Semicocycles and Weighted Composition Semigroups on H^p

WOLFGANG KÖNIG

1. Introduction

We consider semigroups $(T_t)_{t\geq 0}$ on the Hardy space H^p of the unit disc **D**, which are of the form

(1.1)
$$T_t: H^p \to H^p$$
, $T_t f(z) = h_t(z) f(\Phi_t(z))$ $(t \ge 0, f \in H^p, z \in \mathbf{D})$

with suitable analytic functions $\Phi_t : \mathbf{D} \to \mathbf{D}$ and $h_t : \mathbf{D} \to \mathbf{C}$. We suppose that $(\Phi_t)_{t \geq 0}$ is a semiflow (sometimes called semigroup) of analytic functions; that is, the mapping $t \mapsto \Phi_t(z)$ is continuous for every $z \in \mathbf{D}$, $\Phi_0(z) \equiv z$ and $\Phi_{t+s}(z) = \Phi_t(\Phi_s(z))$ for all $z \in \mathbf{D}$ and $t, s \in [0, \infty)$. An application of Vitali's theorem shows the joint continuity of the mapping $(z, t) \mapsto \Phi_t(z)$. We often write Φ instead of $(\Phi_t)_{t \geq 0}$. Semiflows are studied very comprehensively by Berkson and Porta [1].

In this paper we discuss the manner in which properties of semigroups $(T_t)_{t\geq 0}$ of the form (1.1) are related to the properties of the functions h_t .

DEFINITION 1. Let Φ be a semiflow. A family $(h_t)_{t\geq 0}$ of analytic functions $h_t: \mathbf{D} \to \mathbf{C}$ is called a *semicocycle for* Φ if

- (i) the mapping $t \mapsto h_t(z)$ is continuous for every $z \in \mathbf{D}$,
- (ii) $h_{t+s} = h_t \cdot (h_s \circ \Phi_t)$ for $t, s \ge 0$, and
- (iii) $h_0 \equiv 1$.

 $(h_t)_{t\geq 0}$ is said to be

continuous, if the mapping $(t, z) \mapsto h_t(z)$ is continuous, differentiable, if for every $z \in \mathbf{D}$ the mapping $t \mapsto h_t(z)$ is differentiable, and

bounded, if every h_t is bounded $(t \ge 0)$.

By using Vitali's theorem one can show that a bounded semicocycle is continuous. If Φ is a semiflow and $(h_t)_{t\geq 0}$ a bounded semicocycle for Φ , then the family $(T_t)_{t\geq 0}$, given by (1.1), is a semigroup of bounded linear operators on H^p .

Let $\omega : \mathbf{D} \to \mathbf{C}$ be an analytic function satisfying $\omega \neq 0$. If all zeros of ω are in the set $\{z \in \mathbf{D} : \Phi_t(z) = z \text{ for all } t \in [0, \infty)\}$ of fixed points of Φ , then

Received October 11, 1989. Revision received March 8, 1990. Michigan Math. J. 37 (1990).

(1.2)
$$h_t(z) = \frac{\omega(\Phi_t(z))}{\omega(z)} \quad \text{for } t \ge 0 \text{ and } z \in \mathbf{D}$$

defines a semicocycle for Φ . It is differentiable with

$$\frac{\partial}{\partial t} h_t(z) \Big|_{t=0} = \frac{\omega'(z) G(z)}{\omega(z)}$$
 when $z \in \mathbf{D}$,

where G is the so-called infinitesimal generator of Φ (see below). Semicocycles arising in this way are discussed by Siskakis [6].

Let $g: \mathbf{D} \to \mathbf{C}$ be an analytic function and define $(h_t)_{t \ge 0}$ by

(1.3)
$$h_t(z) = \exp\left(\int_0^t g(\Phi_s(z)) ds\right) \text{ for } t \ge 0 \text{ and } z \in \mathbf{D}.$$

Then $(h_t)_{t\geq 0}$ is a differentiable semicocycle for Φ also. Furthermore, we have

$$\frac{\partial}{\partial t} h_t(z) \Big|_{t=0} = g(z) \text{ for } z \in \mathbf{D}.$$

In Lemma 2.2 we prove that every semicocycle given by (1.2) has a representation of the form (1.3), and we state conditions for which the converse holds.

Our main result shows that for a strongly continuous semigroup $(T_t)_{t\geq 0}$ of the form (1.1), the functions h_t are given by (1.3).

THEOREM 1. Let p be in $[1, \infty)$, Φ be a semiflow, and h_t be analytic in \mathbf{D} for $t \ge 0$ such that $(T_t)_{t \ge 0}$, defined by (1.1), is a strongly continuous semigroup on H^p . Then $(h_t)_{t \ge 0}$ is a differentiable semicocycle for Φ , the function $g := (\partial/\partial t)h_t|_{t=0}$ is analytic in \mathbf{D} , and (1.3) holds.

The proof characterizes, for every $z \in \mathbf{D}$, the mapping $t \mapsto h_t(z)$ as the unique solution of the differential equation on \mathbf{R}_+ :

(1.4)
$$\frac{d}{dt}w(t) = w(t) \cdot g(\Phi_t(z)) \quad \text{with } w(0) = 1.$$

There are parallels to analogous properties of the semiflow Φ . Berkson and Porta [1] showed that for every semiflow Φ the limit

$$G(z) = \lim_{t \to 0+} \frac{\Phi_t(z) - z}{t} = \frac{\partial}{\partial t} \Phi_t(z) \bigg|_{t=0}$$

exists uniformly on compact subsets of **D** and, for every $z \in \mathbf{D}$, the mapping $t \mapsto \Phi_t(z)$ satisfies the differential equation

(1.5)
$$\frac{d}{dt}w(t) = G(w(t)) \quad \text{with } w(0) = z.$$

The analytic function G is called the *infinitesimal generator* of Φ . We list some properties of a semiflow Φ and its generator G (see [1], [5]): If G is not

identically zero, then G has the unique representation

$$G(z) = F(z)(z-b)(\bar{b}z-1)$$

with $|b| \le 1$ and analytic $F: \mathbf{D} \to \mathbf{C}$ with nonnegative real part. So the set of the zeros of G is equal to $\{b\} \cap \mathbf{D}$. The point b is called the *Denjoy-Wolff* point of Φ . If |b| < 1, then it is a fixed point for every Φ_t . In this case there is a unique schlicht function $h: \mathbf{D} \to \mathbf{C}$ with h(0) = 0 and h'(0) = 1 such that $h(\gamma_b(\Phi_t(z))) = e^{G'(b) \cdot t} \cdot h(\gamma_b(z))$ for all $z \in \mathbf{D}$ and $t \ge 0$, where $\gamma_b(z) = (z-b)(1-\bar{b}z)^{-1}$. This function h is called the *univalent* (or schlicht) function associated with Φ .

On the other hand, the following question arises: Which conditions for an analytic function g imply the strong continuity of the semigroup $(T_t)_{t\geq 0}$, defined by (1.1) and (1.3)? We state the following theorem. (By N we denote the set $\{1, 2, 3, ...\}$ and $N_0 = N \cup \{0\}$.)

THEOREM 2. Let p be in $[1, \infty)$ and Φ be a semiflow with generator G and (if $G \neq 0$) Denjoy-Wolff point b. Furthermore, let $g: \mathbf{D} \to \mathbf{C}$ be analytic.

(a) *If*

(1.6)
$$M := \sup_{z \in \mathbf{D}} \operatorname{Re} g(z) < \infty,$$

then the semigroup $(T_t)_{t\geq 0}$, defined by (1.1) and (1.3), is strongly continuous on H^p .

(b) If the semigroup $(T_t)_{t\geq 0}$, defined by (1.1) and (1.3), is strongly continuous, then its generator (A, D(A)) is given by

$$D(A) = \{ f \in H^p \colon G \cdot f' + g \cdot f \in H^p \}$$

and

5

$$Af = G \cdot f' + g \cdot f$$
 for $f \in D(A)$.

If $G \neq 0$ and |b| < 1, then choose any $c \in \mathbf{D} \setminus \{b\}$ and define $\alpha = g(b)/G'(b)$, $\gamma_b(z) = (z-b)/(1-\bar{b}z)$, and

$$\omega(z) = \exp\left(\int_{c}^{z} \frac{g(\zeta)}{G(\zeta)} d\zeta\right) \quad for \ z \in \mathbf{D} \setminus \{b\}.$$

Then the point spectrum $\pi(A)$ of A satisfies

$$\pi(A) = \left\{ k \cdot G'(b) + g(b) \colon k \in \mathbb{N}_0 \text{ and } \frac{(h \circ \gamma_b)^{k+\alpha}}{\omega} \in H^p \right\}.$$

REMARK. $(h \circ \gamma_b)^{k+\alpha}/\omega$ is always analytic at b, but ω is not.

So we see that there are at least as many strongly continuous weighted composition semigroups for a given semiflow as there are analytic functions on **D** whose real parts are bounded above. Theorem 2 is a generalization of Theorems 1, 2, and 3 of Siskakis [6].

2. Semicocycles and the Proof of Theorem 1

Throughout this section Φ denotes a semiflow with generator G and (if $G \neq 0$) Denjoy-Wolff point b. Let $(h_t)_{t\geq 0}$ be a semicocycle for Φ . We state some properties of $(h_t)_{t\geq 0}$.

LEMMA 2.1.

- (a) $(h_t)_{t\geq 0}$ is bounded if and only if $\limsup_{t\to 0+} ||h_t||_{\infty} < \infty$.
- (b) h_t has no zero $(t \ge 0)$.

Proof. (a) Let $M_t := \sup_{z \in \mathbf{D}} |h_t(z)| \in [0, \infty]$ for $t \ge 0$.

" \Rightarrow ": Note that $M_t < +\infty$ for every $t \ge 0$. Condition (ii) of Definition 1 shows the subadditivity of $t \mapsto \log M_t$. From [2, VIII, 1.4 and 1.5] we know that there are $M, w \in \mathbb{R}$ such that $M_t \le Me^{wt}$ for all $t \ge 0$. The conclusion follows.

" \Leftarrow ": There are $M, \delta > 0$ with $|h_t(z)| \leq M$ for $z \in \mathbf{D}$ and $t \in [0, \delta]$. For arbitrary t > 0 there exists $\tau \in [0, \delta]$ and $n \in \mathbf{N}$ such that $t = n\tau$. Then the equation

$$h_t(z) = \prod_{k=0}^{n-1} h_{\tau}(\Phi_{k\tau}(z)) \quad \text{for } z \in \mathbf{D}$$

shows that $h_t \in H^{\infty}$.

(b) Assume the existence of $z_0 \in \mathbf{D}$ and $t_0 \in [0, \infty)$ with $h_{t_0}(z_0) = 0$. Define $I = \{t \in [0, \infty): h_t(z_0) = 0\}$ and $\tau = \inf I$. Part (i) of Definition 1 implies that $\tau \in I$. Part (iii) implies that $0 \notin I$. Since

$$h_{\tau+s}(z_0) = h_{\tau}(z_0)h_s(\Phi_{\tau}(z_0)) = 0$$
 for all $s \in [0, \infty)$,

we have $I = [\tau, \infty)$. Choose $\epsilon \in (0, \tau)$. Then $h_{\tau+s-\epsilon}(z_0) = h_s(z_0)h_{\tau-\epsilon}(\Phi_s(z_0))$ implies $h_{\tau-\epsilon}(\Phi_s(z_0)) = 0$ for all $s \in [\epsilon, \tau)$.

If $\Phi_s(z_0) = z_0$ for all $s \in [\epsilon, \tau)$, then $\tau - \epsilon \in I$, which is a contradiction to $I = [\tau, \infty)$. Otherwise, the analytic function $h_{\tau - \epsilon}$ is zero on the nonconstant path $[\epsilon, \tau) \ni s \mapsto \Phi_s(z_0)$, hence $h_{\tau - \epsilon} \equiv 0$ and $\tau - \epsilon \in I$. This is again a contradiction to $I = [\tau, \infty)$.

The next lemma shows the way in which the representations (1.2) and (1.3) are connected.

LEMMA 2.2. (a) If ω is analytic in **D** without zeros in **D**\{b}, then the analytic function $g: \mathbf{D} \to \mathbf{C}$, given by $g = G\omega'/\omega$, satisfies

(2.1)
$$\frac{\omega(\Phi_t(z))}{\omega(z)} = \exp\left(\int_0^t g(\Phi_s(z)) ds\right) \quad \text{for } t \ge 0 \text{ and } z \in \mathbf{D}.$$

(b) Assume $G \neq 0$. If g is analytic in **D**, then there exists an analytic ω : $\mathbf{D} \setminus \{b\} \to \mathbf{C}$ such that (2.1) holds (even for z = b in the case $b \in \mathbf{D}$). If |b| < 1, then ω is analytic at b if and only if $\alpha := g(b)/G'(b) \in \mathbf{N}_0$. In this case α is the order of the zero b at ω .

Proof. (a) Note that for every $z \in \mathbf{D}$ and $t \ge 0$ the mapping

$$\gamma: [0, t] \to \mathbf{D}$$
 with $\gamma(s) := \Phi_s(z)$

is a continuously differentiable path in **D** from z to $\Phi_t(z)$ which satisfies (1.5). We have (first $z \neq b$)

$$\exp\left(\int_0^t g(\Phi_s(z)) \, ds\right) = \exp\left(\int_0^t \frac{\omega'(\Phi_s(z))}{\omega(\Phi_s(z))} \gamma'(s) \, ds\right) = \exp\left(\int_z^{\Phi_t(z)} \frac{\omega'(\zeta)}{\omega(\zeta)} \, d\zeta\right)$$
$$= \exp\left(\log \omega(\zeta) \Big|_z^{\Phi_t(z)}\right) = \frac{\omega(\Phi_t(z))}{\omega(z)}.$$

(b) Fix any $c \in \mathbf{D} \setminus \{b\}$ and put

$$\omega(z) = \exp\left(\int_{c}^{z} \frac{g(\zeta)}{G(\zeta)} d\zeta\right) \text{ for } z \in \mathbf{D} \setminus \{b\}.$$

(We choose any integration path in $\mathbf{D}\setminus\{b\}$ between c and z; the definition is independent of this choice.) Without loss of generality we assume $b\in\mathbf{D}\setminus\{0\}$ and c=0. A computation gives

$$\omega(z) = (z-b)^{\alpha} \psi(z)$$
 for $z \in \mathbf{D} \setminus \{b\}$,

where

$$\psi(z) = (-b)^{-\alpha} \exp\left(\int_0^z \frac{g(\zeta)(\zeta - b) - \alpha G(\zeta)}{G(\zeta)(\zeta - b)} d\zeta\right) \quad \text{for } z \in \mathbf{D} \setminus \{b\}.$$

The integrand $\zeta \mapsto [g(\zeta)(\zeta-b) - \alpha G(\zeta)]/[G(\zeta)(\zeta-b)]$ is analytic in **D**. Hence, ψ is analytic in **D** without zeros. Therefore, ω is analytic at b if and only if $z \mapsto (z-b)^{\alpha}$ is, that is, if and only if $\alpha \in \mathbb{N}_0$. In this case α is obviously the order of the zero b of ω . If $\alpha \in \{-1, -2, -3, ...\}$, then ω has a pole of order $-\alpha$ at b, in all other cases an essential singularity. To show the validity of (2.1), use (1.5) and γ (see above) to parametrize a path in **D** from z to $\Phi_t(z)$.

REMARK. Let b be in **D** and ω be analytic in **D**\{b}. If there exists an $\alpha \in \mathbb{C}$ such that $\omega(z)(z-b)^{\alpha}$ is analytic at b, then the representations (1.2) and (1.3) are equivalent.

We now show that the form (1.3) can always be achieved if $(T_t)_{t\geq 0}$, defined by (1.1), is strongly continuous.

PROOF OF THEOREM 1.

(1) Analyticity of g. Let (A, D(A)) denote the infinitesimal generator of $(T_t)_{t\geq 0}$. Fix $z\in \mathbf{D}$, t>0 and choose a closed neighbourhood $U\subset \mathbf{D}$ of z. Note that D(A) is dense in H^p with respect to the topology of uniform convergence on compact subsets. Hence, there exists a function $f\in D(A)$ such that

$$f(\Phi_s(\zeta)) \neq 0$$
 for $s \in [0, t]$ and $\zeta \in U$.

Now we see that

$$\lim_{s \to 0+} \frac{h_s(\zeta) - 1}{s} = \lim_{s \to 0+} \frac{1}{f(\Phi_s(\zeta))} \left[\frac{T_s f(\zeta) - f(\zeta)}{s} - \frac{f(\Phi_s(\zeta)) - f(\zeta)}{s} \right]$$
$$= \frac{1}{f(\zeta)} \left[A f(\zeta) - f'(\zeta) G(\zeta) \right]$$

uniformly for $\zeta \in U$. It follows that g is analytic in **D**.

(2) $(h_t)_{t\geq 0}$ is a differentiable semicocycle. The semicocycle properties of $(h_t)_{t\geq 0}=(T_t\ 1)_{t\geq 0}$ (where $1: \mathbf{D} \to \{1\}$ denotes the constant function) are evident. The proof of the following fact is elementary: If $f: [0, \infty) \to \mathbf{C}$ is continuous and has a continuous right-hand derivative, then f is differentiable. Since

$$\lim_{s \to 0+} \frac{h_{t+s}(z) - h_t(z)}{s} = h_t(z) \lim_{s \to 0+} \frac{h_s(\Phi_t(z)) - 1}{s} = h_t(z)g(\Phi_t(z))$$

holds for every $t \ge 0$ and $z \in \mathbf{D}$, this fact implies the differentiability of $(h_t)_{t\ge 0}$.

(3) (1.3) holds. Part (2) shows that, for every $z \in \mathbf{D}$, the mapping $t \mapsto h_t(z)$ is a solution of (1.4). According to the theory of ordinary differential equations, the unique solution is given by (1.3).

3. Proof of Theorem 2 and Discussion of Continuity of the Generator

The following lemma is a generalization of [6, Thm. 1]. That proof applies here with small changes.

LEMMA 3.1. Let p be in $(0, \infty)$, Φ be a semiflow, and $(h_t)_{t\geq 0}$ be a semicocycle for Φ . If $\limsup_{t\to 0+} \|h_t\|_{\infty} \leq 1$, then $\lim_{t\to 0+} \|h_t\cdot (f\circ\Phi_t)-f\|_p = 0$ for every $f\in H^p$.

In the situation of Theorem 2 we have, for $t \ge 0$,

$$||h_t||_{\infty} \leq \sup_{z \in \mathbf{D}} \exp \left(\int_0^t \operatorname{Re} g(\Phi_s(z)) ds \right) \leq e^{tM},$$

so Lemma 3.1 implies the strong continuity of $(T_t)_{t\geq 0}$. The rest of the proof of Theorem 2 is a generalization and reformulation of [6, Thms. 2 and 3].

An advantage of the form (1.3) of a semicocycle is that every multiplication semigroup on H^p can be seen as a special case of a weighted composition semigroup. We will now discuss the continuity of the generator of $(T_t)_{t\geq 0}$. The following generalization of [6, Cor. 1] is also applicable to multiplication semigroups.

COROLLARY 3.2. Let the assumptions of Theorem 2 be satisfied. Then the following two conditions are equivalent:

- (i) A is continuous,
- (ii) $G \equiv 0$, and g is bounded in **D**.

The proof follows from [6, Cor. 1], together with the following lemma.

LEMMA 3.3. Let p be in $[1, \infty)$, Φ be a Möbius transformation of \mathbf{D} , and h be analytic in \mathbf{D} so that $A: H^p \to H^p$, $Af := h \cdot (f \circ \Phi)$, is well defined. Then h is bounded in \mathbf{D} .

Proof. A is a closed operator on H^p ; therefore A is continuous. By induction we obtain $h^n \in H^p$ for every $n \in \mathbb{N}$. Use Littlewood's subordination theorem [3, p. 29] to see that $h^n \circ \Phi^{-1} \in H^p$ if $h^n \in H^p$. So we have $h \in H^q$ for every $q \in [1, \infty)$. It follows that, for every $n \in \mathbb{N}$,

$$||h||_{np} = \left(||A(h^{n-1} \circ \Phi^{-1})||_{p}\right)^{1/n} \leq \cdots \leq \left(||A||^{n} \left(\frac{1+|\Phi^{-1}(0)|}{1-|\Phi^{-1}(0)|}\right)^{n/p}\right)^{1/n} =: M.$$

For $\alpha > 0$, put $E_{\alpha} := \{\theta \in [0, 2\pi] : |h(e^{i\theta})| > \alpha\}$. By λ we denote the 1-dimensional Lebesgue measure on $\partial \mathbf{D}$. If $\lambda(E_{\alpha}) > 0$, then a straightforward computation yields $\alpha^q \lambda(E_{\alpha})/(2\pi) \le |h|_q^q$ for $q \ge 1$, and therefore

$$M \ge ||h||_q \ge \alpha \left(\frac{\lambda(E_\alpha)}{2\pi}\right)^{1/q} \uparrow \alpha \text{ as } q \uparrow \infty.$$

It follows that $M \ge \alpha$. We have now deduced that $\operatorname{ess\,sup}_{\theta \in [0, 2\pi]} |h(e^{i\theta})| \le M$. We write $h = s \cdot F$ as in [4, p. 63] with an inner function s and

$$F(z) = \exp\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} \log|h(e^{i\theta})| d\theta\right) \quad \text{for } z \in \mathbf{D}.$$

Using the Poisson integral we obtain, for $z \in \mathbf{D}$,

$$|h(z)| \le \exp\left(\frac{1}{2\pi}\int_{-\pi}^{\pi} \operatorname{Re} \frac{e^{i\theta}+z}{e^{i\theta}-z} \log M d\theta\right) = M,$$

and the conclusion follows.

ACKNOWLEDGMENT. I am grateful to Professor Förster, who brought the problem to my attention.

References

- 1. E. Berkson and H. Porta, Semigroups of analytic functions and composition operators, Michigan Math. J. 25 (1978), 101-115.
- 2. N. Dunford and H. Schwarz, *Linear operators I*, Wiley-Interscience, New York, 1958.
- 3. P. L. Duren, *Theory of H^p spaces*, Academic Press, New York, 1970.

- 4. K. Hoffman, *Banach spaces of analytic functions*, Prentice-Hall, Englewood Cliffs, N.J., 1962.
- 5. A. Siskakis, Semigroups of composition operators and the Cesaro operator on H^p , Thesis, Univ. of Illinois, 1985.
- 6. ——, Weighted composition semigroups on Hardy spaces, Linear Algebra Appl. 84 (1986), 359–371.

Bruno-Walter-Str. 8b 1000 Berlin 46 Federal Republic of Germany