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1. Statement of Main Result

In this paper, a Riemannian manifold (M", g) always means a connected
C*-manifold of dimension n (n=2) with a Riemannian metric g. Vol(M),
i(M), d(M), K,;, and Ric,, will denote the volume, the injectivity radius,
the diameter, the sectional curvature, and the Ricci curvature of M, respec-
tively.

Gromov [4] showed that if 0> K,,=—1 (n=8) then

Vol(M) =C,(1+d(M)),
where the constant C, > 0 depends only on n. Furthermore, the Bishop val-
ume comparison [2] gives Vol(M) < C,, d(M) when Ric,, = n—1. This paper

is concerned with a better estimate of this type for K,,=1. Our main result
can be stated as follows.

THEOREM A. Let M be a complete Riemannian manifold with K,;=1;
then

Vol(M)  Vol(S")
(*) < .
d(M) d(S")
Moreover, the equality holds if and only if M is isometric to S" or RP" with

constant curvature +1.

REMARKS.

1. For d(M)=<=/2, (%) is also true when only Ric;; = n—1. This follows
from the Bishop volume comparison theorem for Ricci curvature. The au-
thor does not know if the rigidity (in case equality holds) is true. However,
if M is not simply connected, the rigidity is true (cf. §2).

2. For d(M) > n/2, Theorem A is wrong when only Ric,,=n—1. This
can be seen using, for example, M*= CP? with metric normalized so that
Ric,, = 3.

3. The interesting point is that for K, =1, the same conclusion holds if
d(M) > w/2. For this, one can consider a pair of points at maximal distance
which by Berger’s lemma are mutually critical for the distance function. Then
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one can sharpen the classical argument (in the proof of the sphere theorem)
that M = B, ,>(p)U B, /,(q) by combining it with the Grove-Petersen argu-
ment for pairs of mutually critical points (cf. §3).

Although the following theorem is well known, it is an immediate conse-
quence of Theorem A and the diameter sphere theorem [6].

THEOREM B. Let M be a complete Riemannian manifold with Ky, = 1. If
Vol(M) = Vol(S")/2, then

(1) M is homeomorphic to S", or
(2) M is isometric to RP" with constant curvature 1.

The author would like to e);press gratitude to J. P. Sha for many helpful
discussions.

2. The Case d(M)<=/2

From now on, let M be a complete Riemannian manifold with K,,>1. In
this section, we assume d(M)=1!<w/2. According to the Bishop volume
comparison theorem, one has

)
Vol(M) < Vol(§" 1) §0(sin r"~Ldr.

Hence
Vol(M) _ §b(sinr)"dr _ ! _dm
Vol(§") ~ [&(sinr)*~ldr — = d(S")’
that is,
n
o Vol(M) _ Vol(S")

diM) — d(s") -

By the above argument, if the equality in (1) holds then d(M)=i(M) =
x/2 and K,,=1. Let M be the universal covering of M; then, by the Cartan-
Ambrose-Hicks theorem, M is isometric to S” with constant curvature 1,
and it is a double covering of M.

CLAIM. M isisometric to RP" with constant curvature 1.

Proof. Let ¥:8" — M be the covering map. For any me M, ¥~ (i) =
{my, m,}; one need only show that d(m,, m,) =, that is, m, is the anti-
podal point of m,. Let c(¢) be a minimal geodesic from m; to m,. Then
L[c]=w and ¥ec is a closed geodesic in M; hence L[¥eoc]=x for i(M) =
w/2. Since L[c] = L[¥-c], L[c] = =; that is, d(m,, m,) = w. This proves
Theorem A for the case d(M) <x/2. d

3. The Case d(M)>=n/2

Now we assume d(M)=1/> /2. The diameter sphere theorem implies that
in this case M is homeomorphic to S”. In particular, M is simply connected.
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3.1. Volume comparison related to nets in spheres (see [5]). We will use
the following notation. For 'C S”""!and 0 <6 <, set

r@)=fuesS" ': xu,I')<0} and TCO) ={ueS" ! xu,I)=6}.

Let V,={u,v}CS" ! with x(u,v)=7—2a, 0<a=<u/2. A subset I' of
S"~1is said to be a §-net provided I'(8) = S"~!. The following lemma is
shown in the appendix of [5].

LEMMA 1. Let T be a finite (z/2+a)-net in S"~!, 0= <n/2. Then
Vol(I'(0)) = Vol(V,(0)) for O0<0=<=/2.

LEMMA 2. Let T bea (x/2+)-net in S"! for all € (0,w/2). Then
Vol(I'(8)) = Vol(Vy(6)) for 6=0.

Proof. Forany a e (0, 7/2),since I'is a (w/2+ «)-net in $”~!, by compact-
ness of S”~! we can extract a finite subset I', from I" such that T, is still a
(/24 a)-net in $”!. For a fixed § =0,

Vol(I'(8)) = Vol(I',(6))
and, by Lemma 1,
Vol(T",,(6)) = Vol(V,(6)).

Hence,
Vol(I'(8)) = Vol(V,,(6)).

Now let a — 0 to obtain Vol(I'(8)) = Vol(Vy(9)). |

3.2. The number l,. Let p be the north pole of S2. Pick ge S*with d(p, )=
/ and ¢ a minimal geodesic from g to p. For any a € [0, /2], choose a geo-
desic g, starting from g with ¥(¢’(0), 6.(0)) = «. Let x, be the first inter-
section point of ¢, with the equator.

Now define /,=d(q, x,) for 0= a=<=w/2.

On S”, choose g€ S”, voe SSE=S""1, and V= {vy, —vy} C S" . Define
a(w) and U by

aw)=x(w,V,) for weS" !
and :
U={expz(rw): we §S7, 0<r <lyl.

By the definition of /, and U, one can see that
l—7/2
T

(2 Vol(U) <

Vol(S").
Now, let A, ={ve SSf: ) =r}; then

3) Vol(U) = S:/ ’ SE (sinr)"~' dv dr.

r

3.3. Estimating the volume ofo(vr/Z). Choose p,ge Msothatd(p,q)=
d(M). Let B,(w/2) be the closed geodesic ball of radius «/2 in M about p
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and let BS(w/2) be the complement of B,(7/2) in M. In [3, p. 115], it is
shown that Bf(vr/ 2) is convex. By the argument in Section 2, we have

@) Vol (B,,(%)) =< % Vol(S”).

In order to estimate the volume of ch( w/2), we need the following lemma
of Berger [3, p. 106].

LEMMA 3. Let M be a compact Riemannian manifold. Suppose p,qe M
are such that d(p, q) =d(M). Then, for any vector ve TM,, there exists a
minimal geodesic ¢ from q to p with ¥(c'(0),v) <w/2.

REMARK. The point g is called a critical point of p if there exists, for any
vector v € TM,, a minimal geodesic ¢ from g to p with %(c’(0),v) < w/2.

Let I';, denote the set of unit vectors in TM,, corresponding to the set of min-
imal geodesics from g to p. By Lemma 3, Ty, is a (7/2+«a)-net in SM, =
S"~1for all a e (0, 7/2).

If ve SM, with %(v,T'y,) =«, then a <7/2. By Toponogov’s compari-
son theorem, it is easy to see that exp,(rv) € B,(n/2) if |, <r=<I.

Define A, by

A,={ve SM,: exp,(rv) € Bf (r/2) and d(g, exp,(rv)) =r}.
Note that:

(a) A, is an open subset of SM,=S""",
(b) A,=8""'if0<r=</—n/2, and
(C) Ar_'—_gif r27r/2_

We have
cf T\\_ ("2 n—1
VOl(B,,( 2))_§0 SA," |d(expy)ol dv dr

< S;r/z S (sinr)"~ldvdr.

r

&)

For I—=n/2<r=<m/2, let 8 be such that /y=r. Again by Toponogov’s com-
parison theorem, one has A, C I‘qC;,(B), and hence by Lemma 2

(6) Vol(4,) = VoT'S, (6)) < Vol(VE(6)) = Vol(4,).

For 0<r</—m/2, it is trivial that Vol(A4,) = Vol(A4,).
Now since K ;=1, by (2), (3), (5), and (6) we obtain

) VOl(BPC(zr—>>S I=7/2 yousm.
2 T

Therefore

(8) Vol(M) = vm(za,,(%)) +V01(B1§:<%))
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and

) Vol(M) < -;. Vol(S") + 1_:/ 2 Vol(S™).
Hence,

(10) Vol(M) < % Vol(S").

That is,

» Vol(M) _ Vol(S")

dM) — d(S")
Thus we have proved the first part of Theorem A for the case d(M) > /2.

CLAIM. The equality in (*) holds if and only if M is isometric to S" with
constant curvature 1.

Proof. Since d(M) > n/2, M is simply connected. In addition, by (4) and

(8)-(10), we must have
1
vm(g,(%)) = = Vol(s")

and Kj,=1on B,(n/2). If we exchange the roles of p and g, then (similarly)
Ky =1on By(w/2). By Lemma 3 and Toponogov’s comparison theorem,
B,(7/2)UB,(n/2)=M. Thus K,;=1 on M. Once again, by the Cartan-
Ambrose-Hicks theorem, M is isometric to S” with constant curvature 1,
and this completes the proof of Theorem A. ]
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