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1. Introduction and statement of results. Let S be a finite Blaschke product
with S(0)=0 and S’(0)=s, 0< |s| <1. Let ¢ # 0 be a function which is mero-
morphic in the unit disk D and satisfies Schréder’s functional equation there:

(S) ?(5(2)) = s¢(2).

Kuczma ([7], [8]) has a survey of the extensive literature on this equation. More
recent work may be found in [5]. Fatou [6] showed that if a certain countable
collection of disks is removed from D, then |$(z)| approaches infinity as z ap-
proaches the unit circle C through what remains of D. This remainder contains
circles |z| = r with r arbitrarily close to 1; ¢ is what is now called a strongly annu-
lar function. The situation with ¢ is reminiscent of the meromorphic Tsuji func-
tion constructed by Collingwood and Piranian [4], and of infinite product annu-
lar functions in [1], [2], and [3].

A function ¢ meromorphic in D is said to be a differentially algebraic function
if it satisfies an algebraic differential equation (ADE)

P(z, w(z), W'(2), ..., w"(2)) =0,

where P(z, wy, Wy, ..., w,) is a polynomial in all its variables. If ¢ satisfies no
nontrivial ADE, then ¢ is transcendentally transcendental. See [11].

In a private communication, L. A. Rubel asked whether an annular function
can be differentially algebraic. The author knows of no such example, and under-
took the present research in an attempt to settle the question. The main result
of this paper is that every nontrivial solution of (S) is transcendentally tran-
scendental.

THEOREM. Let S be a finite Blaschke product with S(0)=0, S’(0) =s,
0<|s| < 1. Let ¢ be a function meromorphic in D and not identically 0, satisfy-
ing Schréder’s equation

S #(S(z))=sé(z), (zeD).
Then ¢ satisfies no algebraic differential equation.

Two simple examples will illustrate the method of proof.
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EXAMPLE 1. Let A(z) # 0, B(z) # 0 be polynomials and suppose that the
solution ¢ # 0 of (S) satisfies the equation

(1.1) A(z)¢'(z) +B(z) $%(z) =0.
Then (1.1) still holds with z replaced by S(z). From (S) we have
, _5¢'(z)
¢'(8)(z) = S'(2)

so that the new equation becomes

A(S
(1.2) —%Z—;){W(ZHB(S(Z))SZ&(Z) =0.
Elimination of ¢’(z) between (1.1) and (1.2) yields
A
[ (S(;))B(Z)S —A(z)B(S(z))sz}cbz(z):O.
(z)

That is, the rational function ¥ = A/B must satisfy the functional equation
(1.3) ¥(5(z))=sS"(2) ¥(z).

If it were known that the only rational solution of (1.3) were ¥ =0, then ¢ could
not satisfy (1.1).

EXAMPLE 2. Assume it is known that the solution ¢ # 0 of (S) satisfies no first
order ADE. Consider the differential equation

(1.4) ¢"(2)+A(2)¢'(z) +B(2) $(2) =0,

where A and B are rational functions. We replace z by S(z) in (1.4) and use the
identities

s¢'(z) , _ 5¢"(2)S'(2) —s5¢'(2) S"(2)
S T @) ‘

We then eliminate ¢”(z) between (1.4) and the new equation. As a result, we
obtain a first order differential equation. Since ¢ satisfies no such equation, the
coefficient of ¢’(z) must be zero. The reader may verify that this requires A4 to
satisfy the functional equation

(1.5 A(S(2))(5'(2))?=A(z)S'(z) + S"(z).

The proof of the theorem takes up the remainder of this paper. In Section 2 we
prove that the assumption that ¢ satisfies an ADE of order 0 or 1 (resp., of order
2 or more) requires that a certain functional equation (E) (resp., (F)) have a non-
trivial rational solution (resp., have a rational solution). Equation (1.3) is a spe-
cial case of (E) while (1.5) is a special case of (F). The methods used in Section 2
have their roots in classical papers in the subject ([9], [10], [12]). In Section 3 we
prove that, in fact, (E) has no nontrivial rational solution and (F) has no rational
solution.

¢'(5(z)) =
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The author wishes to thank the referee for his encouragement to persevere in
eliminating the stubborn exceptional cases which weakened the first version of
this paper.

2. Implications for the equations (E) and (F) if ¢ satisfied an ADE. A poly-
nomial P(z, wy, ..., w,) is a sum of terms (for distinct «)

Ao ()W = A () wgow(t- - wyn,

where « is the vector (ay, a, ..., a,) and A, is a polynomial in z. We call « the
index of the term. The dimension of the term is d(a) =ay+a;+ --- +a,, and its
weight is w(a)=a+2a,+ -+ +na,. If 3=(by, by, ..., b,) is another index, we
say that < «, or «is a higher index than 3, if

(i) d(B)<d(w); or

(i) d(B)=d(a), but w() <w(a); or

(ii1) d(B)=d(a) and w(B)=w(«a), but b, <a,; or

(iv) d(B)=d(a), w(B)=w(«), and b,=a,, but b,_,<a,_;; etc.
The principal term in P is the term of highest index. Given two polynomials P
and Q, we write P> Q if the principal term in P has higher index than the
principal term in Q.

Let ¢ be a nontrivial solution of (S) and let P be the collection of all poly-
nomials P(z, wy, ..., w,) such that P(z, ¢(z), ¢'(z), ..., ¢ " (z)) =0. The point at
issue is to show that P contains only the zero polynomial. If P contains a poly-
nomial P30, then it contains infinitely many. The standard procedure is to
assume that P contains a P# 0, get a P € P which is minimal in the sense of our
ordering, and use the special properties of ¢ to get a polynomial Q in P which is
smaller. Q must then be the zero polynomial. We are ready to proceed with the
first result of this section.

Suppose that ¢ satisfies an ADE of order 0 or 1, so that P contains nontrivial
polynomials P(z, wy, w;) for which P(z, ¢(z), ¢'(z)) =0. Among these we choose
a smallest P. Let

P(z, wo, wp) = A (2)WEW{' + T Bg(z)w§ow' + 2, Bg(z) whowpr.

The sum %, has 8’s with d(8)=d(a) and w(B8) < w(«a), while X, has 8’s with
d(B) <d(«). Since P(z, ¢(z), $'(z)) =0, we also have

P(S(z), (5(2)), ¢'(S(2))) =0,
or, in view of (S),
P(S(z),s¢(z),s5¢'(2)/S'(z))=0.
A term Bg(z)wgowf, for instance, is replaced by
sd®
(8'(z))"#

The coefficients are now rational functions in z rather than polynomials, but that
does not matter in what follows. We know that ¢ satisfies the differential equa-

B(S(2)) wow.
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tion associated with the polynomial

A, (5(z))s?® SW
. v P wO,wl)—Aa(z>P(S(z>,st, o )

But this polynomial has 0 as the coefficient in its o-term, and therefore is smaller
in our ordering than the minimal polynomial. It must then be identically zero.
For all other indices 8, then, we have

Au(8(2))s"“Bs(z)  Aa(z)Bs(S(2))s?®
(S'(z))"® B (8'(z))"®

Therefore the rational function ¥(z) = B;(z)/A,(z) satisfies the functional equa-
tion

(E) ¥(S(2)) =s'(5"(2))"¥(2),

where / =d(a)—d(B) and m=w(8)—w(a). In the next section we shall show
that unless / = m =0, the only rational solution ¥ of (E) is ¥ =0. In the present
situation, either / > 0 or else / =0 and 7 < 0. Assuming the result from Section 3,
we see that Bg(z) =0 for all 8 < «, so that the differential equation satisfied by ¢
is simply

A(Z) p(z2)%(d'(2))1=0 (A(z)#0).

This requires that ¢ be constant, and, from (S), the constant must be 0. Hence ¢
satisfies no ADE of order less than 2.

The situation for equations of order two or greater is complicated by the fact
that the higher derivatives of ¢(S(z)) are no longer monomials.

LEMMA 2.1. Let ¢ be meromorphic and satisfy (S) in D. Then for j=0,1,...,
we have

2.1) ¢ (S(2)(S'(z)) + ¢YD(S(2))(S(2)) 15"(2)

JU-1
2
+ (terms involving V=2, ..., ¢ ) =59 (2)

and

s¢V(z)  j(i—1)s8"(z)¢ Y N(z)
(S'(z))’ 2(S'(z))’*!

+ (terms involving ¢V =2, ..., ¢").

(2.2) »V(S(z)) =

Proof. Equation (2.1) is proved by induction, and equation (2.2) follows from
using (2.1) for j and j—1. ]

DEFINITION. Let 8 = (by, ..., by, ..., b,) be an index with b; =1 for some k = 2.
A related index 3* is obtained as follows. Let &k, 2 < k < n, be the smallest integer
greater than 1 for which b, =1. Then 8* is obtained from 8 by replacing b; by
by—1 and by_; by bi_;+1. (We note that d(3*) =d(B) and w(B*)=w(B)—1.)



SOLUTIONS OF SCHRODER’S EQUATION 51

LEMMA 2.2. Let n=2 and let (2.2) be applied to a term of index 3;
(2.3) ($(S@N... (6 “(S(IN%... (6 "(S(2)))"n.

There is obtained a homogeneous polynomial of degree d(B) in the variables
$(z), ¢'(2), ..., (). Its highest index is B and its next lower index is 3*. The
coefficients of these terms are

s¢ and —s%k(k—1)b;8"(z)
(5'())" 2(8(2)""!

respectively, where we have used d for d(8), and w for w(f3), and k is as in the
definition of 3*.

Proof. Since ¢(S(z))=s¢(z) and ¢'(S(z)) =s¢'(z2)/S’(z), the powers by and
b, are unchanged by the substitution. Since b;=0 for 2<j<k—1, the cor-
responding derivatives do not appear in (2.3). The factor (¢*’(S(z)))?* leads,
by Lemma 2.1, to a homogeneous polynomial of degree b, in the variables
0’'(z2),9"(2), ..., qb(k)(z). Its two largest indices are

0,...,0,b¢) and (0,...,0,1,b,—1)
and the respective coefficients are

sk nd (1/2)k(k—1)s%b, S"(z)
(8°(2))" (5"(2)) !

In the factors from ¢ **V(S(z)), ..., ¢ " (S(z)), only the largest term is of con-
sequence. The remaining assertions follow from computations.

We are now ready to show, assuming the results from Section 3, that a mini-
mal algebraic differential equation for ¢ cannot be of order 2 or more. Assume
the conclusion false, let P be a minimal polynomial, and let « be the index of its
principal term. Let A(z) and B(z) be the coefficients in the terms of index « and
a* respectively. Let z and ¢(z) be replaced by S(z) and ¢(S(z)) in the differential
equation and the new polynomial considered. By Lemma 2.2, the coefficients in
the terms of index « and o* become, respectively, the rational functions

(2.4)

A(S(z))s —s9k(k—1)b;S"(z) s¢
Sey” M T sy AS@IFBER)
From minimality, the polynomial corresponding to
A(S(z))s?

e P(2, (7)) ey 0
2.5 S'@)" (z,9(2) $"(z))

~A(z) P(S(2), $(5(2)), .-, $ " (S(2)))
must be identically zero. In particular, the coefficient in the term of index «* is
identically zero. But this says
A(S(z))s? B(z)= A(z)s?
(S'(z))” (S"(z)"

A(S(z))XS”(Z)}

{B(S(z))S’(z)-— 5'(2)
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where we have written \ for by k(k—1)/2. Simplifying, and writing ¥(z) for the
rational function B(z)/A(z), we find that ¥ must satisfy

(F) ¥(S(2))(5(2))* = ¥(2)S"(z) +A8"(z) (A#0).

Since (F) will be shown to have no rational solutions, ¢ satisfies no ADE.

3. The functional equations (E) and (F). Let S be a finite Blaschke product

- k,
3.1 S(z)=zf1<z "") (p=1),

v=1 l_avz

where 0, ay, ..., g, are distinct points in D, k, ..., k, are positive integers, and the
integer n=1is defined by n=%%_, k,. Then S(0)=0, S’'(0)=s with 0< |s| <1,
S maps D onto itself n+ 1 times, and the derivative S’ has 27 zeros in the complex
plane. In fact, a theorem of Walsh [13] gives a version for Blaschke products of
the Gauss-Lucas theorem; it shows that S’ has exactly # zeros in D, that if zoe D
and S’(z9) =0 then |zo| <max|a,|, and |zo| <max|a,| unless z¢ is a zero of S.

Two special results from complex variables will be used in the study of (E) and
(F). The first is

(3.2) 1S'(z)|>1 for |z|=1.

From (3.1) we have

S’(z) 1 p ( 1 a, )
=—+4 K, — .
s@ 2 AP e T et
Then

ipgry , i¢ ip 2 2
e'?S’(e'?) p e'?(—=1+|a,|) p (1-|a,|?)
- 71 k., — . =1 ko~ 1% 7
S(el¢) +V§l b (el¢_av)(—dvel¢_1) +u§l b Iel¢_‘aulz

and inequality (3.2) follows.
The next result handles the most difficult case, which arises in showing that (F)
has no rational solution.

PROPOSITION 3.1. In (3.1), let p=2, k;=1, and ky=--- =k, =2, so that

—_ — 2
(3.3) S(Z)zz(z a) ﬁ (z—a,)

(1—az) ,=5 (1—a,z)*"

Let S™Ya) ={z1,..., 2]} (z;’s distinct). Then it is impossible to have
3.4 S§(z;)=0 and S"(z;)#0 Jjor j=1,...,1.

Proof. For each j, the fact that S(z;) # 0 and the assumption that S’(z;) =0
leads, via the theorem of Walsh, to the conclusion that

(3.5) |zj|< max |a,|, (=1,...,1).

2<v=p

(Since a; = S(z;), we have |a| < |z;|.) Let
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L =1=a0,  F@)=LSE).

Then F is a finite Blaschke product, since it is a rational function and |F(z)| =1
for |z| =1. The numerator in Fis a polynomial of degree n+1, and the zeros of F
are the points of S~ !(a;). Since

(3.6) F'(z)=L'(5(z))S'(z) and F"(z)=L"(8(2))(S"(z))*+L'(5(2))S"(z),

it follows from (3.4) that F’(z;) =0 and F”(z;) #0. That is, each zjis a zero of F
of order two: )
I (z—2z;)
F(Z) =c —‘-—__J— ’
,I=Il (1-%;z2)?
If 2<v=<p, then a,¢{z,...,2}, and (3.4) and (3.6) show that F’(a,)=0.
Appealing again to Walsh’s theorem, we conclude that

|c] =1.

3.7 la,| < max |z;|, (»=2,...,p).
l=j=l
But (3.7) contradicts (3.5), and the proposition is proved. td

We are now ready to start work on the functional equations (E) and (F).

LEMMA 3.1. Let S be a finite Blaschke product (3.1). Let | and m be integers
and let ¥ be a rational function which satisfies

(E) ¥(S5(z)) =5'(5'(2))"¥(2).
Then ¥ is a constant, and unless |=m =0, ¥ is identically zero.

REMARK. The situation in Section 2 had /=d(a)—d(B8) and m=w(B) —w(x).
Hence, either /=1 or else /=0and m=< —1.

Proof. If m=1and /<0, then (E) and (3.2) show that there is an M > 1 such
that

|[¥(S(z))| =M|¥(z)| for |z]|=1.

Unless ¥ is identically zero, there is a sequence {z;} on the unit circle C with
¥(z;) — oo, so that ¥ has a pole at some point zg, |zo| =1. Successive appeals to
(E) show that ¥ has a pole at each of the n+1 points of S ~!(zo) (distinct, since
|S’(z)|#0 on C), at the (n+1)? points of S %(zy), etc. This is impossible, so
that ¥ =0if m=1and /<0. The same argument works if m=0and /< —1, and
a parallel argument (with zeros of ¥ instead of poles) works if m<0and /=1 or
m=<-—land/=0.
If I=m=0, so that ¥(S(z)) = ¥(z), then differentiation gives

¥'(S(z)) =[S"(z)17'¥'(z).

This is (E) with /=0 and m = —1, so that ¥'=0 and ¥ is constant.
Finally, we consider the situation where /m>1. We let |a,| =max|a,|, write a
and £ instead of a, and k,, expand ¥, S and S’ about 0, and S and S’ about a.
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(3.8) ¥(z)=bz"(140(|z])), b#0, r an integer
(3.9) S(z)=sz(1+0(|z])),  S(z)=s(1+0(|z]))
Siz)=c(z—a)*(1+0(|z—al)), c#0
S'(z) =ck(z—a)* "1+ 0(|z—al)).
Substitution of (3.8) and (3.9) into (E) shows that

b(SZ)r =S’Smbzr

(3.10)

so that
(3.11) r=Il+m.
Substitution of (3.10) and (3.8) into (E) shows that, as z > a,
b(c(z—a)*) =s'(ck(z~a) ™" ¥(2)(1+0(|z~al)),
¥(2)=d(z—a)"*" " "1+ 0(|z~al)),
where d # 0. By (3.11) we have, then,
Y(z)=d(z—a)""* " (1+0(|z—al)),

as z—a. Since /m=1and k=1, ¥ has either a zero or pole at a. From |a| =
max|a,|, it follows that S’(z) #0 for all z in S~} (a)US~2(a)U---. If ais a zero
(resp., pole) for ¥, then (E) shows that each point of S™'(a)US2(@)U--- is a
zero (resp., pole) for V. Since ¥ is rational, ¥ must be identically 0. The proof of
Lemma 3.1 is complete. Ll

LEMMA 3.2. Let S be a finite Blaschke product (3.1) and let \ be a nonzero
constant. Then there is no rational function ¥ such that the equation

(F) ¥(S(2))(S'(2))>=¥(2)S'(z) +\S"(z)
holds in D.

REMARKS. The proof is based on the consideration and elimination of cases
until the only case left is that which Proposition 3.1 shows is impossible. We sup-
pose that there is a rational solution ¥, ask about the location and order of its
poles, and what is implied about S and especially the zeros of S’.

To see why this interplay between ¥ and S is relevant, consider the following
situation. Let there be a point 2z, € D such that ¥ is analytic at both zy and S(zg),
and such that S’(zy) =0. If §”(zo) # 0, then (F) is instantly contradicted. Even if
S’ has a zero of order m = 2 at z,, the equation arising from m — 1 differentiations
in (F) cannot hold at z3. Therefore, the only way that (F) can hold on D is that,
Jor every zo in D where S'(zy) =0, either zo or S(zg) is a pole of ¥. It follows
immediately that (F) fails if ¥ is analytic everywhere on D. Less immediately,
(F) fails if the only pole of ¥ in D occurs at z=0. For S’ takes the value zero n
times in D but only n— p times on {a, ..., a,). Hence there is a zo € D such that
S8’(zo) =0 but S(zp) # 0, so that neither zy nor S(zg) is a pole.
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Proof. We shall prove Lemma 3.2 in the following steps, always assuming that
¥ is rational and that (F) holds.

Step 1. Suppose that 0 < |z¢| <1, that zq is not a pole of ¥, but that {y= S(zp)
is a pole. Let m be the order of the zero of S(z)— ¢ at zo. Then

(3.12) S'(z9) =0, so that m=2,
(3.13) ¥ has a simple pole at ¢y, and Res(¥, {) =Nm—1)/m,

S(z) —$o has a zero of order exactly m at each point of

(3.14) S~1(&o) which is not a pole of V.

Step 2. ¥ has at most two poles in D. If it has two poles, then one of them is at
0, and the other is at one of the zeros of S, say a;. In this case we have the condi-
tions that are ruled out by Proposition 3.1.

Step 3. (F) cannot hold if &#0 is the only pole of ¥ in D.

Steps 2 and 3 cover all the cases left after the remarks above.
Proceeding to the proof of Step 1, we expand S, S’, §” and ¥ about z; and ¥
about {:

S(z)—$o=1c(z—29)"(1+O(|z—z|)), (c#0),
8'(z) = cm(z—20)" "' (14+ O(|z—2|)),
S”(z) = cm(m—1)(z—z¢)" " 2(1+ O(|z—20])),
¥(z) =d(z—20) (1+O(|z—20])), (d#0,[=0),

Y(§)=b({—$0) (1+0(|§—0])), (b#0, r<0).

If S’(z9) # 0, then the left side of (F) has a pole at z,, while the right side is
analytic there. Hence m =2; (3.12) holds. Then the term of lowest degree in
(z —z0) on the right side of (F) comes from AS”(z), namely,

Mem(m—1)(z—20)" "2,

while on the left the term of lowest degree is
b(c(z._zo)m)rczmz(z_ZO)2m—2 — bc’+2m2(z _zo)m(r-{»Z)—Z.

Comparing the powers of z— 2, in the two expressions, we conclude that r = —1,
so that the pole at {, is simple. Then, equating the coefficients, we find that
AN(m—1) = bm, so that (3.13) holds. But (3.13) determines mz as soon as b and A
are known, so that the same m works for all points of S~!({,) which are not
poles of ¥. The proof of Step 1 is complete.

For Step 2, we suppose that ¥ has at least two poles in D and let {; be a pole of
largest modulus. Let S—‘(§1)={z1,...,z,}. Then no z; is a pole, and we may
apply the results of Step 1 to each of them. We then have

(3.15) ml=n+1,
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and, of the »n zeros of S’ available in D, the number used on {zi, ..., 7} is
(3.16) (m=1I=mn+1)(m—-1)/m=n+1)/2.

Of the remaining poles of ¥, let ¢, be one of largest modulus, and assume
that ¢, #=0. If S7!(§,) contained only points of analyticity of ¥, then the argu-
ment for ¢ could be repeated, and S’ would assume on S~!(§)US({,) at
least (n+41)/2+(n+1)/2 =n+1 zeros, which is impossible. Hence S ~'({,) must
contain a pole, and, from our construction, the pole must be §;. Let S ~!(§) =
{¢1, 01, ..., 0n}) and let the order of the zeros of S(z)— ¢, at ¢ be ;=1 and at
g1, ..., 0N let it be py. We have pu;+ Nu, =n+1 so that

2N$/L2N=ﬂ+l—pl1£n, or NSn/Z.
The number of zeros of S’ occurring in S™!({,) is then
u1—1+N(,u2—1)=n—NZn/2.

In view of (3.16), this is impossible. We continue to assume that ¥ has two
poles in D, and now know that they are at ¢&; 0 and & =0. We have S~!1(0) =
{0, ay, ..., a,}, where p=1. If no a; is a pole of ¥, then each q; is a zero of S
of the same order p=2. We have pp=n, so that S’ assumes on {ay,...,a,},
p(p—1)=n—p=n/2 of its zeros. By (3.16), this is impossible. Therefore one of
the a;, say a, is equal to {;. There is at least one point z; in S Ha)=S"1(¢),
and S’(z;)=0. We have |a|=|¢1|<|z1]. But, by Walsh’s theorem, we have
|21] <max|a,|. Hence p must be at least 2. With this information, we count the
zeros of S’ once again. Let the order of the zeros of S at ¢, be x; =1 and let the
order at each a;, 2=<j=<p, be p=2. Then

n—p
m+(p—Dp=n, p=Tl+1,

and, of the » zeros of S’ in D,
(m—D+(p-D(p—-1)=n—p
occur on {ay,...,a,}. On S~!(a,), an additional (n+1)(m—1)/m occur. There-
fore we require n—p+(n+1)Y(1—-1/m) <n.
n—p
i

The left side of (3.17) is at least (n+1)/2 and its right side is at most (n—1)/2+1.
Hence we have equality, so that m=u=2, and ;= 1. That is, S is given by (3.3),
and each point of S~!(a) is a first order zero of S’. This is ruled out by Proposi-
tion 3.1 and the proof of Step 2 is complete.

We proceed to the third and final step. Suppose that ¢; # 0 is the only pole of ¥
in D. Then in (F)

(F) ¥(5(2))(5'(z))* =¥(2) §'(z) +\S"(2),
both the left side and AS”(z) are analytic at {;. Hence ¥(z)S’(z) is analytic there,

1
3.17) (n+1)<1——’;1->5p= +1.
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so that S’({;) =0. Suppose that, for z — ¢,
S()=-SE) =cz—=)"1+0(|z— 1)), (c#0, m=2).

Now the left side of (F) has a zero of order at least 2m—2 at ¢, ¥(z)S’(z) has a
zero of order exactly m — 2 there (since the pole is simple), and NS”(z) has a zero
of order m—2 also. The coefficient of (z— {;)™ 2 on the right is

cm Res(¥, &) +cm(m—1)A.

Since this must be zero, it follows that Res(¥, &) = —A(m—1). This is impos-
sible, by (3.13). Step 3 and the proof of Lemma 3.2 are complete. 1
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