THE GAUSS-BONNET THEOREM FOR
2-DIMENSIONAL SPACETIMES

Graciela S. Birman and Katsumi Nomizu

The purpose of the present note is to extend the classical Gauss-Bonnet
formula

SF k, ds+HDKdA+ L =2

for a region D with boundary I" on a 2-dimensional Riemannian manifold to the
case of a 2-dimensional Lorentzian manifold. Such an extension becomes pos-
sible by refining the notion of angle in the Lorentzian plane which was defined in
our previous paper [2].

Section 1 deals with the definition and properties of angle in a 2-dimensional
spacetime and illustrates a special case of the formula dealing with the term
L; ©;. In Section 2 we prepare needed facts for the terms | &, ds and {[p KdA
and state the formula. The proof is given in Section 3 together with a concluding
remark.

1. Angle in a spacetime. Following [6, pp. 24-27] we mean by a 2-dimensional
spacetime a connected, 2-dimensional, oriented and time-oriented Lorentzian
manifold (M, g). Thus M admits a globally defined unit timelike vector field
which is future-pointing.

For each point x of M, the tangent space 7,.(M) is oriented and has a Lorentzian
inner product together with time-orientation. For any unit timelike vector E in
T,(M), we denote by E* the unique unit spacelike vector such that g(E,E*)=0
and such that the ordered basis {E, E*] is positively oriented. We say that a
Lorentzian coordinate system {x, X, } in 7, (M) is allowable if the vector (0, 1) is
a unit future-pointing timelike vector and (0, 1)* = (1, 0).

Let X and Y be two unit timelike vectors which are future-pointing (or past-
pointing). The angle from X to Y is defined to be the number # such that

chu shu xt | _[»n
[ shu chu ][xz]_[yz]

where (x;,x;) and (y;,y,) are the components of X and Y, respectively, with
respect to an allowable coordinate system. The number « is independent of the
choice of an allowable coordinate system, as can be easily seen. We shall denote
the angle from X to Y by (X, Y). The angle (Y, X) is equal to — (X, Y). We have
also (=X, -Y)=(X,Y).

We now want to define the angle (X, Y) in the case where X is a future-
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pointing unit timelike vector and Y a past-pointing unit timelike vector (or vice
versa). Note that —Y is future-pointing and if u=(-Y, X), that is,

chu shu
shu chu

](—Y)=X

in the same sense as before, then

-1 0 ch(—u) sh(—u) _
[ 0 —1][sh(—u) ch(—u) ]X—Y'

We ignore the matrix [_(1) _?] and define the angle (X, Y) to be —u. The angle
(X, Y) is defined similarly for past-pointing X and future-pointing Y.

We note the properties of the angle function for unit timelike vectors as
follows.

LEMMA 1.

1) (X, -X)=0;

Q) (X,Y)+(Y,2)=(X, Z);
3) (X, X)=0;

@ (¥, X)=—(X,Y);

) (=X, Y)=(X,Y);

6) (X,-Y)=(X,Y).

Proof. (1) is obvious. To prove (2), we may consider essentially three cases:
(i) X, Y, Z are future-pointing; (ii) X, Y are future-pointing and Z past-pointing;
(iii) X, Z are future-pointing and Y past-pointing. The verification in each case is
easy. The others follow directly from the definition of angle, but we note also
that they follow formally from (1) and (2).

Let us consider a region D bounded by a simple timelike closed polygon T’
in the Lorentzian plane L2. Assume that T' consists of successive timelike seg-
ments I', I, ..., Iy and denote by Xj, X3,..., X the unit timelike vectors on
I, I,...,T%, each with the time-orientation compatible with the direction in
which each segment is travelled. If #; denotes the angle (X;, X;.), 1<i<k,
where X, =X, then

L 0= (X1, X2) + (X2, X3) + -+ + (Xpe—1, Xp) + (X4, X1) =0
I

by repeated use of Lemma 1(2). By calling 8; the exterior angles of T', we can say
that the sum of exterior angles of a simple closed timelike polygon is zero—this is
a very special case of the Gauss-Bonnett formula we shall prove. The case of a
timelike triangle was shown in [2].

2. Geodesic curvature and Gaussian curvature. Let I' be a smooth timelike
curve on a 2-dimensional spacetime M parametrized with proper time s so that
the tangent vector T=T7'(s) at each point is a unit timelike vector. We choose the
unit normal vector T*(s) along I'. The geodesic curvature kq(s) is defined by
ke=g(vT, T+) where V, denotes covariant differentiation along the curve. We
have then V,T=k,T* and V,;T* =k, T, as well as k,=—g(V,T*,T).
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Now let Z be a unit timelike vector field parallel along I'. By assuming that Z
at the initial point is future-pointing we know it is so at every point, since parallel
displacement preserves time-orientation. It is easy to see that the vector field Z*
along I' is also parallel. We consider the angle « = (7, Z), which is a function
of s. We prove:

LEMMA 2. da/ds= —k,.
Proof. If T is future-pointing (i.e. T is at every point), then we have
T=chaZ—shaZ' and T'=-shaZ+chaZ’.
If I is past-pointing, then
T=—chaZ+shaZ* and T'=shaZ-chaZ*t.

Based on these equations we get

V., T= (sh a)(da/ds)Z— (ch a)(da/ds)Z*
or
Vo T=—(sh o) (da/ds)Z+ (ch a)(da/ds)Z*.

In either case, we get
k,=g(VsT,T*)=(—ch’a+sh’a)(da/ds) = —da/ds.

Now let X be a future-pointing unit timelike vector field globally defined on
M, whose existence is assured by time-orientability of M. The corresponding
connection form w is defined by w(V)=g(Vy X, X ") for any tangent vector V.

LEMMA 3. dw=KdA, where K is the Gaussian curvature and dA is the volume
element of M.

Proof. We compute, for any vector fields V and W,
dw(V, W)=Vo(W) - Wo(V)—w([V, W])
=Ve(Ww X, X")—Wg(WwX,X")—g(Vy,m X, X ")
=g(VyVw X, X)) +eg(Ww X,V X ")
—8(Vw Wy X, X ) —g(Vy X,V X)) —g(Viy, w1 X, X ")
=g(R(V, X, X" ) +g(VwX, VWX ") —g(VW X,V X").

Here g(Vw X, Yy X*) =0, because V; X is orthogonal to X and hence a scalar
multiple of X *, and on the other hand v, X is a scalar multiple of X. Similarly,
g(Wy X,V X+)=0.
Thus dw(V, W)=g(R(V,W)X,X™"). Taking V=X and W=X"*, we obtain
do(X,X")=g(R(X, X)X, X )=—g(R(X,X")X*, X)
=K.

Since dA(X, X *)=11in view of our orientation, we get dw=KdA. O



(

80 GRACIELA S. BIRMAN AND KATSUMI NOMIZU

We consider a domain D with compact closure whose boundary I is a simple
closed curve consisting of a finite number of smooth timelike curves I';, 1 <i <k,
which we orient in such a way that the theorem of Green, |r y={{p dvy, holds
for any 1-form v. Suppose that I; starts at A; with initial tangent vector 7; and
ends at A;,; with terminal tangent vector S;, 1<i <k, where 4A,,;=A,. Let 6,=
(81, 73), 0,=(S2,T3),...,0,_1=(Sk—1, Tx) and 8, = (S,,T,) be the exterior
angles at A4,,...,A; and A,.

Now we can state:

THEOREM. For a domain D and its boundary T' as above in a 2-dimensional
spacetime M, we have

gr ke ds+ 1 Bi—SSDKdA =0,

3. Proof of the theorem. Let Z; be a future-pointing unit timelike vector at
A;. Translate it parallelly along I to obtain a vector field Z=Z(s) whose values
at A,,..., Ay are denoted by Z,,...,Z;,. WhenT is travelled back to A, we get a
vector Z; ., which is generally different from Z,. As before, let o be the angle
(T, Z) at each point of I';, 1 <i<k. Then

Ll (da/ds) ds= (Sy,Z,) = (T, Zy)
so that using Lemma 2 we obtain
~ |k ds—01=(81,22) ~ (T, Z) + (T2, 5)
=(12,2,)— (11, %))
by virtue of Lemma 1(2). Similarly,

| Ky ds—0,=(T3,25)~ (T2, 22)

Iy

| Ky ds—00=(T1, Zks)— (Ti, Z0).
Ty
Adding up we obtain

*) ~| ke ds— L 0i=(T\, Zis)) = (T, 20 = (21, Zis).

In order to evaluate (Z;, Z;,,), we use a future-pointing unit timelike vector
field X globally defined on M. Let 8= (Z, X) along I". We have
' Z=chfBX—-shBX*.
We get, using the connection form « based on X,
0=V, Z=(sh B){(dB/ds) —w(T)) X+ (ch B){w(T)— (dB/ds)} X *
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so that d3/ds=w(T). Thus

*) (Zis, Z)=] o

By Green’s theorem and Lemma 3 we have

(***) SF w=§D dw=SSDKdA.

From (*), (**) and (***) we finally obtain the formula in the theorem. O

We conclude this note with the following observations.

As is well known, the classical Gauss-Bonnet formula leads to the global
theorem relating the Euler characteristic of a compact 2-manifold M to {fy; KdA
defined in terms of an arbitrary Riemannian metric on M. Among the connected,
compact, orientable 2-manifolds, the torus 72 is the only one which admits a
Lorentzian metric. Our formula leads to {{;2 KdA =0 for any Lorentzian metric
on 7T2. For a proof, we may assume that the metric is time-oriented, divide T2
into appropriate regions bounded by timelike curves and apply the formula to
each region and its boundary. The integrals |k, ds add up to 0, since each
““side’” is travelled twice with different orientations. The exterior angles at
each vertex add up to O from the properties of Lorentzian angle. What remains
is {{r2 KdA=0.

This conclusion will also follow from the classical theorem by the methods
in A. Avez [1] and S. S. Chern [4], which establish the global Gauss-Bonnet
theorem for pseudo-Riemannian manifolds for higher dimensions. Some results
related to our topic are discussed in [3] and [5].
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