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A difficult problem in the theory of quasiconformal mappings is the charac-
terization of domains in Euclidean n-space that can be mapped quasicon-
formally onto the unit ball B”. It is a type of n-dimensional Riemann map-
ping problem. Gehring [Ge] reduced the problem for a domain to a problem
for its boundary. He showed that if a quasiconformal mapping exists from
a neighborhood of a domain’s boundary onto a neighborhood in B” of S”~,
then a quasiconformal mapping exists between the domain and B”. But unlike
the Riemann mapping theorem (which solves the problem for n=2), no
conditions pertaining solely to the boundary have been discovered which
guarantee a domain’s quasiconformal equivalence to B”.

Nakai [N1] established an implicit characterization of quasiconformally
equivalent domains in terms of function algebras by showing that a quasi-
conformal mapping exists between two domains in R? if and only if their cor-
responding Royden algebras are isomorphic. Lewis [Le] and Lelong-Ferrand
[L-F] extended his proof to higher dimensions and Riemannian manifolds.
The work of Nakai and Lewis relies on methods of functional analysis to
characterize the maximal ideal space of a domain  as a compactification
Q* of Q. Lewis showed that a quasiconformal mapping between two do-
mains implies that these so-called Royden compactifications are homeomor-
phic. The converse question—whether a homeomorphism between Royden
compactifications implies existence of a quasiconformal mapping between
domains—is the subject of this paper.

Nakai [N2] answered the question affirmatively for the 2-dimensional case,
and gave a partial answer for higher dimensions by showing [NT] that the
restriction of a homeomorphism between Royden compactifications to their
underlying domains is quasiconformal in a neighborhood of the boundary.
A connection between this result and the theorem of Gehring has not been
previously observed in the literature. However, if one of the domains is
B”, then the result of Nakai and Tanaka dovetails nicely with Gehring’s
theorem to prove that the converse question can be answered affirmatively.
Hence, a domain  is quasiconformally equivalent to B” if and only if Q* is
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homeomorphic to (B”)*. We prove this theorem and discuss an example of a
domain not quasiconformally equivalent to B”.

1. Preliminaries

Q denotes a domain in R”. L!(Q) denotes the space of functions whose weak
partial derivatives exist and belong to L"({); W,,l 10c(£2) denotes the space of
functions that belong locally to L”(Q) and LL(Q). A quasiconformal map-
ping is a homeomorphism f: 2 — R” in W,,l, 10c(2) for which there is a con-
stant K such that

|Df ()" < KJp(x)

at almost every xe . Good discussions of quasiconformal mappings are
given in [ V4] and [BI].
The Royden algebra A(Q) consists of all real functions

ue C(QNL>Q)NLLQ),
with multiplication and addition defined pointwise on Q. Given the norm

el =lleell = |t} oo + [ V2t ], 5

A(Q) is a commutative Banach algebra; that is, A(2) is a Banach space satis-
fying ||uw| <||u||w| for each u, w e A(Q). Furthermore, if x and y are dis-
tinct points in 2, then there exists u € A(2) such that u(x)=1 and u(y) =0.
Hence, A(Q) separates points in Q. For detailed discussions of the Royden
algebra, see [Le], [L-F] and [S2]. The relationship between quasiconformal
mappings and Royden algebras is summarized in the following theorem.

TueoreM 1.1 [Le, Thms. 3.2, 7.1; L-F, Thm. 11.3]. Let Q and Q' be do-
mains in R", n=2. Then if f:Q— Q' is K-quasiconformal, the transforma-
tion f*: A(Q') — A(Q) defined by f*v=uv-f for each ve A(Q’) is an algebra
isomorphism. Conversely, if T: A(R') > A(Q) is an algebra isomorphism,
then T induces a |T||"-quasiconformal mapping f: Q— Q' such that f*=T.

2. The Royden Compactification

The Royden compactification Q* of { is the collection of all nonzero, bounded
linear functionals x on A(Q) satisfying x(uw) = x(u)x(w) for each u,we
A(Q). In other words, each x: A(f2) » R must be a continuous homomor-
phism, so Q* lies in the dual space of A(2). The norm of a linear functional
on A(Q) is given by

x|l = sup{|x(w)|: ue A(Q), |u||<1.

It can be shown that ||x||=1 for each x € Q*, and that Q* is a compact Haus-
dorff space in the relative weak* topology generated by A(Q) [S2, §4]. Con-
vergence in this topology is characterized by the rule that if {x,},c is @ net
(generalized sequence) in Q% then x, — x € @* if and only if
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lim | xq(#) —x(u)|=0

for each ue A(Q). (For a discussion of nets, see [Ke].) We note that Q* is
identical to the space of (proper) maximal ideals M of A(Q) through the
correspondence M, < x defined by

M, ={ueA: x(u)=0}=x""(0)
[S2, p. 1154].

If x €2, then X denotes the point evaluation homomorphism defined by
X(u)=u(x) for each ue A(Q). Clearly, xe€Q*, and it is not hard to check
that the mapping x ~ X is continuous. In fact, because A({2) separates points
in Q, x~ % is a homeomorphism of Q onto its image ! C Q* The weak*
topology on { is identical to the Euclidean topology on Q; therefore the
identification of each x € ¢ with X allows  to be viewed as a subset of Q*. In
fact, Q is dense in 2* in the weak* topology [Le, p. 489]. As a result, the set
A = Ag=Q*\Q constitutes a boundary known as the Royden ideal boundary
of .

Because {2 is dense in 2* in the weak* topology, each x € A is the limit of a
net {Z,}.ea such that z, € Q for each a. A net {z,} in Q for which {Z,} con-
verges to x € A is called a Royden net corresponding to x. Each x € A may
have many corresponding Royden nets, but there is a unique z € dQ corre-
sponding to x such that if Z, — x then z,— z in the Euclidean topology on
Q [S3, §3]. The set , C A of all x € A whose Royden nets converge to z € 32
is called the boundary fiber over z. There is thus a one-to-one correspon-
dence between boundary fibers in A and boundary points in d€2.

3. Homeomorphisms of Royden Compactifications

We now present the necessary background for proving our main result. We
require the following lemma, which gives a topological characterization of
the elements in Q* belonging to A.

LEMMA 3.1 [Le, Lemma 6.2; S2, Thm. 4.7). If x€Q*, then x€ A if and
only if x has no countable neighborhood basis in Q*.

Lewis showed that a quasiconformal mapping f: Q — Q' induces a homeo-
morphism between Q* and Q’*. If T= f* is the induced Royden algebra iso-
morphism described in Theorem 1.1, he proved that the adjoint T*: Q* — Q'*
of 7, defined by T*x =x°T for each xeQ* is a homeomorphism in the
weak* topologies such that 7*(A) =A’and T*|Q = f [Le, p. 490; S2, §5, §6].

A natural converse question is whether a homeomorphism ¢: Q* — Q’* in-
duces a quasiconformal mapping between Q and Q. However, as observed
by the referee, a trivial example shows that the answer is negative. The re-
striction of any such ¢ to 2 can be deformed on a relatively compact ball
B C Qto a nonquasiconformal homeomorphism of B onto ¢(B) which coin-
cides with ¢ on dB. Therefore, allowing for such deformations on compact
sets, Nakai and Tanaka proved the “best possible” converse.
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THEOREM 3.2 [NT, Thm. 4]. Let M and N be two Riemannian manifolds
of dimension n = 2. If there exists a homeomorphism ¢ of M* onto N*, then
there exists a compact subset FC M such that the restriction of ¢ to each
component of M\ F is quasiconformal.

The more general question of whether or not the existence of a homeomor-
phism ¢: Q* - Q’* implies the existence of quasiconformal mapping from €
to {2’ remains unanswered. However, we can show that if Q’=B” then there
exists a quasiconformal mapping of Q onto Q’ (not necessarily the restriction
of ¢ to Q). The two main results contributing to the proof are the theorem
of Nakai and Tanaka and the following theorem of Gehring.

THEOREM 3.3 [Ge, Thm. 2]. Suppose that Q is a domain in R”, that U is a
neighborhood of 8%, and that f is a quasiconformal mapping of QNU into
B" such that | f(x)| > 1 as x — 0Q in QNU. Then there exists a neighborhood
U’ of 3Q and a quasiconformal mapping g of @ onto B” such that g=f in
QNu’.

We combine these theorems to obtain the following.

THEOREM 3.4. If QCR", n=2, then there exists a quasiconformal map-
ping f:Q— B" if and only if O* is homeomorphic to (B")*.

Proof. The proof of necessity, as outlined above, is given in [Le, p. 490]
and [S2, Thm. 5.1]. For sufficiency, let ¢p: Q* — (B")* be a homeomorphism.
We identify @ with @ and B” with B”. Then Lemma 3.1 implies ¢(Q) = B”;
otherwise, ¢ or ¢ ~! maps points in @ or B” that have countable neighbor-
hood bases to points with uncountable neighborhood bases. Furthermore,
because the restriction of ¢ to Q is a homeomorphism, [¢(x)|— 1 as x — 9Q.

Theorem 3.2 implies that there exists a compact set FC 2 for which the
restriction of ¢ to each component of Q\ F is quasiconformal. Because ¢ (F)
is compact, there is a number 7 suchthat 0<r<1and ¢(F)CB(0,r). Let V
be the component of Q\ F containing the connected set ¢ ~(B"\ B(0, r)). We
claim Q\F'C Q. If not, there exists

zed(Q\V)NaN.

But z € (Q2\V') means there is a sequence z; — z such that z; € Q\V for each
i € N; and z € 0Q means |¢(z;)| = 1 as i > . So there exists 7 € N such that

¢(Z1) € BH\B(O, r) C ¢(V),

and hence z; € V, for each i = m, a contradiction.
Let C(X) denote the complement R”\ X. If U= C(Q\V) then the above
claim implies C(Q) C U; since dQC C(Q2), U is a nexghborhood of dQ2. An

application of de Morgan’s laws gives

U=CH(QNCHI)NHUI(Q\TV)) = (C(QUV)INCOQ\V)).
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Hence
QNU=0NVNCAQ\V)) =V \a(Q\V).

But because V is open,
I\V)YCQNCWI)CCI);

thus @NU=V. Because ¢ |V is quasiconformal, Theorem 3.3 implies there
is a neighborhood U’ of 92 and a quasiconformal mapping f: @ — B" such
that

flenu'=¢|0nU-. C

The proof of sufficiency in Theorem 3.4 gives the following, more explicit
result.

THEOREM 3.5. If ¢:Q*— (B")* is a homeomorphism, then there is a neigh-
borhood U of 0Q and a quasiconformal mapping f of Q onto B" such that
o=fin QNU.

In a recent conversation, S. Yang reported that he had been able to prove a
significant generalization of Gehring’s theorem. Let Q' be a domain Aomeo-
morphic to the unit ball minus a finite number of interior balls. Yang’s gen-
eralization replaces B” in Theorem 3.3 by ©’: Suppose that Q is a domain in
R” whose boundary has the same number of components as dQ’, that U is a
neighborhood of 992, and that f is a quasiconformal mapping of QNU into
)’ (orientation-preserving in each component of QN U) such that f(x) — a0’
as x— dQ in QNU. Then there is a neighborhood U’ of dQ and a quasicon-
formal mapping g of Q onto @’ such that g=f in QN U’. This result allows
an analogous generalization of Theorem 3.4.

4. An Example of Royden Compactifications
with Different Topologies

The theorem of Nakai and Tanaka gives further insight into the topology
of Q*. For example, it can be used to demonstrate that boundary differ-
ences in domains not quasiconformally equivalent are reflected in analogous
boundary differences in the Royden compactifications of these domains. For
this we require the following theorem, which connects homeomorphic ex-
tensions of quasiconformal mappings to the induced homeomorphisms be-
tween Royden compactifications.

THEOREM 4.1. Let f:Q— Q' be a quasiconformal mapping and T= f~:
A(Q") - A(Q) be its corresponding Royden algebra isomorphism. If f has a
homeomorphic extension from Q to ', then T*(®,) = &y,

Pﬁgof. Let x € ®, with corresponding Royden net {z,}. Recall that 7*% =
f(x) for each x € Q. Then T*(x) =lim, T*(3,), and so {f(z,)} is a Royden
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net corresponding to 7*(x). Because f has a homeomorphic extension,
f(z,) must converge to f(z) and hence T*(x) € ®y,). By a similar argument,
T* !(x) € ®, for each x € ®,y. Thus T*®,) = &,. O

It is also necessary to present a definition of transitivity. If I" is a family of
homeomorphisms of a set X onto itself then I' acts transitively on a set
E C X if for each a, b € E there exists g € I' such that g(a) = b. For example,
the family of 1-quasiconformal self-mappings of B” acts transitively on B”
[GP, Thm. 8.1].

THEOREM 4.2. The family of self-homeomorphisms of (B™)* acts transi-
tively on the set of boundary fibers in (B")*.

Proof. Let ¢, and ®, be boundary fibers in Ag-. Then there is a rotation
f:R" > R” for which f(z)=y. The mapping f|B” is certainly quasicon-
formal, and so 7= f*: A(B") - A(B") is a Royden algebra isomorphism.
It follows that 7*: (B")*— (B")* is a homeomorphism, so Theorem 4.1 im-
plies T%(®,) = ®,. O

We now given an example of a domain for which this type of transitivity
does not exist because certain properties of the Royden boundary directly
reflect properties of the Euclidean boundary. This domain is the inward-
directed spire domain ¥ described by Gehring and Viisdld [GV]. It is a
classic example- of a domain not quasiconformally equivalent to B”. Let
h: [0, ) — R be a function satisfying the following conditions:

(1) his continuous, A(0) =0, A(x)>0forx >0, and A(x)=h(1) forx=1;
(2) h’is continuous and increasing in (0, 1); and
(3) lim,_, o A'(x)=0.
Then
L=R3\{x=(r0,x35):0<r<h(l—x;),0<x3<1},

where (r, 8, x3) are cylindrical coordinates in R? and R3 = {x = (x, x5, X3):
x3> 0}, is an inward-directed spire domain with vertex z = es.

Nakki [Néa, Cor. 10.6] showed that each quasiconformal self-mapping f
of ¥ extends homeomorphically to dX. In fact, his proof of the existence of
an extension to dX requires only that there be a neighborhood U of dX for
which f is quasiconformal on UNX and f(x) —» dX as x - dX. He observed
that each such extension fixes the vertex z of X, and so the family of (ex-
tended) quasiconformal self-mappings of £ does not act transitively on dZ.
Considering the correspondence between points in the Euclidean boundary
and fibers in the Royden boundary, it is reasonable to expect that each self-
homeomorphism of X* will fiix &,. Combining the theorem of Nakai and
Tanaka with Nikki’s extension result shows this to be true.

THEOREM 4.3. If z is the vertex of L, then each self-homeomorphism of
L* fixes ®,.
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Proof. Let ¢: *— L* be a homeomorphism. By Theorem 3.2, there is a
compact set FC X such that ¢: X\F— X is quasiconformal. Let V' be the
component of X\ F bounded by dX. Then ¢(aV'\dX) C X, because dV'\d¥X C
Y and f= ¢ |V is quasiconformal mapping of V into X for which f(x)—dXx
as x — dXr. By Nikki’s result, f can be extended homeomorphically to dZ,
and f(z)=2z. Let T=f*: A(f(V)) - A(V) be the induced Royden algebra
isomorphism. Then T*|V=¢ |V and for each x € Ay. there is a correspond-
ing Royden net {z,} in V, which allows us to write

¢(x) = ¢(im, 2,) =lim, T*(Z,) = T*(lim, 2,) = T*(x).
Thus ¢ |Ax =T*|Ag, and Theorem 4.1 implies ¢($,) = P,. O

That ¥ and B” are not quasiconformally equivalent means * and (B")*
are not homeomorphic. This is reflected in the fact that the family of self-
homeomorphisms of X* fixes the boundary fiber &,, while the family of
self-homeomorphisms of (B”)* is transitive on its set of boundary fibers.

ACKNOWLEDGMENT. The author thanks the referee and Professors Fred
Gehring, Juha Heinonen, and Shanshuang Yang for advice and helpful
criticisms.

References

[BI] B. Bojarski and T. Iwaniec, Analytical foundations of the theory of quasicon-
Sformal mappings in R", Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1983), 257-
324.

[Ge] F. W. Gehring, Extension theorems for quasiconformal mappings in n-space,
J. Analyse Math. 19 (1967), 149-169. '

[GP] F. W. Gehring and B. P. Palka, Quasiconformally homogeneous domains,
J. Analyse Math. 30 (1976), 172-199.

[GV] F.W. Gehring and J. Viisila, The coefficients of quasiconformality of domains
in space, Acta. Math 114 (1965), 1-70.

[Iw] T. Iwaniec, Lectures on quasiconformal mappings, notes from a course taugh:
at Syracuse Univ., 1987-88.
[Ke] J. R. Kelley, General topology, Van Nostrand, New York, 1955.

[L-F] J. Lelong-Ferrand, Ftude d’une classe d’applications liées a des homomor-
phismes d’algébres de fonctions, et généralisant les quasi conformes, Duke
Math. J. 40 (1973), 163-186.

[Le] L. G. Lewis, Quasiconformal mappings and Royden algebras in space, Trans.
Amer. Math. Soc. 158 (1971), 481-492.

[N1] M. Nakai, Algebraic criterion on quasiconformal equivalence of Riemann
surfaces, Nagoya Math. J. 16 (1960), 157-184.

, Existence of quasiconformal mappings between Riemann surfaces,
Hokkaldo Math. J. 10 (1981), 525-530.

[NT] M. Nakai and H. Tanaka, Existence of quaszconformal mappings between
Riemannian manifolds, Kodai Math. J. 5 (1982), 122-131.

[N4d] R. Nékki, Prime ends and quasiconformal mappings, J. Analyse Math. 35
(1979), 13-40.

[N2]




370 NATHAN SODERBORG

[Ro] H. Royden, On the ideal boundary of a Riemann surface, Contributions to the
theory of Riemann surfaces, Ann. of Math. Stud., 30, pp. 107-109, Princeton
Univ. Press, Princeton, NJ, 1953.

[S1] N. Soderborg, Quasiregular mappings and Royden algebras, Ph.D. disserta-
tion, University of Michigan, Ann Arbor, 1991.

[S2] , Quasiregular mappings with finite multiplicity and Royden algebras,
Indiana Univ. Math. J. 40 (1991), 1143-1167.
[S3] , An ideal boundary for domains in n-space, Ann. Acad. Sci. Fenn.

Ser. A I Math. 19 (1994), 147-165.

[Va] J. Vdisild, Lectures on n-dimensional quasiconformal mappings, Lecture Notes
in Math., 229, Springer, New York, 1971.

[Ya] S. Yang, unpublished result conveyed in conversation, 7 January 1993.

Ford Motor Company
AMDC, 24500 Glendale Ave.
Detroit, MI 48239-2678



