Inextendible Conformal Realizations
of Lorentz Surfaces in Minkowski 3-Space

TiLLA WEINSTEIN

1

A simply connected surface which supports an indefinite metric must be dif-
feomorphic to the plane. Yet there are infinitely many distinct conformal
classes of indefinite metrics available on a simply connected surface (see [2]).
This contrasts sharply with the two distinct conformal classes of definite
metrics available on a surface diffeomorphic to the plane.

It is natural to ask how many distinct conformal types are represented
by timelike surfaces in Minkowski 3-space E. Of course, all subsets of the
Minkowski 2-plane E? are isometrically realized as subsets of any timelike
plane in E;. The question is whether such sets can be conformally realized
by timelike surfaces which are in some sense inextendibly imbedded (or im-
mersed) in E7. Moreover, one seeks particularly nice inextendible imbed-
dings (or immersions), say, with constant Gauss curvature K or mean curva-
ture H.

This paper presents methods for generating such conformal realizations.
The examples produced display considerable variety in conformal type, but
all have K=0 or H=0. To aid in distinguishing between conformally in-
equivalent surfaces, we develop a number of indices whose values are pre-
served by conformal diffeomorphisms.

The conformal indices defined in Section 2 are based on properties of the
conformal boundary dy(S, /1) constructed by Kulkarni in [2] for any simply
connected surface S with an indefinite metric 4. The conformal indices de-
fined in Section 3 are based on simple properties of the null lines for 2. Two
lemmas in Section 3 allow use of such properties to characterize the con-
formal type of EZ, and of subsets of EZ.

In Section 4 we determine the conformal type of a few familiar surfaces
in E7 by solving for global null coordinates u, v. The domain of such coordi-
nates in the (u, v)-plane with metric du dv then displays the conformal type
of the surface.

In Section 5 we use the Weierstrass representation (see [4]) to generate
timelike minimal surfaces in E; of various conformal types. The imbeddings
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and immersions obtained are inextendible in the sense that, at any finite
boundary point in E3, either the tangent plane becomes null or the Gauss
curvature K becomes infinite.

In Section 6 we use a complex variable z = x+ iy, and restrict attention to
those indefinite metrics 4 that are proportional to the pullback g*(du dv) by
an analytic function w= g(z) =u+ iv over the domain on which g’(z) #0.
In particular, we find a conformal immersion of the z-plane with metric

h=sinx(dx*—dy?)+2cos xdxdy (1)

in E so that the image is an inextendibly imbedded, timelike minimal sur-
face on which K changes sign. The z-plane with the metric # in (1) is not
conformally equivalent to any subset of EZ, and has the pattern of null lines
shown in Diagram 1. It remains to be seen whether the z-plane with this
metric 4 can be conformally imbedded in E3.

Diagram 1

2
All surfaces in this paper are assumed to be C®, connected and oriented.
For E3 we take (&, 9, {)-space with metric d£2+dn?—d¢? Any immersion
Z:S— E} of a surface S in Ej is assumed to be C*®, with I the metric in-
duced on S by Z. If detI1<0 on S, Z is called timelike. An immersion Z is
called an imbedding when it is one-one.

Any metric h on S is assumed to be C®, and is definite (resp. indefinite)
when det 2> 0 (resp. <0). An immersion Z: (S, h) - E{ with deth+0 is
called conformal if and only if A=Al for a function A #0.

On a surface S with indefinite metric /4, two naturally ordered null direc-
tions in which 2 = 0 are distinguished at each point (see [6]). Integral curves
of the null-direction fields are called null lines. Together, the two naturally
ordered families of null lines comprise the nuil net on (S, #). In the neigh-
borhood of any point, the null lines can be made level lines for null coordi-
nates u, v on § in terms of which 4 = A du dv for some function A # 0. By the
definition that follows (using — v, u in place of u, v if A <0), a surface S with
indefinite metric /4 is always locally conformally equivalent to EZ.
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If det h; =0 on S; and det 4, # 0 on S,, we call (S;, A;) and (S,, 4,) con-
formally equivalent if and only if there is an orientation-preserving diffeo-
morphism f of S| onto S, so that f*(h,) =Ah; for some function A >0 on
Si. When det A, <0, f*(hy) =Ah; for some A > 0 if and only if the null nets
for h; and f*(h,) coincide, so that f takes the A;-null net on S; to the A,-null
net on S,.

Diagram 2 shows the null lines for the metric dudv on six open sub-
sets of the (u, v)-plane. Throughout this paper, we use {(u, v)-plane, du dv}
as the conformal model for Ef. Note that the map (u, v) — (tan(wu/2R),
tan(wv/2R)) takes any square —R < u < R, —R < v < R onto the whole
(u, v)-plane, and any triangle —R< u < R, u < v < R onto the half-plane
v > u so as to preserve the null net for du dv. Thus 2a is conformally equiva-
lent to EZ, and 2b to the half-plane v > u in EZ.
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Diagram 2

Two conformal indices derived from Kulkarni’s conformal boundary
do(S, h) nearly suffice to distinguish among the conformal types in Diagram
2. To define them, suppose S is simply connected with indefinite metric A.
Then the null direction fields can be globally oriented, thereby orienting all
null lines on S. Let T be the set of ideal end points n~, n* for all inextend-
ible oriented null lines » on S. Kulkarni establishes an equivalence relation
on X whose equivalence classes are the points of the conformal boundary
do(S, h). A topology is then defined on S Ud(S, #) which induces a topology
on d4(S, h). (See [2] for details.)

One conformal invariant of (S, /) is the number of entries /(P) in any
equivalence class P on dy(S, /). Another conformal invariant j(S, k) is the
number of connected components in dy(S, #).
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To picture d¢(S, /), let S be an open simply connected subset of EZ. Then
any point p on the topological boundary aS which is the end point of a null
line in S represents at least one P on dy(S, #). If S is bounded, then every
point of d4(S, &) is represented by some p on 3S. In many cases (if 35 is a
Jordan curve, or a line, or a pair of parallel lines, or a pair of distinct rays
from a common point), any p on 4S represents at most one P on dy(S, #);
then i (P) is given by the number of distinct inextendible null lines in S which
end at p. In the examples of Diagram 2, d,(S, #) can be identified with the
subset of dS containing all end points of all inextendible null lines in S.

Thus, in 2a, j(S,4) =4 and i(P) =1 on dy(S, k). In 2b, j(S,h) =3,
i(P)=1 on two components of d,(S, /), and i(P)=2 on the third compo-
nent. In both 2¢ and 2f, all but the eight outer corners of dS represent points
of d¢(S, h), j(S,h)=8, and i(P) =1 except at the four inner corners on ¢S
where i(P) =2. In 2d, j(S, h) =4, i(P) =1 on three components of d4(S, #),
and i(P) =2 on the fourth component except at one inner corner point of
dS where i(P)=3. In 2e, j(S,h) =2 and i(P)=2 on d4(S, /). The confor-
mal indices defined in Section 3 will distinguish between examples 2¢ and 2f.

Close reading of [2] provides the following tool for recognizing (S, /)
which cannot be conformally realized as subsets of EZ.

REMARK 1. If i(P)=4 for some P in dy(S, &), then (S, /) is not confor-
mally equivalent to any subset of EZ.

Thus the universal cover (S, i) of the punctured square [u| <1, |v]| <1,
(u, v) # (0, 0) in E cannot be conformally realized in EZ, since i(P) =0 at
the point of d,(S, /) corresponding to the origin. However, we show in Sec-
tion 6 that this (S, £) is conformally equivalent to the example in Diagram 1.

Note that for any integer & there is a Jordan curve v in £ made up of fi-
nitely many horizontal and vertical line segments and having at least k£ outer
corner points. If S is the interior region determined by vy then j(S, k) =k,
which justifies the next statement.

REMARK 2. There are infinitely many distinct conformal types of simply
connected subsets of E7.

3

The existence of global A-null coordinates characterizes those (S, #) con-
formally equivalent to a subset of EZ. To study conformal type without
reference to the conformal boundary, we prove two lemmas which give con-
ditions necessary and/or sufficient for the existence of global /~-null coordi-
nates on S.

If S is simply connected, the inextendible, oriented null lines for 4 fall
into two classes of mutually disjoint curves, which we call /-lines and m-
lines. As noted in [2], Hopf index arguments show that every /-line or m-line
is a properly imbedded smooth open curve on S. Moreover, each /-line inter-
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sects any m-line in at most one point. Let Q(/) denote the open nonempty
set of all points on all m-lines which intersect /, and Q(m) the open non-
empty set of all points on all /-lines which intersect m.

LemMmA 1. If Q(I)= Q(m) for one l-line | and one m-line m on a simply
connected S with indefinite metric h, then Q(IY=Q(m)=S and (S, h) is
conformally equivalent to a subset of E}.

Proof. Let [, and m, be the uniquely determined /-line and #-line through
any point p on S. Generally, m,, lies in Q(/) if p does, and /, lies in Q(m)
if p does. Since Q(/) = Q(m)= Q here, both /, and m,, lie in Q if p does.
Thus any null line with a point in Q lies entirely in Q.

Suppose there is a point  of S not in Q. Since S is connected and locally
conformally equivalent to E}, r can be joined to a fixed point g in Q by a
continuous curve made up of finitely many oriented null arcs ny, ..., ng, with
n, starting at g, n; starting at the endpoint of n;_; for j=2,..., k, and n;
ending at r. Since n, starts in Q, it must end in Q. If n;_; ends in Q for j =
2,...,k, then n; starts in Q and must end in Q. Inductively, r lies in Q, a
contradiction unless S = Q.

To find global null coordinates u, v on (S, 4), note that any m-line m’ on
S must intersect /. Otherwise, since Q(/) =S, any point p on m’ lies on some
m-line m” # m’ which intersects /, a contradiction since disjoint #-lines can-
not intersect. Similarly, any /-line /’ on S must intersect m.

Fix regular C* parameterizations o and 3 of / and m over (—oo, ®) so
zero goes to g =1/Nm with «’(0), 8/(0) a properly oriented basis for the tan-
gent space S,;. Think of / and m as coordinate axes, assigning to any p on §
the coordinate # at the point on / where m,, intersects /, and the coordinate v
at the point on m where /, intersects m. This map of (S, /) into the (u, v)-
plane with metric du dv is a diffeomorphism preserving the null net. But the
map need not be onto. [

Diagram 2c¢ shows that (S, /) need not be conformally equivalent to E even
if Q(/) = Q(m) = S for infinitely many choices of an /-line / and an m-line m
on S. The following result shows that among the examples in Diagram 2,
only 2a is conformally equivalent to EZ.

CoRrOLLARY TO LEMMA 1. A simply connected surface S with indefinite met-
ric h is conformally equivalent to E} if and only if Q)= S for every Il-line
lonS.

Proof. Argument is needed in just one direction. Suppose Q(/) =S for every
/-line / on S. Fix an /-line / and an m-line /7 on S. Since Q(/) =S, m inter-
sects /. Moreover, Q(m) =S, since otherwise some /-line /’ fails to inter-
sect m, contradicting Q(/’) = S. Thus Lemma 1 applies and we can think of
(S, k) as a subset of EZ, with / along the u-axis and m along the v-axis.
If (S, h) # E# then there is a point (&, §) not in (S, #). But then Q(i) for
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the /-line / through (0, ) dges not contain the point (i, 0) on /, contradict-
ing the assumption that Q(/)=S. Ol

The next result characterizes (S, #) with global null coordinates as those
which have conformal self-images in arbitrarily small open neighborhoods.
Note that S need not be simply connected, just as the domain of global null
coordinates need not be simply connected.

LEMMA 2. A surface S with indefinite metric h is conformally equivalent to
a subset of EZ if and only if any open set W+ on S contains a subset U
with (U, h) conformally equivalent to (S, h).

Proof. On any surface S with indefinite metric /4, every open set W= 0 con-
tains a null net square R, and by the Corollary to Lemma 1, (R, &) is con-
formally equivalent to EZ.

If (S, h) is conformally equivalent to a subset of EZ, then any open sub-
set W of S contains a null set square R which, being conformally equivalent
to EZ, must contain a subset conformally equivalent to (S, /).

If (S, k) is conformally equivalent to (U, &) for some subset U of any
open subset W on §, then using a null net rectangle R in W in place of W,
(S, ) must be conformally equivalent to a subset of R, and hence to a subset
of EZ. O

Conformal indices can be defined on a surface S with indefinite metric #
without reference to the conformal boundary. One example is A(S, /) given
by
A(S,h)= lub a(p,q)=2,
D,g€ES
where a(p, q) is the least number of null arcs needed to form a piecewise
smooth curve from p to g. As in Diagram 1, A(S, /) can be infinite. Another
pair of conformal indices,
B~ (S, h)=glb b(n), B*(S, h) =1ub b(n),
alln alln
is obtained by counting the number b(n) of connected components in the
complement of Q(rn), the set of all points on all null lines which intersect an
inextendible null line n of S. If S is simply connected, the split of inextend-
ible null lines into /-lines and m-lines gives four such invariants,

Br(S,h)=glbb(l), B[ (S,h)=1lubb(l),
alll all/

By (S, h) = glb b(m), B (S, k) =lub b(m).
allm allm
These new indices distinguish between any two examples in Diagram 2,
where we take /-lines horizontal and m-lines vertical. In 2a, 4 =2, with
Bj =Bjt =By;=Bj;=0. For 2b, A=2 with B; =Bj = By;=Bj;=1. For
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2¢, A=2 with Bf =2, B;y;=0, and Bj; =1. For 2e, A= with Bf =B} =
Bj; = Bj;=2. Finally, for 2f, A=3 with Bf =0, Bjf =2, B;;=2, and By, =
3. Lemma 1 and its Corollary give the following results.

THEOREM 1. A simply connected surface S with indefinite metric h is con-
formally equivalent to a subset of E% in case B; (S, h) = Bj;(S, h) =0.

THEOREM 2. A simply connected surface S with indefinite metric h is con-
formally equivalent to E} if and only if Bi (S, h) = 0.

4

If a timelike surface in Ef is conformally equivalent to a subset of E, the
most direct way of displaying its conformal type is to solve for global null
coordinates and then describe their domain. This method will be used for a
few familiar examples.

Suppose that S is a cylinder in E} given by = f({). If f is defined (and
C®) for all real values of ¢, then S is entire over the (¢, {)-plane. The in-
duced metric I on S is given by

[=d&*—(1-f"%) di?,

so that S is timelike if and only if | /| < 1. The conformal type of S depends
upon the values of the improper integrals

oo 0
L= NI=F7d, b= VT=77ds,
0 —o0o0
as explained in the following result.

THEOREM 3. Suppose a timelike cylinder S given by n= f({) is entire over
the (&, )-plane. Then S is conformally equivalent to

(i) EZ when I, and I, are both infinite,
(ii) the example in Diagram 2e when I, and I, are both finite, and
(iii) the example in Diagram 2b when one of the integrals I, or 1, is finite
and the other infinite.

Proof. Use new global coordinates
£
a=t,  f=| VT=77d;,
0

on S in terms of which I =da?—dB2 The image of the (&, {)-plane in the
(o, B)-plane is the whole plane in (i), the strip —o < —1, < < I; < in (ii),
and a half-plane —co<f3<I; <o or —oo< —J[,<f<oo in (iii). Thus the
domains of global null coordinates u =a— 3 and v =+ are as claimed.
O
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ReEMARK 3. Theorem 3 provides examples of entire timelike surfaces in
E? with K = 0 which are conformally inequivalent to £Z. This contrasts with
entire timelike surfaces in E{ with A =0 which must all be conformally
equivalent to EZ. (See [3].)

To study the conformal type of timelike developable helicoids, we first find
null coordinates for the two developable surfaces associated with any C*
timelike curve X(s) in E13 with nonvanishing curvature k(s).

Parameterize X(s) by its E} arc length s, so that X'(s)- X'(s) = —1 in E}.
The tangential developables St and S~ described by

Z(s,t)y=X(s)+tX'(s) )
for £ >0 and ¢ <0 (respectively) have induced metric
I=(t2k?—1)ds?—2dsdt—dt?

where k= k(s) > 0 is the length of the spacelike vector X”(s) # 0. The sur-
faces S* and S~ are timelike since det I = —#2k? <0 when ¢ # 0. We use the
global coordinates s, ¢ to fix an orientation on S* and S™.

Null coordinates u, v for which I = du dv must satisfy the equations

usv,=t2k*—1, w+uv,=-2, wuv,=—1 3)

for ¢ # 0. The functions

"= —-(—/1;+2‘) epr kds} and p= (%—t) exp[—g kds]

solve (3), but we use u, v only for the timelike circular helix

X(s)=(cosas,sinas, Va2+1s) @)
which has k= a?+0, so that
1 a’s 1 —a’s
Uu=— —a—2+t e and v= ;i—t e ; 5)
5, 1
uv=1t —&—4, (6)

with d(u, v)/d(s, t) =2ta? having the sign of ¢. If u(sy, t;) = u(s,, t,) and
v(s1, t1) = v(s,, ty) with t,2, > 0, (6) gives ¢, = 1, so that (5) gives s; = s,. Thus
the map (s, ¢) — (u, v) is a diffeomorphism on the half-planes # > 0 and ¢ <O0.

Use the global null coordinates #, v on ST and (to preserve orientation)
—u,v on S~. The domain of u, v for S* and (after rotation) of —u, v for
S~ is the region below the portion of the hyperbola uv = —1/a* with u <0.
The map (u, v) — (1+tanh u, tanh v) gives conformal equivalence of the null
coordinate domains with a region of the sort shown in Diagram 3a for R=1.
Finally, the following lemma (which is easily checked) justifies the claim in
Theorem 4.
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FLATTENING LEMMA. Suppose v = f(u) is continuous on [0,1] and C* on
(0,1), with f'(u)>0o0n (0,1), f(0)=0, and f(1)=1. Then, for any R=0,
the map (u, v) = (f(u), v) takes the region in Diagram 3a conformally (for
the metric du dv) onto the region in Diagram 3b.

THEOREM 4. The timelike developable helicoids S* and S~ in E{ given for
t >0 and t <0 respectively by (2) using (4) are both conformally equivalent
to the example in Diagram 3b.

A well-known minimal surface in E? is the right helicoid S given for any
constant a > 0 by

Z(s,t)=(scost,ssint,at). (7

This surface is ruled by the lines 7 = constant, but is not developable (see
[5]). The fundamental forms for S in E13 are given by

I=ds?’+(s*?—a?) dt?* and Il=—2adsdt/Na?-s2,

so that H =0, making S a minimal surface in E} as well as E3. To find global
null coordinates u, v for the timelike portion |s|<a of S, set I=Adudv so
that u#, v must satisfy

Augvg=1, Au,v,+u,v)=0, Au,v,=s2—a>

Taking A = a?—s2, one obtains the solutions

u——t+§si— and v—t+Ss——dS—
0 ~/a2—s2 0 ~/a2—s2’

which give a one-one orientation-preserving map of the strip |s| <a in the
(s, t)-plane onto the strip |u+ v| < w/2a in the (u, v)-plane. This justifies the
following claim.

THEOREM 5. The timelike portion of the right helicoid S in E3 given by (7)
is a minimal surface conformally equivalent to the example in Diagram 2e
reflected in a vertical line.
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REMARK 4. On timelike surfaces that can be visualized in E} (and thus in
E?®), one can often picture the null lines, which are always helices, since they
make a constant Euclidean angle (of 45°) with a fixed oriented direction (the
positive {-axis) while being constrained to lie on the surface. For example,
one can see the null lines of the timelike equatorial band on the Euclidean
sphere in E} in Figure 1-32 of Struik’s classical text [5]. The conformal uni-
versal cover of this band is given by the example in Diagram 2e.

5

Suppose that C real-valued functions A(«) and B(v) are defined on the
open intervals I and J, respectively. Let
Z(u, v)=X(u)+Y(v), (8)

where

u v

X(u)= S X'(u)du and Y(v)= S Y'(v)dv

Ug Yo

for a fixed choice of ugy in I and v, in J, with
V2X'(1) = (cos A(u), sin A(u), 1), V2Y'(v) = (cos B(v), sin B(v), 1).

If S is any connected subdomain of 7 X J on which A(u) # B(v) mod 27, the

C*® map Z:IxJ— E} restricts to a C*® immersion Z: S — E; with funda-
mental forms

. 2<A(u)—B(v)>
2

I=—2sin dudv, V2Il=—-A(u)du*+B'(v)dv:  (9)

Thus Z is timelike over S with sign K = sign 4’(1) B’(v) at any point. The
immersion Z given by (8) over S is called Weierstrass representation (see
[4]). If Z is one-one on S then u, v are global null coordinates on Z(S). We
continue to use the metric du dv in the (u, v)-plane. A

If Z is not one-one on S, there are distinct points (u;, v;) and (u,, v,)
with u#; <u, on S for which Z(u,, v;) = Z(u,, v,), so that

u v
S l cos A(u) du+ g l cos B(v)dv =0, (10)

Uy Uz

231 U;
S sin A(u) du+§ sin B(v) dv=0, (11)

Uy Uy

and

UI—U2=u2—ul>O. (12)

Thus Z is one-one on S if cos A(u) > 0 almost everywhere on I, while
cos B(v) =0 on J. Similarly, Z is one-one on S if sin A(x) > 0 almost every-
where on 7, while sin B(v) =0 on J. Though more specific arguments are
often needed to show whether any particular choice of A(«) and B(v) leads
to a one-one Z, the following observation can be useful.
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REMARK 5. The map Z in (8) must be one-one on I X J if 0 < A(u) < 7 al-
most everywhere on I, while —r<B(v)<0on J.

The next result is meant to illustrate the usefulness of the Weierstrass repre-
sentation in constructing inextendibly imbedded timelike minimal surfaces
of differing conformal types. (It does not exhaust all the possibilities.)

THEOREM 6. There exist inextendible conformal imbeddings as timelike
minimal surfaces in E13 of the examples in Diagrams 2a, 2b, 2c, 2e reflected
in a vertical line, 4a, 4b and 4c.
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Diagram 4

Proof. By Remark 3, the entire timelike minimal surface » = {tanh{ has
the conformal type of 2a. Theorem 5 provides an inextendible conformal
imbedding of the example 2e reflected in a vertical line.

To produce an inextendible conformal imbedding of the example 2b, take
A(x)=B(x)=cos (2x—1) on I=J=(0,1). Then A(u)# B(v) mod 27 on
the domain S in 7 X J on which v> u. Suppose the immersion Z of S given
by (8) is not one-one. Then distinct points (u;, v;) and (u,, v,) exist in S with
u; < u, for which (10) gives

u; N
S Cu-—1) du+S Qv—-1)dv=0,
Uy Uy

so that (12) yields
(U1 —up)(uy+u, — v, —v,) =0.

With v;>u;>0 and v,>u,>0 on S, one must have u; =u, above, and
hence v, = v,, a contradiction. Thus «, v are global null coordinates and Z
is an imbedding. Moreover, tangent planes to Z(S) approach a null plane as
(u, v) in S goes to any point on the closed segment # = v in I X J, while Gauss
curvature approaches infinity as (u#, v) in S goes to a noncorner point on
0(Ix J). Again, Z(S) is inextendible as a C* timelike surface in E}.

To produce an inextendible conformal imbedding of the example 4a, take
any C* A(x) on I = (—o0, o) with A(x) =0 on (—o, 0], A(x) >0 on (0, x),
and A(x)—1 as x - . Let B(x) =—A(x) with J=(—o0, ), Then A(u)+#
B(v) mod 27 on the union § of the half-planes v>0 and u > 0. If Z is not
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one-one on S, distinct points (u#y, v;) and (u,, v;) exist on S with (10) and
(12) holding. If u; =0 then u, > 0, so that

u, v
g sin A(u) du <0, g 'sin B(v) du =<0, (13)

Uy L]

contradicting (11). If #; <0 then v; > 0, so that

u v
g ' sin A(u) du <0, S 'sinB(v)du<0, (14)
Us L)
contradicting (11). Thus u, v are global null coordinates and Z is an imbed-
ding. The only finite boundary points for Z(S) occur as (¢, v) in S goes to a
finite boundary point of S, and then the tangent planes to Z(S) approach a
null plane. Again, Z(S) is inextendible.

To produce an example with the conformal type of 2c, take any C*
A(x) on I =(—o0, ) with A(x)=0o0n|x|=1, A(x)>00n(—1,0), A(x)<
Oon (0,1), and A(0) =1. Let B(x) = —A(x) with J=(—o0, ). Then A(u)+#
B(v) mod 2« on the union S of the strips |#| <1 and |v|<1. If Z is not one-
one on S, then distinct points (u;, v;) and (u,, v,) exist on S with (10) and
(12) holding. If u; =1 or u, < —1 then |v| <1 and |v,| <1, giving (14) which
contradicts (11). If #; <1 and u, > —1 then (13) holds, contradicting (11). Thus
u, v are global null coordinates and Z is an imbedding. One argues as in the
previous case that Z(S) is inextendible.

To produce an example with the conformal type 4b, let

A(x)=1-2Vx—x2

and take B(x)=—A(x) on I=J=(0,1). Then A(u)+# B(v) mod 27 on the
domain S obtained from IxJ by deleting the point (3, 3). By Remark 5,
u, v are global null coordinates on Z(S) and Z is an imbedding. Since the
tangent planes to Z(S) approach a null plane as (u, v) in S goes to (3, 7),
while Gauss curvature approaches infinity on Z(S) as (u, v) in S goes tc a
point on a(I X J), Z(S) is inextendible. A slight variation on this construc-
tion is included in the next case for Kk =1.

To produce an inextendible conformal imbedding of the example 4c (where
k distinct points are removed from the diagonal u = v of the square for k=
1,2,...), we describe (for the purposes of Section 6) a Weierstrass representa-
tion defined on the conformally equivalent domain S obtained by removing
k distinct points from the line # = v in the whole (u, v)-plane. Take any C*
A(x) on I =(—o0, ) with A(x) »>1as x— +o, 0=<A(x)<1, and A(x)=0
for exactly k distinct x values. Let B(x) = —A(x), so that J=(—oo, o). Then
A(u) # B(v) mod 27 on S. By Remark 5, u, v are global null coordinates on
Z(S) and Z is an imbedding. The only finite boundary points for Z(S) occur
as (u, v) in S approaches a deleted point, so that the tangent planes to Z(S)
approach a null plane. Thus Z(S) is inextendible. Note that by (9) the sign
of K must change on Z(S). O
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REMARK 6. The method used to produce the last example extends easily to
provide an inextendible timelike minimal surface in E; conformally imbed-
ding the (u, v)-plane with a countably infinite set of points deleted from the
line u=v.

The Weierstrass representation can be used to produce inextendibly im-
mersed conformal representations in E{ of a wide variety of subsets in EZ.
We cite just one pair of conformally distinct examples obtained by taking
A(x)=1—-2vx—x2 and B(x)=1—+Vx—x2 on I=J=(0,1). Then A(u)#
B(v) mod 27 on the domains S, S,, and S in 7 X J which (respectively) lie
left of, right of, and between the two branches of the hyperbola A(u)=
B(v) in I X J, as shown in Diagram 5a. One easily argues that Z is inextend-
ible on Sj, S,, and S;. A suitable version of the flattening lemma then shows
that S, and S, have the conformal type shown in Diagram 5b, and S; the
type shown in Diagram 5c.
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Diagram 5

6

To find a conformal immersion in E} of the (x, y)-plane with metric 4 given
by (1), set z=x+ iy and use the entire function

w=g(z) = —2ie’?’?

which has period 47 and assumes all values w=u+iv+# 0. Here

u=2e??sin(x/2) and v=-—2e”?cos(x/2),
so that
2g*(dudv)=e"h.

Thus g composed with any conformal immersion of ({u+iv +# 0}, dudv) in
E} gives a conformal immersion of ((x, y)-plane, /) in E}.

There is an obvious imbedding given by {=(u—v)/V2, =0, ¢=
(u+v)/V2, which is isometric from ((u, v)-plane, du?+dv?) into E* and
from ((u, v)-plane, 2 du dv) into E{. This justifies the following claim.
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THEOREM 7. The (x, y)-plane with metric h=sin x(dx*—dy?*)+2 cosx dx dy
can be conformally immersed in E3 as the universal cover of the (£, {)-plare
with the origin removed.

A more satisfying example is obtained by composing g with the imbedding
of ({u+iv+ 0}, dudv) provided by Theorem 6. In particular, use the proof
that the example of Diagram 4c can be realized for kK =1. This justifies the
following.

THEOREM 8. The (x, y)-plane with metric h=sin x(dx*—dy?)+2cosx dx dy
can be conformally immersed in E; as the universal cover of an inextend-
ibly imbedded timelike minimal surface on which K changes sign.

ReEMARK 7. Given any analytic function w= g(z) with g’(z) #0 on a do-
main  in the z = (x+iy)-plane, composing g with a conformal imbedding
or immersion of (g(2), dudv) in E} yields a conformal imbedding or im-
mersion of (Q, g*(dudv)) in E3.

Use of Theorem 6 and Remark 6 gives results of the following sort.

THEOREM 9. Let w=g(z) be a polynomial of degree n=2 so that g'(z)
has exactly k distinct zeros, with 1<k<n. Let Q be the z-plane less the
zeros of g'(z). Then (Q, g*du dv) can be conformally immersed in E13 asa
covering of an inextendibly imbedded timelike minimal surface on which K
changes sign.

In the next remark, [/] denotes the set of all metrics conformally equivalent
to a nondegenerate metric # on S. If / is Riemannian (positive definite) then
®R = (S, [A]) is a Riemann surface. By analogy, if 4 is Lorentzian (indefinite)
then we call £ = (S, [#]) a Lorentz surface.

REMARK 8. The method in Remark 7 can be applied even when w= g(z) is
a “multivalued” analytic function w = g(z) in a domain @ on which g’(z) #0.
Associated with such a function g is a Riemann surface ® = (S, [dx2+dy?])
defined on a naturally constructed covering surface S of Q to which one lifts
the metric dx?+dy?. Locally, any lift of z=x+iy to S gives a conformal
parameter on ®, and w = g(z) lifts to a function single-valued and analytic
on & with g’(z) # 0. However, g need not be one-one on ® (see [1] or [7]).
Now use g* to pull the metric du dv back to S, and define the Lorentz sur-
face £=(S, [g*dudv]). Composition of g with a conformal imbedding or
immersion of (g(®R), dudv) in E{ yields a conformal imbedding or immer-
sion of £in E}. For example, if w = g(z) =z'2, then S is the familiar double
cover of the punctured plane Q = {z # 0}, and w=z!/2 is one-one from ® to
{w=0}. Here £ = (S, [g*dudv]), where

g*dudv=y(dy*—dx®) +2xdxdy

on S. Composing g with the imbedding of ({w # 0}, dudv) provided by
Theorem 6, one gets an inextendible conformal imbedding of £ in Ef as a
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timelike minimal surface on which K changes sign. Note that the conformal
structure of (2, g*du dv) is more complicated than that of £.
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