EXCEPTIONAL SETS FOR
HOLOMORPHIC SOBOLEV FUNCTIONS

Patrick Ahern

We let B" denote the unit ball in C” and let S denote its boundary. For the most
part we will follow the notation and terminology of Rudin [11]. For f holomor-
phic in B” the radial derivative of f is defined to be

Rf(z)= 2 ZJ—J:(Z)— E kfi(z),

if =3 fiis the homogeneous polynomlal development of f. For 8 >0 one is led
to the definition R?f(z) =X 7= (k+1)°fi(z) (see [6]). For p, 3> 0 we define

HE(B")=(fe H(B"): R° fe HP(B")},

where H”(B") is the usual Hardy space [11]. H{(B") may be considered as a
holomorphic version of a Sobolev space [6]. For ¢ € S and 6 > 0 there is the Ko-
ranyi ball B(¢, 6) ={ne S:|1—<(¢{, 7)| <8}. There are also the admissible approach
regions for € S, a>1,

Dy (§)={zeB":|1—(z, )| < (a/2)(1—|z|®)}.

For each function f: B” — C we have the admissible maximal function

M, f($)= sup |f(z)].

ze D, ()

The main result of this paper is the following “trace” theorem for Sobolev func-
tions, which will be proved in Section 1.

THEOREM 1.1. Suppose that 0< p <1 and fe Hf(B"), where m=n—{p >0,
and that v is a positive Borel measure on S that satisfies

(*) v(B({,0))<C8™ for some constant C.

Then for each o> 1 there is a constant C = C(«) such that

| Mo )7 av(s) = CIRF1E.

(Here |g|, denotes the norm of g in H?(B").)

Of course, the strong inequality of the theorem gives rise to a corresponding
weak estimate which in turn yields the following.

COROLLARY 1. Every fe€ HE(B") has an admissible limit almost everywhere,
dv.
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There is also a real variable version of this theorem which can be proved by the
same method. This is discussed in Section 1. The real variable version has been
discovered independently, using another method, by Adams [1].

We give some examples involving curves to show how condition (*¥) on » in-
volves “directional” considerations. We conclude Section 1 by showing that the
condition on » is necessary for the conclusion of Theorem 1.1 to hold, even if
p>1. '

In the second section we turn our attention to the case p > 1. By analogy with
the real variable case we expect that condition (*) on » should be necessary but not
sufficient in order for the conclusion of Theorem 1.1 to hold. More precisely, one
expects that if p >1 and m=n—Bp > 0 then there should exist a measure v %0
satisfying () and a function f € Hf(B") such that f has a radial limit at no point
of the support of ». We can show that this is the case only under the restriction
that 0<m < (n+1)/2. Indeed, (n+1)/2 is the natural limit for the method we
use. We will concentrate our attention on the case #1 =1, since this is the case that
has relevance to the rest of Section 2. We conclude Section 2 by showing that if
1< p =2 and v is arclength measure on a transverse curve, then every fe H, ;;’ (B"
with n— 3p =1 has an admissible limit almost everywhere, dv. The relevant point
is that such a » satisfies (*) with m = 1. This result fails even for slices when p > 2.
Our examples show that this cannot follow from any general result like Theorem
1.1, but necessarily depends on the “almost analytic” structure associated with a
transverse curve.

1. Let o >1. Then, for each E = S, we define the a-tent over £ to be T,(E) =
(Uie e Do(£))6, the complement being taken in B”. For each « > 1 there is a con-
stant C = C(«) such that if z e T,(B($, §)) then 1—|z| < Cé. A complex-valued
function defined in B” is called an «-atom if

(i) thereis a {e S and a 6 > 0 such that a is supported in 7,,(B(S, 8)),

(ii) |a(z)|=6"" for all ze B".

A type of atomic decomposition on spaces of homogeneous type is proved in [4,
Lemma 2.1]. The proof follows closely the proof given in [8] for the case of R%H.,
For the case of the ball, Lemma 2.1 of [4] reads as follows.

LEMMA 1.1. For each oo > 1 there is a constant C = C(a) such that, for every
S:B" > Csuch that [ M, f({) do($) < oo, there are nonnegative a-atoms ay and
nonnegative numbers N\, such that

[f@)|=IMar(z) and The=C | Mo f()do(3).
We can now give the following.

Proof of Theorem 1.1. Let F= R?f. Then a straightforward calculation shows
that 1 e 1 \B-1
f@==—| (log ) Fz)at.
I'(B) Jo t

From this we see that it is enough to show that M, G e L?(dv), where G(z) =
§o (1—1)P~1|F(tz)| dt. By the basic result of Koranyi and Vogi (see [11, p. 86]) we
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know that |F(z)|” satisfies the hypothesis of the lemma, so there are nonnegative
a-atoms a; and A; =0 such that |F(z)|” < XN\ rax(z) and

I\ = C | M, F(5)? do() < CIF|5 = CIRPf 5.
Thus,
D
G(z)’ = {S;(1—t)ﬁ—l(z:xkak(tz))‘/f’dr} .

Now, since 0< p=<1, 1/p =1 and we can apply Minkowski’s inequality to obtain
1 P
G(Z)P <IN (SO A—1)Pay(tz)VP dr) :
Now fix ¢ e S and suppose that z € D, (). Consider the kth integral
1
SO (1—2)a,(22)V7 dt,

and suppose a; is supported on 7T,(B({x, 6x)). Then certainly a,(£z) =0 unless
e B($k, 6); in any case, ai(fz) =0 unless 1 —¢ < Cé;, so we have that the above
integral is at most

—\B—-1s5—n/p B—n/p
S]_Cak(l 1)8=16,71/P dt < C8f—"1P,

In summary, we may conclude that
1
|, a=0f"lapuz)? dt = Cof P xi(s),

where x is the characteristic function of B({x, 6x). It now follows that G(z)? <
CIN P "x 1 (§), all ze D4 (§). Hence M, G($)P < CEZN.8577 "X, (£). Now, just
integrate both sides with respect to » and use the hypothesis on » to obtain

| MGy av(s) =cEN = CIRPSIS.

This completes the proof. ]

Here is the real-variable version of this theorem: Suppose O0<p =<1, >0, m=
n—Bp>0, and v is a positive Borel measure on R” such that »(B(x,r)) <Cr"™
for some constant C. (Here B(x, r) is the usual Euclidean ball.) Then we have
§NF(x)? dv(x)<C|f|5. Here F(x,y)=(Gg* P, * f)(x), where Gg is the Bessel
kernel, P, is the Poisson kernel, and NF denotes the nontangential maximal func-
tion of F. See [12, Chap. V] for a discussion of these notions.

The idea is to use an identity from the theory of Bessel functions, as in [4], to
show that F is (up to a harmless term) majorized by §3 £°~'|u(x, y +t)| dt, where
u is the Poisson integral of f. Now in place of Lemma 1 above we use the atomic
decomposition of [8] (which was the model for Lemma 1) and argue exactly as in
the proof of Theorem 1.2. We omit the details.
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Note what happens if fe Hf(B") when n—8p =0 and p <1. Then the argu-
ment used in the proof of Theorem 1.1 shows that

|f(z)|P = CEN. < C|RPf|2, for all zeB".
Hence,
|/l = sup | f(2)| = CIR®f | o
z€e B

Let f,(z)=/f(rz), 0 <r <1. Note that Rﬁf, = (R’sf), and apply the above in-
equality to f— f, to obtain

|f—frleo=<CIRPf—(RPf)/ |y —>0 as r—1.

This shows that f is continuous on B”. This was proved earlier in [5], by a differ-
ent method. See [3] and [5] for refinements.

To see how condition (*) of Theorem 1.1 involves directions, we consider the
case of a curve ¢ in S. Let » be arclength measure on ¢. Recall that ¢ is called
transverse if [{¢’, ¢)|=€>0. It is not hard to see that if ¢ is transverse then
v(B({,8)) =cé and hence if fe Hf(B") with n—Bp=1and p=<1, f has an ad-
missible limit a.e. dv. For the general curve the best that can be said is that
»(B($, 8)) = C86Y? (and there are curves for which this is exactly right), and hence
for the general curve we can say that if fe Hf(B") with n—g8p =1/2 (a stronger
requirement than n— Bp =1) then f has admissible limit a.e. dv. The sharpness
of these statements about curves can be shown by simple examples. It also fol-
lows from Theorem 1.2.

The corollary to Theorem 1.1 suggests that if 0 < p <1 the exceptional sets for
Hj 2(B") are precisely the sets of non-isotropic m-dimensional Hausdorff measure
0. ThlS is the case when n =1, as seen in what follows. Suppose f € H} 2(BYY, m=
1—B8p >0, and E is the set where F fails to have a nontangential hmlt By a basic
result of Frostman [9], if E did not have measure 0 in dimension 2 then there
would be a positive measure » # 0 supported on E such that »(B(¢{, 6)) <6 for
all ¢ € S. This contradicts the corollary of Theorem 1.1. On the other hand, if £
is a compact set of m-dimensional Hausdorff measure 0 then it follows from the
examples given in [7] that there is a Blaschke product in H} (BY) that fails to have
a nontangential limit at any point of E.

We conclude this section by showing that () is the right condition on the mea-
sure ».

THEOREM 1.2. Suppose that 0 < p <o, that o, 3, m are as in Theorem 1.1,
and that v is a positive measure on S such that

SMaf(j‘)p dv(¢)=<C|RPf|5, all feHE(B").

Then v(B({,8)) < C8™.

Proof. Fix 0<r<1, and let ¢ € S. Define F(z)=(1—r{z, £y)~“+D/P) 1t follows
from [11, p. 17] that |F|5<C(1—r)~L Next let f(z) = (log(1/£))* "' F(zz) dt.
As we have seen, R?f=T'(8)F. We have
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1 1\8-1
| f(z)|=Re f(z)= SO (log -t—) Re F(tz) dt

and
Re F(tz) =Re(1 —tr{z, f))—((n“)/p)

1—1¢r

Now there is a constant § such that if [\| <8 then Re(1+\)~"*1/P) > 1/2. Now
suppose |1—(z, {Y|<6(1—r); then |[(¢r(1—<z, $)))/(1—tr)| <6 and hence

Re(1—triz, {Y)~+D/p) > %(1 —tr)_«”"'"l)/p),

~((n1+1)/p)
=(1—tr)y~ /P Re(1+ tr(1—(z, §>)) ((n+ /p.

so we see that
If(z)|=C S; (log %)ﬂ—l(l—rr)“‘"“’/”’ dt=C(1—r)f~+/p,
This says that | f(z)|?= C(1—r)??~"~'in B(¢, 5(1—r)). Hence,
A== CIf = C | Mo S )" dv(n)
=clrmPam=c| 1S ” dv(ny

>C(1—r)??~""1W(B(, 6(1—1))).
The result follows. a

B(&, 6(1—r

2. We start this section by showing that if 1 < p and »—8p =1 then there is a
positive Borel measure on » on S, » # 0 and »(B({, 6)) < Cé, and an fe Hf(B")
such that f fails to have a radial limit a.e. dv. This is especially easy for p > 2. In
this case look for f of the form f(z, ..., 2,) = F(z;). Then R*fe HP(B") if

Slzl<1 |RPF(2)|7(1—|z|)" "2 dA(z) < 0.

Here dA is Lebesgue measure in the unit disc. By a result of Hardy and Little-
wood,

[IReFIP(1—|2)) 2 dA(z) <

if and only if
JIF@IPa—|z)y0=P*-2g4) = [|1F(2)17 (1= 2P "' dA(z) < .

We try F(z) =3 ayz2*, where |ay| =k ~/2. Then |rF’(re'®)| <3 2%k ~/2r2*, Now
2kr2* <3 k1 ;<o ! and hence |rF’(rei?)| <X (log/)~/2r!. It is not hard to see
(e.g., by comparing with an integral) that this last sum is bounded by a constant
times 1/[(1—r)(log[1/(1—r)])/2]. It follows that { |F’(z)|?(1—|z|)?~1dA(z) < «,
since p > 2. However, since X |ax|? = o, it follows from [13, Thm. 6.4, p. 203]
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that the set where F has a radial limit has measure 0. Hence the function f(z) =
F(z,) fails to have radial limits a.e. with respect to arclength measure » on the
curve (e?, 0, -,0). This measure satisfies (*) with m=1.

It doesn’t seem quite so easy when p < 2. Indeed, Theorem 2.2 will show that
v cannot be arclength measure on any slice or even any transverse curve. We
proceed as follows: First assume that n=2. We look for a function f(z,w)=
g(2zw), where g is holomorphic in the disc. We will actually find a function g
such that f belongs to the Besov space

BB = {1 [, IR @ (=2l avia) <ol

here dV is Lebesgue measure on B2. Since p < 2, Bf < Hf. This is well known for
n=1 and follows by slice integration for n > 1. At this point it is convenient to
state a lemma.

LEMMA 2.1. There is a constant C such that if F(z,w) = g(2zw) then
o [F@mPPA=[eP= WP aVe, msc | le@IP -1z~ dA).

Proof. Using polar coordinates, the first integral above is equal to

1 3 1

| rPa—ne- | [FeoP do) ar.
0 s
By Theorem 1 of [2], this last integral is at most a constant times
1 1 e2x :
301 _ yp—1 0N 1P (1 =172
SO r’a—r) SO So |g(rpe’®)|?(1—p) db dp dr.

If we interchange the two inner integrals and make the substitution ¢ = rp, then
the above integral is at most a constant times

1 27 ,
SO(I—r)"'ISO S;]g(te"’)]p(l—t)‘l/zdth dr
2r 1 i 12 (! p—1
= SO | letee® P02 (a—ry*='drdtao
=c|__ ls@Pa-|zh~"dAa.
Now if we take g holomorphic in U and apply the lemma to R?*+'g, we see that
| L IRF A=z avy=c | |ROF|P(1—|z])P V2 dA().
B2 lz]<1
This last integral is finite if and only if g er/(zp)(U ). Now the exceptional sets
for this class are sets of a certain capacity zero, not Hausdorff measure zero. Pre-

cisely, there is a compact set E and a positive measure » on E with »(E) > 0and »
satisfying (¥) with m =1/2, and a function g EBf/(z » {(U) that fails to have a radial
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limit at any point of E. Now f(z, w) = g(2zw) fails to have a radial limit at any
point (%, ¢) € Ssuch that 2{n € E. Call this set K. Letting 7" denote the unit circle,

define y: EXT— K by
(N7
Y m) = (ﬁ"’ \F‘z‘)'

It is easy to see that ¢ is a homeomorphism. Let u¢ be the measure on K obtained
by transporting dv X df on E X T over to K by means of y (df is arclength on 7).
We will show that u(B(¢, 8)) < C8. Take ¢ =(No7o/V2, 10 /V2) € K. It is enough to
show that (A\j/V2, 1/V2) € B(¢, 8) implies [N —\o| < ¢ and |p—70| < C5"2. Now
(\7/V2, 1/V2) € B({, 8) means that

_ Mofine 170
2 2

] t
e 2 _cos{——=
(z-5)
cosi cos s s
2 2

Since we may assume § is small, the first of these inequalities says that |¢|=<
Cé. The second says that |(1—cos(#/2))—(1—cos(#/2—s))|<é and hence that
|1—cos(¢/2—s)| < 8+|1—cos(t/2)| <8+ 8% =< Cé. Consequently, |2/2—s|< C5'/?
and hence

1 <9.

Letting N\ = e’ and 57, =e’, we have
eite—is i
1— _

> 2<6 or

<4,

which implies that

<6é.

t
sin—2-'<6 and

|s| =

-;—|+cal/zs Co+C8Y2 < Cs'/2,

This finishes the proof that u(B(¢, 6)) < C6.
The case n > 2 now follows easily. Look for f(z) = F(z;,z2). By formula 1 of
[11, p. 14], R®fe HP(B") if and only if

SBZ IRIBF|p(1‘—|Z|)n_3 dV(z) <oco.

But this last condition is equivalent to F € B}, (B?), so we have an example. [J

Finally we show that, in spite of the above discussion, it is still true that if fe
HZ(B") with n—@p =1and p < 2 then f has admissible limits almost everywhere
with respect to arclength on any transverse curve. Recall that a curve ¢ in S is
called transverse if |[{¢’, ¢)| > e > 0. By proper choice of orientation we may as-
sume that —i{p’, ¢) =€ > 0. We recall the construction of the associated almost
analytic disc. For some large integer N, define

N (ivyk
P(z)=D(x+iy)= (G2
k=0 k!

o ®(x).
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Then, if (a,b) is the parameter interval for ¢, there is a 6 > 0 such that Q=
(a, b) x (0, 6) is mapped into B” by ®. Note that &(x) = ¢(x). Moreover, for
each x € (a, b) the curve y - &(x+iy) lies in a nontangential region with vertex
at ¢(x). Also, N
%(xﬂ'y) = e,

Moreover, (1/C)y <1—|®(x+iy)|<Cy. Finally, if Fe H?(B") for some p>0
and if a positive integer k is given, then there is an N such that if ® is defined as
above then (8/0%) (F-®) e C*(Q). See [12] for more details.

We will also need the gradient estimates of [4]. We will be explicit since one of
the definitions given in [4, p. 370] is incorrect. We define, for F holomorphic in
B", VyF(r$)=0/r)RF(r¢)$ and Vo F(r§)=VF(r¢)—Vy F(r¢). Then Lemma 3.2
[4, p. 370] should read as follows.

LEMMA 2.2. There is a constant C such that if z € D, () and if {w,{) =0,
|w|=1, then

[Kw, VF(2)Y| <= C(|Vr F(z)|+ (1—|z]) V2| VF(2)|).

Now suppose that » denotes arclength on a transverse curve. Then from Theorem
3.2 of [4] we have the following.

THEOREM 2.1. There is a constant C such that
| M. EH () dv(§) = CIF I,

where H(z) = (1—|z])" VP VF(z)|+ (1 —|z|)""~V/P+12|v,. F(z)|.

LEMMA 2.3. Suppose h is holomorphic on a rectangle Q = (a, b) X (0, 6) and
D <2, and for some integer k we have

SQ |n) (2) [Py %P~ dx dy < oo
Jor all | < k. Then for any subinterval [c,d]= (a, b) we have
d kp—1
["~Nnxyrax<c S |n D (z)|Py*P =" dx dy,
c 1<k vQ

where Nh(xo) =sup{|h(x+iy)|: ¥y = a|x—x|}.

Proof. Let I =[c,d]. Then there is a simple closed smooth curve contained in
O whose boundary contains 7. Let 7 be a conformal mapping of U onto the
interior of this curve. Then 7 is conformal up to the boundary. Let f(z) = #(7(2)).
Then | f®(2)|=C 2 <k |hV(7(2))], s0

S|z|.<_1 |f‘k)(Z)|P(l—|z|)kp—1dA(z) < CIEk Slzlsl |h(1)(T(Z))|p(1—lzf)kp_ldA(z).

Now, using the conformality at the boundary, by changing variables we have,
for I =k,
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S|z3<l 1RO (NP A —|z])*P " dAz) = XQ 1RO (2)|Py*P =V dx dy < .

It follows that
S If'(z)lp(1—|z|)p-ldA(z) < oo,
|z]<1

Since p < 2 this implies that fe H?, and hence the nontangential maximal func-
tion of fis in L”. It follows that 4 has the same property on I, again because 7 is

conformal at the boundary. The norm estimate follows from the proof. O
For a multi-index v = (v, ..., 7») We use the usual notations:
gl

=yt Aty DV=o—————.
I'Y| ’Yl ’Yﬂ azl"yl'"azgn

If f: B"— C is continuous, define
Ig f(z)= 1 Sl (log l)ﬁ_lf(z‘z)dz‘.
I'(B) Jo t
LEMMA 2.4. If f is holomorphic in B" then
2|"(Df) (2) = (I F) (2),

where
F(z) =|z|""(D"R®f) (2).

Proof. It is sufficient to prove this in the case where f is a homogeneous poly-
nomial of (say) degree /. Then

F(tz) =t z|" 1+ 1)¥(D7f) (22)
=t z|M I+ 1)% - (Df) (z)
=t!|z|"(I+1)P D7 f(2).
The result follows. O
LEMMA 2.5. Suppose RPfe HP(B™) and k is an integer greater than 3. Fix a

multi-index v with |y| < k and let g(z) = (1—|z|)* " #(D"f)(z). Thenif 1<a <o
there is a constant C = C(«, oy) such that M, g($) < CMalRBf(g').

Proof. Fix a; > . Then there is an € = e(a, 1) > 0 such that if z € D, () then

the polydisc
P={w:|wj—zj|=e(1—|z|))} S D, ({).
By Cauchy’s formula,
RS
_ S S(w) dw,

Qmi)" Jr (Wi —21) - (Wr—2y)
where T is the distinguished boundary of P. Now if we apply D? and make the
obvious estimate we obtain

|IDYRAf(z)|=C

RPf(z)=

Mo RPF(Y)
(1—|z])¥
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From Lemma 2.4 we obtain
1
lz|"[DYf(z)|=C So (A=)~ (1 —t|z|) * dt- M, RPF(§)

=C(1—]z)*~ M, RPf(%).
The result follows. d

LEMMA 2.6. Suppose that v is arclength measure along a transverse curve and
n—Bp=1. Then there is a constant C such that

| M.Gyav(s) < CIR?f 1,

where
G(z) = (1—|z) |Vf(z)|+ (1 —|z])?|Vr £(2)].

Proof. If F=RPfe HP(B") then from Theorem 2.1 we have
| Mo EH(YPav(0) = IR 1.
By Lemma 2.4 we have |z|Vf(z) = I3(|z|VR?f). Thus if z € D,({) then
|Vf(z)|=C S; (1—0)P "' —1|z])~ =DV g M, H($)

= (1—|z|) "M, H(Y),

taking into account the fact that n—Bp =1. A similar argument works for the
term involving Vr f. Actually, Lemma 2.4 does not directly apply to V; f because
the coefficients are not constant; however, they are homogeneous of degree 0 and
so the argument of Lemma 2.4 does apply. O

In the next theorem we assume that ¢ is actually defined and satisfies the trans-
versality condition on a larger interval (a—e, b+¢€).

THEOREM 2.2. Suppose that 1< p<2, n—p =1, and that v is arclength on a
transverse curve ¢. Then there is a constant C such that

| Mo r(0)” dv(e) = CIR"S 3

in particular, every f e Hé’ has an admissible limit a.e. dv.

Proof. Let ®: Q= (a, b) X (0,8) — B" be the almost analytic mapping associ-
ated to ¢ described above. Define a measure x on B” as follows:

S gdu= SQ g(®(x+iy))y" *dx dy.

It follows from the fact that ¢ is a transverse curve that u is a Carleson measure;
see [3, Lemma 4.3] for a very similar result. It follows from this that

[lg17an=c [ M.e)? dos)
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for any g: B"” — C which is continuous (see [12, p. 236]). In particular, we see
from Lemma 2.5 that if k> 3 is an integer then for |y| =<k we have

SQ (1—|® @) PP (D) (@(2)|Py"~ > dx dy < C|R°f|%»

As we have seen, we may assume that (3/9Z)(f®) is as smooth as we want on
0O, and hence we may find a function # such that

ou d
i -a—Z:(f“I’)

and u is as smooth as we want on Q. This means that fo® = A+ u, where 4 is
holomorphic on Q. If /< & then
Oy =2 oy 24
az! az!
and

I (f°<I>)|<C S 1(D)ea).

Noting that 1 —|®(z)| =< Cy we find that ¢ ]h(”(z)l“’ykp Ydx dy < oo foralll <k.
Hence, by Lemma 2.3, we have j Nh(x)? dx < oo, To complete the proof we take
x € (a,b) and assume {=¢(x)=(1,0,...,0). Note that

<I>(x+it)—(1—t,0, ..., 0)=0(1)
and hence

|h(x+it)—f(1—1,0,...,0)| =|F(®(x+it))—f(1—1,0, ...,0)| < Mt,

where M is the maximum of |V/f| on the line joining ®(x+i¢) to (1—¢,0,...,0).
This line lies in a nontangential region with vertex at { and hence in D, ({). More-
over, the distance from this line to S is of the order of 7. Hence M <=M, G({)/¢,
with G as in Lemma 2.6. It follows that

| f(1—1£,0,...,0)| < Na(x)+ M, G(%).

The same argument will show that if z; lies in a nontangential region with vertex
at 1, then
| f(z1,0,...,0)| < C[NA(x)+ M, ,G($)].

Finally, from Lemma 2.2 we have, for 2<j<n,

af

5, (@) <=1—|z)"V*M_,G(¢) for ze€Dy(%).
Zj

From this it finally follows that
M, f($)=C[Nh(x)+M,G({)].

It remains only to prove the norm estimate. The estimate for M_,G(¢{) follows
from Lemma 2.6. So we need only show that

b
S Nh(x)? dx < C|R°f|%,
a
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From Lemma 2.3 we have

b
S Na(x)Pdx<C 3 S |n D (2)|Py*P 1 dx dy.
a I<k Y0

Now
'u

|h‘”(z)|sc E @) @@+ |57 @)

The first term is handled by Lemma 2.5 and the argument given in the first part
of this proof. We can deal with 3 u/az / < k, by a trivial pointwise estimate. We
can solve the equation

ou d
oz = —:(f°<I>)
with oty e
5?- . , la-— (fo )’I
Recall that
9 5 of (i)
2z (2() =j§1 -521—_(@(3))1)\’[_!%(1\/“)()()
and hence
a[+l

la—
If RPfe HP, then fe H” and hence
|Df(2(2))| = (1—|®(2) )~ PHE+D|REF 1
<y~ PHEADIRBE | ny |y <k+1.
Thus, for sufficiently large N we have
d'u
07! |l

Added in proof: We want to point out that the method of proof of Theorems
1.1 and 1.2 gives immediately a characterization of the Carleson measures for
Hg(B"), 0< p=<1. More precisely,

(f <I>)(z){<c T @)@ @)YNE, =<k

lv|=k+1

= CIR"f| po- O

THEOREM. Suppose 0< p=<1, n—Bp=m>0, and pn is a positive Borel mea-
sure on B"; then there is a constant C such that §|f|? du < C|RPf|5 for all fe
H{(B") if and only if

) w(T(B(S, 8))) < C5"™
Jor some constant C and for all €S, 6>0.

Proof. To prove the sufficiency of the condition () we take fe Hj 2(B"). Asin
the proof of Theorem 1.1, we see that | f(z)|P<C X Nexx 6k xk(z), where now
X#(z) is the characteristic function of 7(B({x, 6x)). Now integrate on p to obtain
the result.
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In the other direction, just test u against functions of the form (1—r{z, {})™“

and argue as in the proof of Theorem 1.2. 0

10.

11.
12.

13.
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