition 2.7(1)(a), we obtain (T : M) C
(T:JT)=J"1'=M""C(T: M), and we have (T : M) = (T : JT) as desired.

(2) = (1) If M is invertible in 7', then M is v-finite in R by Corollary 2.6. If
M is not invertible, then we may proceed exactly as in the proof of (2) = (1) in
Proposition 2.12.

(3) = (2) As in the proof of Proposition 2.12.

(2) = (3) Straightforward. 0

3. v-Coherent Pullbacks

According to [FG], a domain R is v-coherent if the intersection of each pair of v-
finite ideals is again v-finite. It is easy to see [FG, Prop. 3.6] that this is equivalent
to the condition that I ~! be v-finite for each finitely generated ideal 7 of R. Thus the
class of v-coherent domains coincides with the class of domains satisfying prop-
erty P* studied in [N1], where it was observed that Mori domains, PVMDs, and
(quasi)coherent domains are all v-coherent. It was also shown: that a polynomial
ring over an integrally closed v-coherent domain is again v-coherent; that each lo-
calization of a v-coherent domain is v-coherent; and that, if R is semiquasilocal
and R is v-coherent for each maximal ideal M, then R is v-coherent. In Propo-
sition 3.1 (which we state without proof), we extend this last result slightly, but in
Example 3.3 we show that in fact v-coherence is not a local property.

ProPOSITION 3.1. Let R be a domain, and assume that the intersection R =
(Y Rum | M is a maximal ideal of R} has finite character (i.e., that each element
of R lies in only finitely many of the maximal ideals M). Then R is v-coherent if
and only if each Ry is v-coherent.

Recall that a domain R is a v-domain if, for each finitely generated ideal I of R,
we have (II7'), = R. (We characterize v-domains in pullbacks in Section 4b.)
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A v-domain in which 77! is v-finite for each finitely generated ideal [ is called a
Priifer v-multiplication domain (PVMD). The following result is clear.

PROPOSITION 3.2. A domain is a PYMD if and only if it is a v-coherent v-domain.

ExAMPLE 3.3. We supply an example of a non-v-coherent domain R such that
Ry is v-coherent for each maximal ideal M. Let R be the example of [HO] of an
essential domain (i.e., a domain that is an intersection of valuation overrings each
of which is a localization) which is not a PVMD. In [MZ], it is shown that Ry,
is a PVMD (and therefore v-coherent) for each maximal ideal M. However, it is
well known that an essential domain R is a v-domain. Hence, by Proposition 3.2,
R cannot be v-coherent.

With respect to pullbacks, [N2, Thm. 3.1] shows thatif T = D + M, T, is a val-
uation domain, and k = F, then R = k + M is v-coherent.if and only if D and
T are v-coherent. Moreover, [N2, Thm. 4.2] shows that a similar result holds in
a pullback of type O* when T is assumed to be a valuation domain. In [N2, Ex-
ample 1] this is used to give an example of a v-coherent domain that is not Mori,
not coherent, and not a PVYMD.

The goal of (the remainder of) this section is to give a complete characteriza-
tion of v-coherence in pullbacks of type TO—that is, to prove the following two
theorems.

THEOREM 3.4.  Consider a pullback diagram of type 0O*. Then R is v-coherent if
and only if D and T are v-coherent and M is a t-ideal of T.

THEOREM 3.5. Consider a pullback diagram of type O, and assume that k # F.

Then R is v-coherent if and only if D and T are v-coherent and either M is not a
t-ideal of T or M is a v-finite divisorial ideal of T.

Before proving Theorems 3.4 and 3.5, we present some simple examples that il-
lustrate the various conditions described in these results (as well as in Proposi-
tions 2.12 and 2.14). We observe that the first example settles in the negative a
conjecture of Anderson that appeared in [N1, p. 33].

EXAMPLES 3.6. ()LetT =Q[X, Y], M =(X,Y)T,and D =Z. Here, k =Q
(= F) and M is finitely generated in 7. Of course, M is not a ¢-ideal of T, whence
(by Theorem 3.4) R = Z 4 M is not v-coherent. Note also that, by Proposition
2.12, M is v-finite in R.

Q) LetT =R[X,Y], M = (X,Y)T,and D = Q. Inthiscase, k =R 2 F =
@, and M is finitely generated in 7. By Theorem 3.5, R = Q + M is v-coherent.
Again, M is not a t-ideal of 7', but M is v-finite in R.

(3)Let T = (V, M) be a valuation domain. Then M is automatically a 7-ideal
of T. Note that M cannot satisfy condition (3) of Proposition 2.12 and that M sat-
isfies condition (3) of Proposition 2.14 if and only if M is principal in 7. Let D C
k = V/M be a v-coherent domain. Then:
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(a) if k = F, then R is v-coherent; and
(b) if k £ F, then R is v-coherent if and only if M is principal in 7.

(See Corollaries 3.9 and 3.13.)
We need two more results before we prove Theorem 3.4.

ProrosITION 3.7. Consider a diagram of type O and the following conditions:

(1) foreacht-ideal I of R, IT is a t-ideal of T,

(2) Misat-idealof T,

(3) for each finitely generated ideal J of R such that JTy is not principal, we
have J, = J,T = (JT),.

If T is v-coherent, then (1) = (2) = (3). If, in addition, T is quasilocal, then
(3) = (1).

Proof. (1) = (2) This follows from the fact that M is divisorial (and hence a
t-ideal) in R.

(2) = (3) If J is as given in (3) then, by Proposition 2.7(1)(b), J, = J,T C
(JT),. Hence in this case it suffices to show that (J/T), € J,. Since T is v-
coherent, (T : JT) is v-finite in T. Hence (JT (T : JT)), is also v-finite. By
Proposition 2.7(1)(a), we have J~! = (T: JT) = (M : JT). Since M is a t-ideal
of T, this yields (JT(T:JT)), = (JT(M:JT)), € M, whence (JT),J ! =
JT),(T:JTYy< (JT(T:JT)), € M C R, from which it follows that (JT), C
Jy, as desired.

Now assume (3) and that 7" is quasilocal, and let / be a ¢-ideal of R and H a
nonprincipal finitely generated ideal of T with H € IT. We wish to show that
H, C IT. Write H = JT with J a finitely generated ideal of R, J C I. Then
Jy,CI,andso H,= (JT), = J,T C IT. O

PROPOSITION 3.8. Let R be a v-coherent domain, and let T be a flat overring of
R. Then:

(1) foreacht-ideal I of R, IT is a t-ideal of T; and
(2) T is v-coherent.

Proof. (1) Let H be a finitely generated ideal of 7 with H C IT, and write H =
JT for some finitely generated ideal J of R, J C I. Since R is v-coherent, J ™
is v-finite and, since T is R-flat, we have H, = (JT), = J,T C IT.

(2) Again, let H = JT, where J is a finitely generated ideal of R. By flatness,
we have (T: H) = (T: JT) = J~!T. Since R is v-coherent, J~! = A, for some
finitely generated fractional ideal A of R, whence (T: H) = J~!'T = A, T =
(AT), and H is v-finite. O

Proof of Theorem 3.4. (=>) Let I be a finitely generated ideal of D. Then ¢~ (1)
is finitely generated in R [FG, Cor. 1.7(b)], and so (¢~'(1))~! is v-finite, say
(¢~ (I))~"' = J, with J finitely generated. Note that J, = (¢~ ()" =
¢~'(I7") € T by [FG, Prop. 1.8(al)]. Since M G ¢~'(J) € R & T, it fol-
lowsthat M G R € J, & T, and we have I™! = ¢((¢7' ()™ = ¢(Jy) =
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¢(J)y by [FG, Prop. 1.8(b2)]. Hence 1! is v-finite. This shows that D is v-
coherent. That T is v-coherent and M is a ¢-ideal of T follows from Proposition
3.8, in view of the fact that T is R-flat when k = F [FG, Lemma 0.3].

(<) Let I be a finitely generated ideal of R. If 1 g M, then ¢ (1) is a nonzero
ideal of D. Since D and T are v-coherent, (T: IT) and (D: ¢(I)) are v-finite.
Hence I~ is v-finite by [FG, Lemma 1.12]. Now assume that / C M. Since k =
F, we have Ry = Ty . If 1Ty = IRy is principal, then for some x € K we have
xI € Rand xI € M. From what has already been proved, (x/)~! = x~!177Tis
v-finite, from which it follows that 7! is also v-finite. Thus we assume that 7Ty,
is not principal. In this case, Proposition 2.7(1) yields I™' = I7'T = (T: IT).
Since T is v-coherent, we can write (T : IT) = (JT), for some finitely generated
ideal J of R with J < I~!. We wish to show that /~! = J,. For this it suffices,
by Proposition 3.7, to show that JT), is not principal. Since Ty, is T-flat (and T
is v-coherent), we have (JTy )y, = (UT)yTp)y = (T IT)T )y = (Tyr: ITwy).
Since ITys is not invertible, this yields IJTy C ITy(JTy)y = [Ty (T : ITy) C
M Ty . By Proposition 3.8, M Ty, is a t-ideal of Tys, whence (I1J Ty ), C MTy. It
follows that (T : ITy) = (JTu), is not principal and therefore that JT), is not
principal. 0O

The semiquasilocal case of the following corollary appears in [N1, Cor. 2.11].

COROLLARY 3.9. Consider a pullback diagram of type O*, and assume that Ty, is
a valuation domain. Then R is v-coherent if and only if D and T are v-coherent.

Proof. Since Ty, is a valuation domain, M T}, is a t-ideal, and it is well known that
this implies that M is a z-ideal of 7. The result now follows from Theorem 3.4. [

We prove Theorem 3.5 in stages. First, we state Proposition 3.10 as a conve-
nience. Then, in Proposition 3.11, we prove Theorem 3.5 in the case where D =
F and T is quasilocal; in Proposition 3.12, we remove the quasilocal assump-
tion. Recall that the condition given on M is equivalent to v-finiteness of M in R
(Proposition 2.14).

PrOPOSITION 3.10. Consider a pullback diagram of type O. If R is v-coherent
and k # F, then M is v-finite in R.

Proof. By Proposition 2.4, M = (1, x)~! for some x € T, and v-coherence of R
implies that M is v-finite. L]

ProrosITION 3.11.  Consider a pullback diagram of type Q, and assume that D =
F and that T is quasilocal. Then R is v-coherent if and only if T is v-coherent
and M is v-finite in R.

Proof. (=) Note that M is v-finite in R by Proposition 3.10. Let L be a nonprinci-
pal finitely generated ideal of 7', and write L = JT with J a (nonprincipal) finitely
generated ideal of R. Since R is v-coherent, J~! = H, with H finitely generated
in R. By Proposition 2.7(1), we have H, = J~! = J7!'T = (T:L) = H,T. If
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HT is not principal, we also have H,T C (H,T), = (HT),; since (T : L) is di-
visorial, this yields (T': L) = (HT),, which is v-finite. Suppose that HT = yT
is principal. By Remark 2.8(2), J~! = H, is not principal as a fractional ideal
of R, whence H is also not principal. By Remark 2.8(1), M = yH~!, whence
M=y 'H, M~ ' =T, then (T:L) = J~! = H, = yT, and we are done.
If M~' 2 T then, by Lemma 2.1, M~' = (T: M). Thus (T: L) = J~' = H, =
yM~! = y(T : M), and it now suffices to show that M~! = (T: M) is v-finite in
T.Pickx € (T: M)\ T. Then itis easy to see that M = (T : (1, x)), and we have
(T: M) = (1, x), (the v-operation being taken with respect to T'), as desired.
(<) Let J be a nonprincipal finitely generated ideal of R. If JT = yT is prin-
cipal then, by Remark 2.8(1), M = yJ~!; since M is v-finite in R, J~! is also
v-finite. If JT is not principal then, by Proposition 2.7(1)(a), J~! = J7IT =
(T :JT). Since T is v-coherent, (T': JT) = (HT), for some finitely generated
ideal H of R with H € J~'. If (HT), is not principal, then (HT is also not
principal and) (HT), = H, by Proposition 2.7(1)(b), in which case J~! = H,
is v-finite. If (HT), = J~! = zT is principal, then J, = z7'(R:T) = z7' M,
whence J~! = zM~!. By Proposition 2.4, M~! = (1, x), for some x € T \ R.
Thus J~! is v-finite also. O

ProposITION 3.12. Consider a pullback diagram of type 0O, and assume that
D = F.Then R is v-coherent if and only if T is v-coherent and M is v-finite in R.

Proof. (=) M is v-finite in R by Proposition 3.10. To show that 7 is v-coherent,
it suffices to show that (T : IT) is v-finite, where [ is a finitely generated ideal of
R. Use v-coherence of R to write I~! = J, with J finitely generated (and J C
I7"). Localize the diagram 0 at M to obtain the following pullback diagram:

Ry — F

Lo

Ty — k.

Since Rys is v-coherent by Proposition 3.8, Proposition 3.11 guarantees v-
coherence of Ty. Hence (T : ITy) = (T :1)Ty is v-finite, and we can write
(T : ITy) = (HTyy), for some finitely generated ideal H of T, H C (T : IT).
Let L = H+ JT; weshall showthat (T:IT) = L,.Itisclearthat L, C (T :IT).
For the reverse inclusion, it suffices to show that (7 : IT)(T: L) C Ty for each
maximal ideal N of T. Recall that, for N # M and Q = NNR, wehave Ty = Ry.
Hence in this case (T : IT)(T: L) C(T:IT)(T:JT) C(ITy:ITn)(Tn:JTy) =
(RQZIRQ)(RQIJRQ) = I—IJ~1RQ = JvJ_lRQ - RQ = Ty. When N =
M, we have (T:IT)(T:L) C (T:ITYT:H) C (Ty:ITy)(Ty:HTy) =
(HTp))y(Ty: HTy) € Ty Hence (T : IT) C L, as desired.

(<) Now assume that 7' is v-coherent and that M is v-finite in R. Since Ty, is
v-coherent (Proposition 3.8), we have that Ry, is v-coherent by Proposition 3.11.
Let I be a finitely generated ideal of R. Then (IRy)~' = I"! Ry, is v-finite, and
we can write (IRy)~! = (JRy), for some finitely generated ideal J of R with
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J € I7'. We also have (T: IT) = (HT), with H finitely generated in R. Note
that, since H C (T:IT), we have HIM = HIMT € MT = M C R, so that
HM C I7'.Set L = J 4+ HM; we claim that /™! = L,. Clearly, /! D L,. For
the reverse inclusion, we show that =1L~ C R for each maximal ideal Q of
R. For Q # M, there is a unique maximal ideal N of 7 with NN R = Q and
Rg = Ty. For such Q, we have I7'L=! € 1"V (HM)™! € (IRp)"'(HRp) ™! =
(TN . ITN)(TNI HTN) = (TZ IT)(T HT)TN = (HT)U(TI H)TN - TN = RQ.
We also have I7'L~! € 171771 € (UIRy)"(URM)™' = (JRM)(JRy)™' C
Ry. Thus 17! = L,, as claimed. We must now show that L, is v-finite. Since
M is v-finite, we have M = A, for some finitely generated ideal A of R. Hence
(HM), = (HA,), = (HA),, andwehave L, = (J+ HM), = (J+ (HM),), =
(J 4+ (HA),), = (J + HA),, which is clearly v-finite. C

Proof of Theorem 3.5. By Proposition 2.14, it suffices to prove that R is v-coherent
if and only if D and T are v-coherent and M is v-finite in R. Split the diagram
into two parts (as in the proof of Proposition 2.14):

R — D

Lo

S —— F

Lo

T —— k.

Now suppose that R is v-coherent. Then M is v-finite in R by Proposition 3.10,
whence M is v-finite in S by Proposition 2.12. Theorem 3.4 now ensures that
D and § are v-coherent, whence T is also v-coherent by Proposition 3.12. For
the converse, we again have M v-finite in S, and v-coherence of T implies that
S is also v-coherent by Proposition 3.12. Finally, since M is divisorial in S, v-
coherence of D implies v-coherence of R by Theorem 3.4. U

CorOLLARY 3.13. Consider a pullback diagram of type 0. Assume that T is
a valuation domain and that k # F. Then R is v-coherent if and only if D is
v-coherent and M is principal in T .

Proof. This follows immediately from Theorem 3.5 since, in a valuation domain
T, the condition “M is not a z-ideal of T or M is a v-finite divisorial ideal of T
is clearly equivalent to principality of M. 0

COROLLARY 3.14. Let R be a PVD; that is, in Corollary 3.13, assume that D =
F (see Remark 2.11). Then the following conditions are equivalent:

(i) R is v-coherent;
(ii) M is principalin T = M~
(1ii) M is divisorial in T
(iv) each nonzero ideal of T is divisorial in T}
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V) (JyT), = J, for each nonprincipal ideal J of R (where the second v is taken
with respect to T).

Proof. The equivalence of (1) and (ii) follows from Corollary 3.13. The equiv-
alence of (ii) and (iv) is [H, Lemma 5.2], and the equivalence of (ii) and (iii) is
well known (and easy to show). Finally, the equivalence of (iv) and (v) follows
from Remark 2.11. ]

4. Other Coherentlike Conditions

In this section we apply the techniques and results already developed to the study
of several other coherentlike properties. We begin with definitions of the terms
not yet defined.

DEFINITION. A domain R is:

(1) coherent if the intersection of each pair of finitely generated ideals of R is
again finitely generated or, equivalently, if each finitely generated ideal of R
is finitely presented;

(2) quasicoherent if I™! is finitely generated for each finitely generated ideal /
of R;

(3) a finite conductor domain if each conductor to R of an element from X is
finitely generated or, equivalently, if Ra N Rb is finitely generated for each
a,b € R;

(4) aMoridomain if R satisfies the ascending chain condition on divisorial ideals
or, equivalently, if for each ideal I of R we have I~! = J~! for some finitely
generated ideal J of R with J € [ [Q], Thm. 1];

(5) a DVF domain if each divisorial ideal of R is v-finite.

We have the following implications:

coherent ——— quasicoherent ——— finite conductor

v-domain DVF

Mori .

4a. Coherent, Quasicoherent, and Finite Conductor Pullbacks

Of course, coherence has been studied extensively. For our purposes, we cite the
paper by Greenberg [Gre]; the paper by Dobbs and Papick [ DP], in which coher-
ence was characterized in the classical D + M construction; the paper by Brewer
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and Rutter [BR], in which coherence and several other properties were character-
ized in the general D + M construction; and the book by Glaz [Gl].

We shall characterize the three properties in the title of this subsection in pull-
back constructions of type O. (For the case of coherence, our result is an extension
of [BR, Thm. 3]; our proof is entirely ideal-theoretic in spirit.) To our knowledge,
there are no known examples which prove that these three properties are distinct,
and one consequence of our results is that pullbacks of type O cannot produce
such examples.

The nonreversibility of most of the other implications in the above diagram is
discussed in what follows. We recall that [HH2, Thm. 1.6] shows that, in the no-
tation of Corollary 3.14, a PVD R is coherent if and only if T is a finitely gener-
ated R-module and M # M? (i.e., M is principal) if and only if R is quasicoher-
ent. Since finite generation of 7 over R is easy to avoid, we see that v-coherence
of R is not equivalent to (quasi)coherence of R. For an explicit example, let T =
R[[X]], M = XR[[X]], and R = Q+ M. Then R is v-coherent by Corollary 3.14
but R is not coherent, since 7 is not a finitely generated R-module (since R is not
finitely generated over Q).

Lemma 4.1 is a straightforward extension of [BR, Lemma 1]. Proposition 4.2
is stated for convenience; it is probably well known, but we do not know a refer-
ence. Proposition 4.3 is an extension of [BR, Prop. 2]; we include a proof of part
of it.

LEMMmA 4.1. Consider apullback diagram of type Q. If there exists a nonzero ideal
of T that is finitely generated as an R-module, then D = F and [k : F] < oo.

ProrosITION 4.2. Consider a pullback diagram of type O, and assume that
F # k. Then the following statements are equivalent:

(1) M is finitely generated in R;
(2) T is a finitely generated R-module, and M is finitely generated in T
(3) D=F, [k: F] < 00, and M is finitely generated in T.

Proof. (1) = (3) Lemma 4.1.

(3) = (2) Since [k: F] < oo, we can write k = F + Fay + - -- + Fo,,, with
a; €kfori =2,...,n. Foreachi, pickt; € T witha; = ¢(¢;). Thenfort € T
we can write t = r; + raty + -+ + ryt, +a, where r; € R foreachi and a €
M.Hencet =(rj+a)+rty+---+rpt,. ThusT = R+ Rtp) +---+ Rt,is a
finitely generated R-module.

(2) = (1) Clear. L]

PrOPOSITION 4.3.  Consider a pullback diagram of type Q. If R is a finite con-
ductor domain, then exactly one of the following conditions holds:

(1) D=F, [k: F] < 0o, and M is finitely generated in T; or

(2) k = F and Ty is a valuation domain.

Proof. If k # F, then by Proposition 2.4 we have xM = xR N R for some x €
T\ R.If R is a finite conductor domain, it follows that xA/—and hence M also—is
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finitely generated in R. By Lemma 4.1, D = F and [k: F] < 0. If k = F, we
may proceed as in the proof of [BR, Prop. 2] to conclude that Ty, is a valuation
domain. ' O

We proceed to characterize coherent, quasicoherent, and finite conductor pullbacks
whenk = F.

PROPOSITION 4.4. Consider a pullback diagram of type O*. If R is quasiconer-
ent (coherent), then D and T are quasicoherent (coherent) and Ty is a valuation
domain.

Proof. Proposition 4.3 guarantees that T, is a valuation domain. Suppose that
R is quasicoherent, and let I be a finitely generated ideal of D. Then ¢~!(J) is
finitely generated in R [FG, Cor. 1.7(b)], and so J = (¢~'(Z))~! is also finitely
generated. By [FG, Prop. 1.8(al)], J = ¢~ !(D: 1), whence (D: 1) = ¢(J) is
finitely generated in D. Thus D is quasicoherent. Now suppose that R is coher-
ent, and let H, I be finitely generated ideals of D. Then ¢! (H) and ¢! (1) are
finitely generated in R, whence ¢! (H) N¢~' (1) is also finitely generated. Since
M < ¢~ 1(I), we have by [FG, Prop. 1.6(b)] that H N I = ¢ (¢~ (H) N ¢~ (1))
is finitely generated in D. Thus D is coherent.

Now let A, B be finitely generated ideals in 7', and write A = IT, B = JT
with I, J finitely generated ideals of R. Since T is flat over R, we have I™!T =
(T:IT)y=(T:A)and I NJ)T = IT NJT = AN B. It follows that quasico-
herence or coherence of R implies the corresponding property for 7. O

It is convenient to record the following (easily proved) result.

LEMMA 4.5 (cf. [BAD, Prop. 2.1]). A domain R is quasicoherent if and only if R
is v-coherent and each v-finite divisorial ideal of R is finitely generated.

PROPOSITION 4.6. Consider a pullback diagram of type 0%, and assume that T
is a valuation domain. Then R is quasicoherent (coherent) if and only if D is
quasicoherent (coherent).

Proof. The assumption that D has either property implies that R is v-coherent,
by Corollary 3.9. Suppose that D is quasicoherent, and let J be a finitely gener-
ated ideal of R. We claim that J, is finitely generated. Since T = Ry, and JT is
principal, we may choose x € K with xJ € R and xJ ¢ M. Thus (xJ), € M,
whence (xJ), 2 M, and by [FG, Prop. 1.8(b2)] we have ¢((xJ),) = ¢(x7]),.
Since D is quasicoherent, ¢ ((xJ),) is finitely generated, whence xJ, = (xJ), =
o~ (p((xJ),)) is also finitely generated [FG, Cor. 1.7(b)]. It follows that J, is
finitely generated. By Lemma 4.5, R is quasicoherent.

Now assume that D is coherent, and let 7, J be finitely generated ideals of R.
By flatness, (I N J)T = IT N JT, whence (I N J)T = zT for some z € T. Thus
7' NJ)T = T, and by [FG, Prop. 1.1] we have z~!(I N J) 2 M. Hence by
[FG, Prop. 1.6(b)], ¢z "I NJ)) = ¢ "INz =¢GN ).
Coherence of D now implies that o (z7'(I N J)) is finitely generated, whence
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7' I NJT) = ¢ Y@@' N J))) is finitely generated in R [FG, Cor. 1.7(b)].
This completes the proof in this direction. The converse follows from Proposi-
tion 4.4. C

To handle the nonquasilocal case, we recall the notion of the complete preimage
extension of R with respect to M [BS]; this is the domain R(M) defined by the
following pullback diagram:

RM) ——— D

! !

Ry=Ty —2— k=F ~Ty/MTy,.

(We continue to use ¢ for the canonical projection.) For each ideal I of R, we

have I = IT N IR(M) [FG, Lemma 1.3]. Moreover, R(M) is flat over R, since
R(M)y = Ryng foreach N € Max(R(M)).

THEOREM4.7. Consider a pullback diagram of type O*. Then R is quasicoherent
(coherent) if and only if D, T are quasicoherent (coherent) and Ty is a valuation
domain.

Proof. (=) This follows from Proposition 4.4.

(<) R(M) is quasicoherent (coherent) by Proposition 4.6, and R is v-coherent
by Theorem 3.4. For the quasicoherent case, let J be finitely generated in R. By
flatness (and since J~! is v-finite), J,R(M) = (JR(M)), is v-finite and there-
fore finitely generated in R(M); likewise, J,T = (JT), is finitely generated in
T.Set JybR(M) = ] R(M) and J, T = J,T, where J;, J, are finitely generated
ideals of R (which are contained in J,), and let H = J; + J,. Then H C J, =
JoRIM)YN J,T = JIRM)YN J,T € HR(M)NHT = H.Hence H = J, is
finitely generated. By Lemma 4.5, R is quasicoherent. For the coherent case, note
that R(M) is coherent by Proposition 4.6. Let I, J be finitely generated in R, and
set H = I N J. Again by flatness, we use coherent to see that HR(M) and HT
are finitely generated, from which we conclude as before that H is finitely gener-
ated. 0

For the generalized D 4+ M construction, the coherent case of Theorem 4.7 ap-
pears in [BR, Thm. 3(ii)]; for the classical D + M construction, it appears in [DP,
Thm. 3(1)].

We wish to prove a result similar to Theorem 4.7 for the finite conductor condi-
tion. In one direction, we can proceed as in the (quasi)coherent case, but the other
direction requires more care.

THEOREM 4.8. Consider a pullback diagram of type O*. Then R is a finite con-
ductor domain if and only if D, T are finite conductor domains and Ty is a valu-
ation domain.

Proof. (=) By flatness, R(M) and T are finite conductor domains, and Ty, is
a valuation domain by Proposition 4.3. Now, by [FG, Thm. 2.3 and Prop. 2.9],
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¢~'(xD) is principal in R(M) for each nonzero element x € k. It is then easy 1o
show that D is a finite conductor domain by proceeding as in the coherent case of
Proposition 4.4.

(<) A proof similar to that of the coherent case of Proposition 4.6 shows that
R(M) is a finite conductor domain. The proof can then be completed as in the co-
herent case of Theorem 4.7. N

We now turn to the case of a pullback of type 00 with k # F.

THEOREM 4.9. Consider a pullback diagram of type O with k # F. Then R is
quasicoherent if and only if T is quasicoherent, D = F, [k: F] < 00, and M is
finitely generated in T.

Proof. (=) By Proposition 4.3, we need only prove that 7 is quasicoherent. Ac-
cordingly, let L = JT be a nonprincipal ideal of T, with J finitely generated in
R. If JTy is not principal then, by Proposition 2.7(1)(a), (T: L) = J~' = J~IT,
and since J~! is finitely generated, so is (T': L). Suppose that J Ty, is principel.
Then we may pick z € (T: JT) so that z generates (Ty;: JTy) = (T:JT)Ty.
We claim that (J~!, z) generates (T : JT). It suffices to check this locally. If N
is a maximal ideal of T with N # M, then Ty = Rynr, whence (Ty: JTy) =
(Rnvnr: JRvnr) = J 'Rynr = J~'Ty. Because z generates at M, this proves
the claim. Hence T is quasicoherent.

(<) We proceed as in the proofs of Propositions 3.11 and 3.12. First, suppose
that 7 and (hence) R are quasilocal. Let / be finitely generated (and nonprinci-
pal) in R.If IT is not principal then, by Proposition 2.7(1), I ! = (T': IT) = HT
for some finitely generated ideal H C I (since T is quasicoherent). By Proposi-
tion 4.2, T is a finitely generated R-module, whence 7~ is finitely generated in
this case. If IT is principal then, by Remark 2.8(1), M = yI~! for some y € I,
whence (again) 1~! = y~!'M is finitely generated. To handle the general (non-
quasilocal) case, again let / be finitely generated in R. Since Ty, is quasicoherent
(by flatness), we can apply the local case to conclude that 17! Ry = (IRy) "' is
finitely generated, say I ~' Ry = JRy; with J € I™!, J finitely generated. Since
T is quasicoherent, (T': IT) = HT for some finitely generated ideal H of R. It
now follows by an argument similar to (but easier than) that used in the proof of
Proposition 3.12 that I ~! = J + HM, whence I~ is finitely generated. Hence R
is quasicoherent. L]

THEOREM 4.10.  Consider a pullback diagram of type O, and assume thatk # F.
Then R is a finite conductor domain if and only if T is a finite conductor domain,
D =F, [k: F] < o0, and M is finitely generated in T.

Proof. (=) According to Proposition 4.3, it is enough to prove that 7 is a finite
conductor domain, and for this it suffices to show that (7 : (1, x)) is finitely gen-
erated for each x € K \ T. We first assume that 7" is quasilocal, in which case we
may as well assume that (7T:(1,x)) € M. If tx ¢ M forsome ¢t € (T:(1, x)),
then x~! = t(tx)~! € M C T and we have that (T: (1, x)) = Tx~!, a principal
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ideal. Hence we may assume that x (7 : (1, x)) € M, from which it follows that
(T:(1,x)) = (R:(1,x)), whence, again, (T : (1, x)) is finitely generated. For
general 7', we use the fact that conductors localize well, together with what has al-
ready been proved, to conclude that (T : (1, x))Ty = (Ty: (1, x)) is finitely gen-
erated, say (T : (1, x))Ty = ATy, where A is a finitely generated ideal of 7" with
A C (T:(1,x)). For N maximal in T with N £ M and Q = N N R, we have
T:(1,xNTy =Tn:(1,x))=(Rp:(1,x)) =(R: (1, x))Rp = (R: (1, x))Tn.
It follows that (7': (1,x)) = A+ (R:(1,x))T, and since (R: (1, x)) is finitely
generated in R, this completes the proof in this direction.

(<) Let x € K \ R. We shall show that (R: (1, x)) is finitely generated. If
x € T then, by Proposition 2.4 and the remark that follows it, (R: (1,x)) = M,
which is finitely generated by Proposition 4.2. Hence we may assume that x ¢ T.
Again, we begin by supposing that T is quasilocal. Since x ¢ T, we have that
(T:(1,x))y € M. If x(T:(1,x)) € M then, as above, we have (R: (1,x)) =
(T:(1,x)), and finite generation of (R: (1, x)) follows from the fact that T is a
finitely generated R-module (Proposition 4.2). If x(T: (1, x)) € M then, as be-
fore, x ! € M € Randso (R:(1,x)) = Rx~!is principal. For general T,
we have (R: (1, x))Ry = (Rpy: (1, x)) finitely generated by the local case, say
(R: (1, x))Ry; = JRy for some finitely generated ideal J of R, J C (R: (1, x)).
With the notation above, we have (R: (1, x))Rg = (Rp:(1,x)) = (Tn: (1, x)) =
(T:(1,x))Txy = (T:(1,x))Rp. Now (T: (1, x)) is finitely generated as a T-
module and hence also as an R-module. Thus, since M is finitely generated in
R, M(T: (1, x)) is also finitely generated, and it is clear that M (T : (1, x)) C
(R: (1, x)). Finally, since M(T: (1, x)) and (T: (1, x)) agree at each (maximal
ideal) Q (of R with Q # M), we can use the usual localization argument to show
that (R: (1, x)) = M(T : (1, x)) + J, which is finitely generated. O

THEOREM 4.11. Consider a pullback diagram 0O with k # F. Then R is coher-
entif and only if T is coherent, D = F, [k: F] < 0o, and M is finitely generated
inT.

Proof. By Proposition 4.3, it suffices to show that T is coherent. Let IT and JT
be (finitely generated) ideals in 7', with I, J finitely generated in R. Since T is a
finitely generated R-module, /7 and JT are both finitely generated over R and
therefore, since R is coherent, /T NJT is also finitely generated over R. Of course,
this implies that IT N JT is finitely generated in T, as well.

For the converse, we first assume that 7 is quasilocal. Let I and J be finitely
generated in R. Then IT N JT is a finitely generated ideal of T, and since T is a
finitely generated R-module (Proposition 4.2), IT N JT is also a finitely gener-
ated ideal of R. Suppose that /7 N JT can be generated by n elements, and among
all generating sets of size n, let p denote the largest number of generators that can
lie inside I N J. We may assume that p < n; otherwise, I N J = IT N JT and
there is nothing to prove. Letay, ... , a, generate IT NJT as an R-module, where
ai,...,ap € I N J. Note that IM N JM is finitely generated in (7 and hence in)
R. Thus it suffices to show that /NJ = Ra;+---+ Ra,+(UIMNJM).(If p =0,
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this equation is to be interpreted as I N J = (IM N JM).) One inclusion is ob-
vious. Let x € I N J, and write x = rja; + - - - + rpa, with r; € R. If for some
i > p we have r; ¢ M, then a; can be replaced by x in the generating set, con-
tradicting the maximality of p. Thus, fori > p, we have r;a; € M(IT N JT) C
IM N JM. This completes the proof in the local case. For general T, use the lo-
cal case to find a finitely generated subideal A of I N J that generates at M. For
Q a maximal ideal of R with Q # M, the usual argument shows that IM N JM
(which is a finitely generated ideal of T and hence of R) generates at R. It fol-
lowsthat INJ =A+ (UM NJM). O

REMARK. Theorems 4.9, 4.10, and 4.11 generalize the characterization of coher-
ent PVDs given in [HH2, Thm. 1.6].

We end this subsection by applying our techniques to characterize the Noetherian
condition in pullbacks of type O (cf. [BR, Thm. 4] and [F, Thm. 2.3]).

THEOREM 4.12. Consider a pullback diagram of type 0. Then R is Noetherian
if and only if T is Noetherian, D = F, and [k : F] < oc.

Proof. Assume that T is Noetherian and local, that D = F, and that [k : F] < 0.
Let I be an ideal of R. Then IT is finitely generated as an ideal of R (Proposition
4.2). Letay,...,a, generate IT as an R-module, where ay, ... ,a, € I and p
is the largest number of elements of any n-generating set of /7 that can lie in .
With an argument similar to (but simpler than) the above, we can show that I =
Ray + - - -+ Ra, + IM. The general case then follows in the usual way. The con-
verse is easy [BR, Thm. 4]. L

4b. Pullbacks of PVMDs and v-Domains

PVMD pullbacks were characterized for D 4+ M constructions in [AR, Thm. 4.1]
and more generally in [FG], where the following theorem is proved.

THEOREM 4.13 [FG, Thm. 4.1]). Consider a pullback diagram of type O. Then
R is a PVMD if and only if k = F, D and T are PVMDs, and Ty, is a valuation
domain.

An example of a domain that is completely integrally closed (and hence a t-
domain) but not a PYMD was given by Dieudonné [D]. The example from [HO],
discussed in Example 3.3, is (easily seen to be) another completely integrally
closed non-PVMD. In Theorem 4.15 we determine precisely which pullbacks are
v-domains, and as applications we give a new proof of Theorem 4.13 and an ex-
ample of a non—completely integrally closed v-domain that is not a PVMD.

LemMA 4.14.  Consider a pullback diagram of type D. If I is a v-invertible idecl
of R, then IT is a v-invertible ideal of T'.

Proof. Let I be v-invertible in R, so that (/I~!), = R. By the proof of [FGH,
Prop. 3.1], we have (IT~!T), = T (the v-operation being taken with respect to
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T). Thus, since (T:IT) 2 I™'T, we have (IT(T:IT)), = T also, and IT is
v-invertible. 0

THEOREM 4.15. Consider a pullback diagram of type 0. Then R is a v-domain
ifand only ifk = F, D and T are v-domains, and Ty is a valuation domain.

Proof. (=) Let R be a v-domain. Suppose k # F. Then, by Proposition 2.4,
M = (1, x)~! for some x € T. Hence M must be v-invertible, which contradicts
the facts that M is divisorial and that M~' = (M: M). Hence k = F; that is,
we are dealing with a diagram of type O*. Now let I be a finitely generated ideal
of D. By [FG, Cor. 1.7(b)], ¢~ (1) is finitely generated in R, and since R is a
v-domain, ¢! (Z) is v-invertible. By [FG, Prop. 1.8(b2)], we have ¢ (¢! (1),) =
(@ (@' (1)), = I,. Hence I is v-invertible by [FG, Cor. 1.11]. Finally, let J be a
finitely generated ideal of R. Then v-invertibility of J in R implies v-invertibility
of JT in T by Lemma 4.14, and so T is a v-domain. Furthermore, JJ ! ;t_ M
(since M is divisorial in R and J is v-invertible). It follows that (JT (T : JT)) ,¢_
M, whence JT), is principal. Therefore, T}, is a valuation domain.

(<) Let J be a finitely generated integral ideal of R. Since T); = Ry, is a val-
uation domain, there is an element x € K with xJ € R and xJ ,,d_ M. Thus there
is no loss of generality in assuming that J ¢_ M. Then ¢(J) and JT are both
v-invertible, whence J is v-invertible by [FG, Prop. 1.13(a)]. d

REMARK. Using Proposition 3.2, we recover Theorem 4.13 by combining The-
orems 3.4 and 4.15. (Recall that for a PVMD T, Ty, is a valuation domain if and
only if M is a t-ideal of T [Gri, Thm. 5].)

EXAMPLE 4.16. Let D be a completely integrally closed domain which is not a
PVMD [D; HOJ, let k£ denote the quotient field of D, let T = k[[X]], and let R =
D + Xk[[X]]. Then, according to Theorem 4.15, R is a v-domain. It is clear that
R is not completely integrally closed, and R is not a PVMD by Theorem 4.13.

4c. Mori and DVF Pullbacks

Recall that in a Mori domain every divisorial ideal is v-finite, so that Mori domains
are automatically v-coherent. Moreover, in a Mori domain, the v- and ¢-operations
are the same. Thus in a pullback diagram of type 0 in which T is assumed to be
a Mori domain, the conditions on M in Theorem 3.5 are automatically satisfied
(when k # F), and they are satisfied in Theorem 3.4 precisely when M is divi-
sorial in T (when k = F'). These observations yield the following restatements of
Theorems 3.4 and 3.5 when T is assumed to be a Mori domain.

PROPOSITION 4.17.  Consider a pullback diagram of type O, and assume that T
is a Mori domain.

(1) Ifk # F, then R is v-coherent if and only if D is v-coherent.
(2) If k = F, then R is v-coherent if and only if D is v-coherent and M is
divisorialin T.
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According to [B, Prop. 3.4], in a pullback of type O in which T is quasilocal, R
is Mori if and only if 7 is Mori and D is a field. It is easy to extend this to the
general case as follows. We can define R(M) as in the discussion just before The-
orem 4.7 (even in a pullback of type ). If R is Mori, then, as a generalized quo-
tient ring of R, R(M) is also Mori [Q2, Sec. 2, Thm. 2]. Hence, by the local case
[B, Prop. 3.4], D = F. The extension to the general case then follows from [R,
Thm. 4.15] and the remarks following. That is, we have our next theorem.

THEOREM 4.18. Consider a pullback diagram of type O. Then R is a Mori domain
ifand only if T is a Mori domain and D = F.

We now turn our attention to DVF domains; recall that R is a DVF domain if each
divisorial ideal of R is v-finite. (Actually, according to our definition of v-finite,
every nonzero ideal of a DVF domain is v-finite.) As already noted, Mori domains
are DVF domains; [G, Example 2.8], which is a pullback of the type discussed in
Theorem 4.20, is an example of a non-Mori DVF domain. It is clear that Priifer
DVF domains have the property that each divisorial ideal is invertible. Domains
with this property were studied by Zafrullah [Z] (where they were called “general-
ized Dedekind domains™). Using ideas from [Z], we can easily characterize when
a valuation domain is a DVF domain. First, note that if V is a DVF-valuation do-
main then, by [Z, Cor. 1.4], V is completely integrally closed and must therefore
have rank 1. Suppose that V is a rank-1 valuation domain, and consider the value
group G of V to be a subgroup of R. It is clear that V is a DVF domain if V is
discrete, and Zafrullah shows [Z, Thm. 2.6] that V is also a DVF domain if G =
R. On the other hand, if G is dense in R but G # R then, by choosinga € R\ G
and reasoning as in [Z, Example 2.7], one can show that the ideal I consisting
of those elements of V having value greater than « is divisorial but not principal.
This proves the following.

ProOPOSITION 4.19. A valuation domain V is a DVF domain if and only if (1) V
has rank 1 and (ii) either V is discrete or the value group G of V, when considered
as a subgroup of R, satisfies G = R.

In particular, a valuation domain with value group equal to R is a non-Mori DVF
domain. For still another example of a non-Mori (Priifer) DVF domain, we can
take the ring of entire functions [Z, Example 2.1]; this is also an example of a DVF
domain with non-DVF localizations (cf. [Z, Cor. 2.3]).

Our final result allows the construction of many more (non-Mori) DVF domains.
Combined with Theorem 3.4, part (1) of Theorem 4.20 also allows the construc-
tion of v-coherent domains that are not DVF-domains (e.g., Z + XQ[[X]]). We
do not know the extent to which the quasilocal assumption on 7 is necessary.

THEOREM 4.20. Consider a pullback diagram of type O, and assume that T is
quasilocal.

(1) Ifk = F, then R is a DVF-domain if and only if D and T are DVF domains
and M is a nonprincipal v-finite divisorial ideal of T.
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(2) Ifk # F, then R is a DVF-domain if and only if D and T are DVF domains
and either M is a v-finite divisorial ideal of T or M is not a t-ideal of T.

Proof. Split the diagram O as usual:

R —— D

Lo

S —— F

Lo

T — k.

(1) (=) Suppose that R is a DVF domain. Then, in particular, R is v-coherent,
whence M is at-ideal of T by Theorem 3.4. Hence, since M is a divisorial v-finite
ideal of R, M is a nonprincipal v-finite divisorial ideal of T by Proposition 2.12.
Let I be a divisorial ideal of D. By [FG, Prop. 1.8(a2)], ¢~!(I) is divisorial in R,
and we have ¢~!(I) = H, for some finitely generated ideal H of R. Since H, =
¢~'(I) 2 M, [FG, Prop. 1.8(b2)] yields I = ¢(¢~' (1)) = ¢(H,) = ¢p(H),, and
I is v-finite in D. Thus D is a DVF domain. Now let L be a nonprincipal diviso-
rial ideal of T'. By Corollary 2.9, L is a divisorial ideal of R, and we have L = J,
for some finitely generated ideal J of R. Since L = J,T = (J,T),, we have L =
(JT), by Proposition 2.7(1)(b), and L is v-finite. Thus T is a DVF domain.

(<) Let I be a nonprincipal divisorial ideal of R. We first supose that IT =
yT is principal in 7. In this case, if II™' € M (ie., if I"! = (M :I)), then the
hypotheses of Proposition 2.7(2) hold and we obtain M = yI~'. Then, since R is
v-coherent by Theorem 3.4 and since M is v-finite in R by Proposition 2.12, M~
is also v-finite, whence I = I, = yM —! is v-finite. On the other hand, if 77~} ,¢_
M, pick x € I"" with xI ¢ M. Then, since each ideal of R is comparable to M
(since T is quasilocal), we have x/ ;:2 M. By [FG, Prop. 1.8(b2)], ¢ (x1) is di-
visorial in D, and we can write ¢ (xI) = J, for some finitely generated ideal J
of D. By [FG, Cor. 1.7(b)], $~'(J) is finitely generated, whence by [FG, Prop.
1.8(a2)], xI = ¢~'(J,) = ¢~ (J), and I is v-finite. Now suppose that IT is not
principal. Then, by Proposition 2.7(1) and the fact that 7 is a DVF domain, we
have I=! = (T: IT) = (HT), for some finitely generated fractional ideal H of
R.If (HT), is principal in T, then I ! = (HT), = zT for some z € K, whence
I =1, =z""(R:T) = z7'M, which is v-finite. If (HT), is not principal, then
by Proposition 2.7(1) we have I~! = (HT), = H,, whence I = I, = H™ ! is
v-finite (since R is v-coherent).

(2) (=) By Theorem 3.5, it suffices to prove that D and 7" are DVF domains. By
concentrating on the upper diagram, we obtain from (1) that D is a DVF domain,
and the proof above that T is a DVF domain works in this case as well.

(&) Of course, M is divisorial in S, and the assumption on M in T implies that
M is also v-finite in S by Proposition 2.14. Moreover, if / is a nonprincipal divi-
sorial ideal of S, then I1~! C M (since § is quasilocal), and a simplified version
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of the argument used to prove the implication (<) of (1) above (replacing the ap-
peal to Theorem 3.4 by an appeal to Theorem 3.5) shows that [ is v-finite in S.
Hence S is a DVF domain. That R is a DVF domain now follows from (1). O
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