Semicocycles and Weighted Composition
Semigroups on H?
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1. Introduction

We consider semigroups (7}),=o on the Hardy space H” of the unit disc D,
which are of the form

) T;:HP—>HP, T,f(z)=h(2)f(2,z) (t=0, feH”, zeD)

with suitable analytic functions ®,: D — D and 4,: D — C. We suppose that
(®,);>0 is a semiflow (sometimes called semigroup) of analytic functions;
that is, the mapping ¢~ ®,(z) is continuous for every ze D, $y(z) =z and
®,,(z) = P,(Ps(z)) for all ze D and ¢, s € [0, ). An application of Vitali’s
theorem shows the joint continuity of the mapping (z, £)~ ®,(z). We often
write ® instead of (®;),-o. Semiflows are studied very comprehenswely by
Berkson and Porta [1].

In this paper we discuss the manner in which properties of semigroups
(T}); >0 of the form (1.1) are related to the properties of the functions #,.

DEFINITION 1. Let ® be a semiflow. A family (4,),o of analytic func-
tions A,: D — C is called a semicocycle for ® if

(i) the mapping ¢~ h,(z) is continuous for every ze D,
(ii) h;ps=h; (hsed,) for £,5 =0, and
(iii) ho=1.
(h;);0 is said to be

continuous, if the mapping (¢, z)~ h,(z) is continuous,

differentiable, if for every z € D the mapping 7+ #,(z) is dlfferentlable
and

bounded, if every h, is bounded (¢ =0).

By using Vitali’s theorem one can show that a bounded semicocycle is
continuous. If ¢ is a semiflow and (#4,;),>¢ a bounded semicocycle for &,
then the family (7;),-, given by (1.1), is a semigroup of bounded linear op-
erators on H”.

Let w: D — C be an analytic function satisfying w # 0. If all zeros of w are
in the set {zeD: ®,(z) =z for all 7 € [0, )} of fixed points of &, then
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w(P,(z))

for tf=0and zeD
w(z)

1.2) h(z)=

defines a semicocycle for ®. It is differentiable with
_ 0'(2)G(2)
t=0 w(z)

where G is the so-called infinitesimal generator of ® (see below). Semico-
cycles arising in this way are discussed by Siskakis [6].
Let g: D — C be an analytic function and define (k;);>o by

d
5?11,(2) when zeD,

t
(1.3) h,(z)=exp(s0 2(®,(2)) ds) for =0 and zeD.
Then (A4,),>¢ is a differentiable semicocycle for ® also. Furthermore, we have

=g(z) for zeD.
t=0

0
Et“ht(z)

In Lemma 2.2 we prove that every semicocycle given by (1.2) has a repre-
sentation of the form (1.3), and we state conditions for which the converse
holds. .

Our main result shows that for a strongly continuous semigroup (7;),»¢
of the form (1.1), the functions %, are given by (1.3).

THEOREM 1. Let p be in [1, ), ® be a semiflow, and h, be analytic in D
for t =0 such that (T}),>, defined by (1.1), is a strongly continuous semi-
group on H?. Then (h,),- is a differentiable semicocycle for ®, the func-
tion g:=(0/dt)h,|,_, is analytic in D, and (1.3) holds.

The proof characterizes, for every z € D, the mapping ¢ — 4,(z) as the unique
solution of the differential equation on R, :

d .
1.4) E;w(t)=w(t)-g(<1>,(z)) with w(0)=1.
There are parallels to analogous properties of the semiflow ®. Berkson
and Porta [1] showed that for every semiflow ® the limit

CI’,«(Z)—Z — 6

G(z)= lim 'a—tq)t(Z)

-0+
exists uniformly on compact subsets of D and, for every z € D, the mapping
t— ®,(z) satisfies the differential equation

t=0

(1.5) %w(t)=G(w(t)) with w(0) =z.

The analytic function G is called the infinitesimal generator of ®. We list
some properties of a semiflow ® and its generator G (see [1], [5]): If G is not
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identically zero, then G has the unique representation
G(z)=F(z)(z—b)(bz—1)

with |b| <1 and analytic F: D — C with nonnegative real part. So the set of
the zeros of G is equal to {b}ND. The point b is called the Denjoy-Wolff
point of ®. If |b| <1, then it is a fixed point for every ®,. In this case there
is a unique schlicht function 4#: D — C with 4#(0) =0 and 4’(0) =1 such that
h(yp(®,(2))) = e h(y,(z)) for all ze D and ¢ = 0, where v,(z) =
(z—b)(1—bz)~L. This function 4 is called the univalent (or schlicht) func-
tion associated with &.

On the other hand, the following question arises: Which conditions for
an analytic function g imply the strong continuity of the semigroup (7}), ¢,
defined by (1.1) and (1.3)? We state the following theorem. (By N we denote
the set {1,2,3,...} and No=NU{0}.)

THEOREM 2. Let p be in [1, ) and ® be a semiflow with generator G and
(if G #0) Denjoy-Wolff point b. Furthermore, let g: D — C be analytic.

(@ If
(1.6) M:=sup Re g(z) < oo,

zeD

then the semigroup (T,), >, defined by (1.1) and (1.3), is strongly con-
tinuous on HP.

(b) If the semigroup (1;);=¢, defined by (1.1) and (1.3), is strongly con-
tinuous, then its generator (A, D(A)) is given by

D(A)={feH?:G-f'+g-fe H?]
and
Af=G-f'+g-f for feD(A).

If G#0and |b|<]1, then ch_oose any c e D\ (b} and define o = g(b)/
G'(b), vp(z)=(z—b)/(1—bz2), and

(z) =exp(jj g((—% d;) for zeD\{(b).
Then the point spectrum w(A) of A satisfies

o k+a
(hoyp) c Hp}.

w

T(A) = [k-G'(b)+g(b): keN, and

REMARK. (K°v,)%*%/w is always analytic at b, but w is not.

So we see that there are at least as many strongly continuous weighted com-
position semigroups for a given semiflow as there are analytic functions on
D whose real parts are bounded above. Theorem 2 is a generalization of
Theorems 1, 2, and 3 of Siskakis [6].
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2. Semicocycles and the Proof of Theorem 1

Throughout this section ® denotes a semiflow with generator G and (if
G # 0) Denjoy-Wolff point b. Let (A,),;=0 be a semicocycle for . We state
some properties of (#;);>p.

LEMMA 2.1.

(@) (h;);=0 is bounded if and only if limsup, _, o, 4] < .
(b) h; has no zero (t =0).

Proof. (a) Let M,:=sup,.p|h,(z)|€[0, o] for  =0.

“=”: Note that M, <+ for every ¢ =0. Condition (ii) of Definition 1
shows the subadditivity of ¢~log M,. From [2, VIII, 1.4 and 1.5] we know
that there are M, weR such that M, <Me"’ for all ¢ =0. The conclusion
follows.

“=”: There are M, 6 > 0 with |h,(z)| <M for ze D and ¢ € [0,6]. For
arbitrary ¢ > 0 there exists 7€[0,6] and ne N such that ¢ = nr. Then the

equation
n—1

h:(z)=kII h,(®$¢,(z)) for zeD
=0

shows that 7, e H*.

(b) Assume the existence of zoe D and ¢ € [0, o) with h,o(zo) =(. Define
I={tel0,): h/(zy) =0} and 7 =inf 1. Part (i) of Definition I implies that
7 el. Part (iii) implies that 0 ¢ /. Since

h,+5(z0) =h.(20)hs(P,(20)) =0 for all s€[0, ),

we have I =[7, «). Choose e (0, 7). Then h, . ;_ (2¢) =h(20)h,_ (Ds(Z0))
implies 4, _.($,(z0)) =0 for all s € [, 7).

If ®,(z0) =2z, for all s €[e, 7), then 7—e € I, which is a contradiction to
I =[7, ). Otherwise, the analytic function 4, _, is zero on the nonconstant
path [e,7) 55~ ®,(z), hence h,_.=0 and 7—e e [. This is again a contra-
diction to I =7, ). 0

The next lemma shows the way in which the representations (1.2) and (1.3)
are connected.

LEMMA 2.2. (a) If w is analytic in D without zeros in D\{b}, then the

analytic function g: D — C, given by g = Gw’/w, satisfies

w(P,(z))
w(Z)
(b) Assume G #0. If g is analytic in D, then there exists an analytic v:

D\ {b} - C such that (2.1) holds (even forz="b in the case be D). If |b| <1,

then w is analytic at b if and only if o.:=g(b)/G’'(b) € Ny. In this case o is

the order of the zero b at w.

2.1 =exp<g:) g(P,(2)) ds) Jfor t =0 and zeD.
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Proof. (a) Note that for every z € D and # =0 the mapping
v:[0,¢]->D with y(s):=®,(2)

is a continuously differentiable path in D from z to ®,(z) which satisfies
(1.5). We have (first z # b)

exp (S; 8(®s(z)) dS> = exp(gt i"il%ﬁgv'(s) ds) = exp(g e o) ds‘)

0 w(P(z)) z w(§)
®,(2) i)
=exp(logw(§') >=w—((-o(Lz(§)—)
(b) Fix any ce D\ {b} and put
_ z g(£)
w(z)-exp(SC ) ds“) for ze D\ ({b}.

(We choose any integration path in D\ {5} between ¢ and z; the definition is
independent of this choice.) Without loss of generality we assume b € D\ {0}
and ¢=0. A computation gives

w(z)=(z—b)*Y(z) for zeD\([b]},
where
z —-b)—aCG
¢(z)=(_b)—aexp(§0 BT

The integrand ¢~ [g($)($—b) —aG($)1/[G($)(§ — b)] is analytic in D.
Hence, ¢ is analytic in D without zeros. Therefore, w is analytic at b if and
only if z~ (z—b)* is, that is, if and only if « € N,. In this case « is obviously
the order of the zero b of w. If xe{—1,—-2,—3,...}, then w has a pole of
order —« at b, in all other cases an essential singularity. To show the valid-
ity of (2.1), use (1.5) and v (see above) to parametrize a path in D from z
to ®,(z). U

d;) for zeD\(b).

REMARK. Let b be in D and w be analytic in D\ {b}. If there exists an
a € C such that w(z)(z—b)“ is analytic at b, then the representations (1.2)
and (1.3) are equivalent.

We now show that the form (1.3) can always be achieved if (7}),- ¢, defined
by (1.1), is strongly continuous.

PROOF OF THEOREM 1.

(1) Analyticity of g. Let (A, D(A)) denote the infinitesimal generator of
(T¢)¢=0- Fix zeD, >0 and choose a closed neighbourhood UCD of z.
Note that D(A) is dense in H” with respect to the topology of uniform con-
vergence on compact subsets. Hence, there exists a function fe D(A) such
that

S(®,(£)#0 for se[0,¢] and ¢ e U.
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Now we see that

lim hg($)—1 _ Iim 1 |iTsf(§')—f(§') _f(q’s(f))—f(i')]
s—0+ s 5 -0+ fqu(f)) S S
=—|Af) -1
f(f)[ S(§) f(f)G(f)]

uniformly for ¢ e U. It follows that g is analytic in D.

(2) (h;);>0 is a differentiable semicocycle. The semicocycle properties of
(h)¢=0=(T; 1), (where 1: D — {1} denotes the constant function) are evi-
dent. The proof of the following fact is elementary: If f: [0, oo} — C is con-
tinuous and has a continuous right-hand derivative, then f is differentiable.
Since

lim Pees@=h@) e Bs(@@) -1

s—0+ S s-0+
holds for every =0 and zeD, this fact implies the differentiability of
(h0)i=o0-
(3) (1.3) holds. Part (2) shows that, for every z € D, the mapping ¢~ /,(z)

is a solution of (1.4). According to the theory of ordinary differential equa-
tions, the unique solution is given by (1.3). ]

=h,(2)g(®,(2))

3. Proof of Theorem 2 and Discussion of
Continuity of the Generator

The following lemma is a generalization of [6, Thm. 1]. That proof applies
here with small changes.

LEMMA 3.1. Let p bein (0, ), ® be a semiflow, and (h,);=o be a semico-
cycle for ®. If imsup, o4 |h|w =<1, then lim, o4 |B,+(fo®,)—f],=0 jor
every fe H?,

In the situation of Theorem 2 we have, for ¢ =0,

{
|h] =<sup exp(S Re g(®,(z)) ds) <e'™M,
zeD 0
so Lemma 3.1 implies the strong continuity of (7;); . The rest of the proof
of Theorem 2 is a generalization and reformulation of [6, Thms. 2 and 3].
O
An advantage of the form (1.3) of a semicocycle is that every multiplication
semigroup on H” can be seen as a special case of a weighted composition
semigroup. We will now discuss the continuity of the generator of (7;);50-
The following generalization of [6, Cor. 1] is also applicable to multiplica-
tion semigroups.
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COROLLARY 3.2. Let the assumptions of Theorem 2 be satisfied. Then
the following two conditions are equivalent:

(i) A is continuous,
(i) G=0, and g is bounded in D.

The proof follows from [6, Cor. 1], together with the following lemma.

LEMMA 3.3. Letp bein [1,o), ® be a Mobius transformation of D, and
h be analytic in D so that A: HP - H?, Af:=h-(f-®), is well defined. Then
h is bounded in D.

Proof. Ais a closed operator on H”; therefore A is continuous. By induc-
tion we obtain 7" e H” for every n € N. Use Littlewood’s subordination the-
orem [3, p. 29] to see that h"-® e H? if h"e H”. So we have he HY for
every g €[1, o). It follows that, for every ne N,

RN 1+[27O)[\""\”"
_ n—1, 1 < .se oo =
"h"np—-("A(h ¢ )"p) = S(IIA" (1_|¢_1(O)I> ) M.

For o >0, put E,:= {0 € [0, 27]: |h(e®)| > a}. By \ we denote the 1-dimen-

sional Lebesgue measure on dD. If A(E,) >0, then a straightforward com-

putation yields a“\(E,)/(27) =|h|] for g =1, and therefore

ME,)
27

It follows that M = o. We have now deduced that ess supyge (o, 21| #(e")| < M.
We write #=s-F as in [4, p. 63] with an inner function s and

1/q
lelhlqua( ) Ta as gleo.

1 - i0 )
F(z)=exp S ¢ +2 log|h(e’®)|do) for zeD.
27 -7« 8'0—2}
Using the Poisson integral we obtain, for z € D,
1 T i0
|h(z)| <exp —S Re ¢ +2 logMdo =M,
2T J -7 e"’—z
and the conclusion follows. C
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