Complex Analytic Curves
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1. Introduction

In this paper we prove that, in a cube in C”, any complex analytic curve
passing through the center of this cube has the area which is not less than the
area of a complex line containing the center. For the proof, we find the min-
imal length of real curves, lying on the boundary of the cube and intersecting
each real hyperplane passing through the center, in at least m points.

It is well known that the minimal volume of the intersection of the ball
in C" with center at the origin, and a k-dimensional analytic set passing
through the origin, is equal to the volume of a k-dimensional plane with the
same property. This statement is not true for an arbitrary symmetric convex
domain. The corresponding examples were constructed in [2] and [4].

It is important for some applications to know the minimal value of vol-
ume of analytic hypersurface passing through the origin in cubes, since C"
can be packed by cubes without holes and intersections. Such packing was
used for example in [3] to get conditions for the uniqueness of entire func-
tions of exponential type vanishing on some discrete set in R"”. The exact
conditions were obtained in this paper only when n =2 since in [1] it was
proved that, for cubes in C?, the area minimizing analytic curves containing
the cube’s center are plane sections.

The proof of the theorem in [1] was based on two facts. First, it was noted
that the intersection of a real hyperplane and an analytic curve contains two
distinct points of the boundary of the cube if the hyperplane and the curve
contain the origin. Second, the area of the curve was expressed through the
length of its intersections with cubes of smaller diameter. Therefore, the
problem was reduced to a completely real case: to find the minimal length
of curves on the boundary of cubes if the intersection of a curve and any
hyperplane section passing through the origin contains at least £ points. It
was proved in [1] that for cubes in R? and R* real curves of minimal length
are intersections of planes, parallel to cube’s sides, with the boundary of
the cube.

In our paper we prove that the solution of the real problem is the same
if the cube has arbitrary dimension and, therefore, we get the exact lower
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estimates for the area of analytic curves in cubes. To prove our basic results
we introduce a semi-additive measure on a curve and in Section 3 we calcu-
late the explicit formula for its density and give its upper estimate. This esti-
mate is used in Section 4 to obtain final results.

I would like to thank Professor F. Succi and Professor C. Rea for their
help during the preparation of this paper.

2. Notation and Preliminary Results

Let B”(r) and S”(r) be a ball and a sphere of radius r in R” with center in
the origin and I"(r) = {x = (x1, X3, ..., X,) € R":|x;| <r} be a cube and K"(r)
its boundary. We shall omit ~ in formulas if it is equal to 1. We denote by K *
the face of the cube where only the ith coordinate is equal to +1. We sup-
pose that R” is endowed with the standard scalar product

(x:y) =_§_:l(xi’yi)'

If G" is the Grassmann manifold of all hyperplanes, passing through the
origin, then we can define the natural projection =,,: K" —» G”", where «,(x)
is a hyperplane orthogonal to the vector x. For simplicity of notation we
shall drop the index n. We shall denote the 1-dimensional Hausdorff measure
or the length of the curve A by H;(A) and the k-dimensional volume of P
by Vol P. If a set Q lies on a plane in R” then m(Q) is its Lebesgue measure
on this plane. Let us write d(A) for the diameter of a set A. For QC G let
w(Q) =m(x~1Q)). Clearly, p(Q) is a measure on G which is equivalent to
the invariant one.

We shall denote by U the class of sets on K, each of which is a union of a
finite number of continuous rectifiable curves. Each of these curves can be re-
garded as the mapping : [0, a] —» K with the arc-length parametrization, that
is, the length of the arc v,:[0,s] — K, equal to s. The rectifiable curves as
mappings are differentiable almost everywhere at points s such that y(s)e

F,i=1,...,n, and at these points |y’(s)| < 1. If y(s) = (v1(5), ..., Vu(s)) is
differentiable at s¢ and |y’(so)|=1 then

Spte , , .
L |vi(s)| ds =2¢|v{(so)| +0(e), i=1,...,n.
0—6

In fact, by Minkowski inequality,
2

2 so+e ) 2 Sgt+e ,
4e =(S N 2 vi*(s) dS) ZEGS lyi(s)|ds ),
SO—'E 0—6
and it follows from the differentiability of v at s, that

so+e
S |7/ (s)| ds = 2€|v{(s0)| +0(e).

Sg—€

Combining the last two inequalities, we obtain our statement.
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Let us define the projection p: K — S by the formula p(x)=x/|x|. Evi-
dently, this projection transforms rectifiable curves into rectifiable ones.
The statements of the next lemma are well known.

LEMMA 1. With the notation above:

(1) forany ACK, H,(A)=0 if and only if H{(p(A))=0;

(2) if ACK and H,(A) =0, then the measure of those hyperplanes of G
that cross A is zero;

(3) if D is a convex domain in R", containing the origin, with the piece-
wise smooth boundary, and if ¢ is a continuous function in R" such
that o(tx) =|t|p(x), then

(40| exydm=| ox)(n(x),x)ds,
where n(x) is the normal vector to aD at x.

Let P C C" be a complex analytic curve and z a point belonging to P. One
can find a neighbourhood U C P of z and holomorphic mappings f;({),
1 =i =m, of the unit disk A CC into U such that f;(0) =z, f;(A)N fj(A) =
(z}, i#jand fi()# fi(E) if § #&. I

Fi(§)=(Rig(€), ..., EXrigLi(£)),

where ¢;;(0) #0, and k; =minkj;, 1 < j <n, then the number

vp(z) =X k;

is called the multiplicity of P at z.
To prove our basic theorem we need the following inequality.

LEMMA 2. Let fi,f, and y be real-valued functions on the interval [a, b]
such that:

(1) v is nondecreasing;
() 2 frdt=1§° frdt;

(3) §5 fivdt=15 fr¥dt; and -
(4) theset J={tela,bl: f1(t) > f,(t)} is connected.

Then, for any concave function ¢,

b b
| fiewrd={ frewyar.

Proof. Let f=fi—f2,I=y(J)=[a, ] and let /(x) be a linear function such
that /(a) = ¢(a) and /(B) = ¢(B) (if @ =g, [ is the support function to ¢ at
a). Then o(¥)—I(¢) =0 on Jand <0 out of J. Therefore, f(o(¥)—I(¥))=0
and

[} reownar={" sewr -ty dr=o. o
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The following lemma is a consequence of Lemma 2. We shall use it to esti-
mate the density function.

LEMMA 3. Let g=(gy,...,8:)€R", |g|=1. Then

r© =\ lxg)ldm=fein)={ |xi|dm=2"""n+1).
Proof. Let us note that by statement 3 of Lemma 1

| Jex o)l dm,=n+1)] [(x,8)] dm,
and

SI|(x,g)|dmx=2SO £S,(t) dt,

where S, (¢) = §g(¢) is the volume of the polyhedra Q(¢) ={xel: (x, g) =!].
Evidently,

SO Sg(r)art=50 Sei oy dt =2""1,

n-—1

® 2 D N 2, _ 2
SO 28,y dt = | “(x,8)*dm, =

The function S, (7) is non-increasing. To see this let us suppose that g, # 0.
We define the projection #: R” —R”~ ! by the formula: A(x) =h(xy, ..., X,;) =
(xy5.--sX,—1). Then

hQa)=(xel" :a—g,<(x,h(g)) <a+g,)
and

—1[*%8n qn—1
(1) S,(a) = (cos a) Sa_g Syl at,

where « is the angle between hyperplanes {x, =0} and {(x, g) =a}. It is evi-
dent that our statement is true for n = 2. For any other # this statement can
be derived from (1) by induction.

Now we see that Lemma 3 follows from Lemma 2 if we take y(¢) =¢2,
o(t) =V, J1(t) =S, (t), and f5(1) =S,(?), and noting that the set where
Se,(£) > S, (¢) is connected. [l

3. Calculation and Estimation of the Density Function

Let v: J=[0,a] — K be a rectifiable curve with the arc-length parametriza-
tion. We define the semi-additive measure » on J as v(A) = u(A*), where A*
is the set of all planes crossing y(A). For xq=v(¢;) we define the density
function by the formula

@ Sxgmy=Tim 20D

e—0 €

where J(E)= [fo—é, f0+E].
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To write the explicit formula for f we shall use the following notation.
If xe A then L(x) denotes the hyperplane orthogonal to x and LK(x) =
L(x)NK. If ye LK(x) and ye K*, i =1, ..., n, then n(y) denotes the unit
normal vector to LK(x) at y. (The direction of n(y) must be the same for
all y when x is fixed.)

The lemma below gives us the explicit formula for the density function.

LEMMA 4. With the notation above, if toe J, xo=v(to) €K (i =1, ..., n),
v is differentiable at t,, and g =v'(ty), |g| =1, we have

(8,x)
(n(x),xo)
Equality is attained in (3) if v is smooth in a neighbourhood of t.

(3) f(xOs 'Y)S

XLK(X())

Let J(e)=[tg—e, top+e€] and U(e) =vy(J(e)). We shall consider two cases:

(1) the intersection of LK (x,) with (n—2)-dimensional faces of the cube,
denoted by D(x,), has zero measure;
(2) the measure of D(x) is not zero.

In the first case we let LK5(xo) = LK(xo)\ Ds(xg), where Ds(x,) is the 6-
neighbourhood of D(x,). This set lies only on cube’s faces, so we can take its
normal neighbourhood N of a sufficiently small radius . When e is small we
can define the mapping ¢ of LK;(xo) X J(€) into V(e) =7 ~H(U*(e)), where
U*(e) is the set of all hyperplanes crossing U(e), by the formula

O, xyax) _ (¥ —Xg, x)n(x)
(n(x),y) (n(x),X0) +(n(x),y—xg)’
where y =v(¢) and ¢ € J(e).

Since (n(x), xq) # 0, this mapping is well defined and its image belongs to
N when ¢ is small. Vectors y and ¢(x, ) are orthogonal. On the other hand,
if zeV(e)NN and z=x+An(x) then there is a vector y e U(e) such that
y1zand ¢(x,y)=z. Therefore ¢ maps LK;(xy) X J(¢) onto ¥(e) N N. Since
m(V(e)\N) < C(6)e, where C(6) » 0 as 6 » 0, we have

“4) o(x,t)=x—

) m(V(e))sSIdetgo’ldmx dt +C(5)e

(in the last formula ¢’ is the derivative of ¢ and the integral is taken over the
set LK;(xo) X J(€)). Simple calculations show that

(v'(1),x)

o, nxy | TO@N Ol

le'(x, t)|=

As mentioned in Section 2,
| Sf (v'(¢),x) ('y (0),x)
—€ (x09 n(X)) (XO’ ( ))

So, dividing both sides of (5) by 2¢ and taking the limit as both ¢ and &
tend to zero, we obtain

dt = +o0(e).
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(8,x)
< D
©) f(xo,7) < jmxo) TN

If v is smooth in a neighbourhood of ¢ then it is easy to see that ¢ is one-
to-one, provided (g, x) # 0 and ¢ is sufficiently small. Therefore the equality
is attained in (6).

Lemma 5 is also valid in the second case, because LK(x,) contains an
(n—2)-dimensional face of the cube that divides ¥V (¢) on two parts lying in
adjacent faces. If x belongs to this (n—2)-dimensional face then we can
choose two vectors n;(x) and n,(x) normal to LK(x,) at x, lying in adja-
cent faces mentioned above. Volumes of those parts of V(e) that lie in only
one of the faces can be estimated by (5) as before, and therefore (6) will be
valid since (n,(x), xq) = (n,(x), Xp).

Let F(xy, g) be equal to the right-hand side of (6).

LEMMA 5. IfxeK* and Q—— [xeKi ,¢J|x|_ 1}, then F(x, g) =
e, g) for xe Q5 andF(x g)<F(e ,g)forxq; Q5.

Proof. Let x e Ki, that is, let x =(1, x5, ..., X,,), and let ¥ be the orthogonal
projection of the hyperplane L(x) onto L(el) Ifze LK(x)N K; * then n(z)=
(x—xje;)|x—x;e;|~ and, therefore, (n(z),x)=|x— x;jej]. FOl‘j # 1 we have
that (n(z), e;) =|x—x;e;| ™! so, in this case,

@ (n(z),x)(e;, n(z))=1.
If x e Qi then L(x) does not intersect the set K;"U K, since for z =
(21 .-, 2,) EKTTUKT
(z,x)==*1+ E x;jzj#0.
=2
So, in this case ¥ maps LK(x) onto LK(e;), and on LK (e;) the Euclidean
volume form

) dm, = (ef, n(z)) dm;,
where dm is the pull-back under the mapping z = ¢ ~(») of the Euclidean

volume form dm, defined on LK (x). Combining the equality (y, g) =(z, &)
with (7) and (8) we see that

_ |(z, g)| _
F(x,g)—jLK(x) @), )] SK(I |(»,8)|dm,=F(ef, g).

If x e K{*\ Of", we consider two cases. First, when z € LK(x)ﬂK* (j#1),
the vector y =y(z) € LK(e;)N K" * and it follows from (7) and (8) that dmz
|(n(z), x)|dm,. Second, when z eLK(x)ﬂK we can see that dmz (
and (n(z),x)=|x—e|, and since y =z F e, we have |(n(z),y)|=|x— 31“
Therefore,

5 1z, &)

LK(xp) |(n(2),x)] S (7, &) (n(z), y)'dmy—"s |y, 8)|dm,

<”S,n-1 |(y, &)|dm,=F(ey, g),
where A = y(LK(x)) and B is the polyhedra such that dB = A. O
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The next lemma follows immediately from Lemmas 3 and 5.

LEMMA 6. For the density function F(x, g) we have the inequality
F(x,g)<n2"?

when x € K and |g|=1. The equality is attained if and only if g = eji“, Xy =
+1, and 2f¢klx;ls 1.

REMARK. This method can be generalized for sets A of greater dimen-
sion in the following way. Let xe A and dim 4 = k. Also let U be a neigh-
bourhood of x in A and U* be a set of all planes P of the dimension n—k%
such that UNP#@ and 0e P. Let V* be the set of all k-tuples of vectors
{z1,.--» 2%}, 2; € K, such that the plane generated by these vectors is orthogo-
nal to some plane of U*. We define the measure i on the direct product of
n copies of K, which is equal to the Fubini product of Lebesgue measures
on K. Let us define the density function F(x, A) by the formula

. p(V*)
A= ] —_—,
(%, A) d(t?)rio Vol (V)

Then the following lemma holds.

LEMMA 7. If A is smooth in a neighbourhood of x and G =(gy, ..., &) is
an orthonormal polyvector such that TA(x) is generated by G, then

k
S, ) =F(x, G)={ deti(g, 1)) TT(n(a), )™ | dm,

where the integral is taken over the direct product of k copies of LK(x). If
x€ QF then F(x,G)=F(ef,G) and if x ¢ QF then F(x,G)<F(e}, G).

4. The Estimates for Lengths and Areas

Let A C U be the union of a finite number of rectifiable curves vy; (1<i <N)
and let /; be the length of a curve ;. We consider each curve vy; as a mapping
vi: [0, {;] > K with the arc-length parametrization. Let us introduce the map-
ping I defined as follows: if s € (4211, S5_ 1) then T'(s) = vy, (s =3 ¥Z11)).
This mapping is defined everywhere except at a finite number of points. We
say that the set 4 intersects the hyperplane P in m points if there are distinct
real numbers sy, ..., S, such that I'(s;) € P. We shall denote by U,, the class
of all sets A C U that intersect almost all hyperplanes in at least # points.

THEOREM 1. If AC,, then H,(A)=4m.

Proof. Let Ag=p(A). Itis clear that after a rotation the curve A, belongs
also to U,,. Therefore, for any e > 0 there is a rotation 7, such that the curve
A.=p NT.(p(A)) satisfies the following conditions:

(1) A, intersects (n—2)-dimensional faces of the cube in a set D, of zero
measure; and
2) |H\(A)~Hy(A)|<e.
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It follows from Lemma 1 that the measure of all hyperplanes P such that
PND, #0is equal to 0.

Hence it is sufficient to prove that H,(A,)=4m. If L € G then let A(L) =
{s:T'(s) e L}, and for any m-tuple of points s;€ A(L) we define functions
p(S1; ...y Smy) =min|s; —s;| (i#j) and ¢(L)=sup p(sy,...,S,), where the
supremum is taken over m-tuples of points from A(L). Let G(a)={L eG:
p(L) > a}. Then for any 6 > 0 there is o > 0 such that u(G(«)) > p(G) —é.

Let D C[0,!/] be the set of all points s such that x =I'(s) does not lie on
(n—2)-dimensional faces of the cube and the mapping I is differentiable in
s. By the Vitali covering lemma and Lemma 6, it follows that there are non-
intersecting intervals J; = [a;, b;] on [0, /] such that:

(1) the set D\U/Z, J; has zero measure;

2 |bi—ai|<a;

(3) »(J;) =n2""%(b;—a;)+6|b;—aj.

Due to condition 2, almost all P e G(«) belong to at least m intervals J3*.
Hence

mu(G(a)) <3 v(J;))+6l <n2" 23 (b;—a;)+ 6] <n2"~2(H(A,)+6).

Therefore H,(A,) =m22~"(u(G)—8)/n—6. Since u(G) =n2" and 6 can be
an arbitrary number, it follows that H,(A,) =4m. W

THEOREM 2. Let P be an analytic complex curve in I", passing through
the origin. Then Vol, P =4vp(0).

Proof. Let PL,=PNI(r) and A,=PNK(r), 0<r<1. It is known [1] that
for almost all r the set 4, C U and

1
Vol, P> SO Hy(A,)dr.

We shall need the following.

LEMMA 8. The intersection of almost all hyperplanes with- /A, contains
at least 2vp(0) points.

Let G, be a set of all hyperplanes which do not pass through singular points
of P except the origin. Since the set of singular points is countable, the com-
plement of G, is a set of zero measure. If L € G, is given by the equation

n
Rev(z)=0, v(z)=Y a;zj,
j=1
then we can define the function f(z) =v(z)|p, on P. The intersection of P
with L, denoted by D, is the zero-level curve of Re f. This curve consists of
analytic curves with singularities which are either at the origin or at those
points of P where the tangent plane to P belongs to L. It can be proved easily
that the measure of the set of all hyperplanes containing points of the sec-
ond kind is zero. If we remove these hyperplanes from G; and denote the
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remaining set by G,, then for L € G, the set D\ {0} consists of smooth arcs
starting at the origin and ending on the boundary of the cube, because Im v
is strictly monotone on D\ {0}. It follows from the definition of multiplicity
of P at the origin that the number of such curves is equal to 2vp(0) and that
each of these curves intersects K (r) at least once. O

Lemma 8 and Theorem 1 imply that H;(A,) = 8»p(0)r, and therefore

1
Vol, P=8 SO up(0)r dr = 4vp(0).
This completes the proof of Theorem 2. ]
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