A REMARK ON QUASI-CONFORMAL MAPPINGS
AND BMO-FUNCTIONS

Kari Astala
Let GCR” (n22) be a domain and let #: G — R be a locally integrable func-

tion. We say that u has bounded mean oscillation in G, and denote u € BMO(G),
if

1
il o= 50p [ | )= ] <o

Here the supremum is taken over all balls BC G; m(B) stands for the Lebesgue-
measure of B and ug for the mean value of u over B, i.e.

u(x) dx.
m(B) SB

H. M. Reimann [5] has established a close connection between quasi-conformal
mappings and the spaces BMO(G) by proving the following theorems:

1. THEOREM ([S: Theorem 4]; see also [4: p. 58]). If f: G —> G’ is a K-quasi-
conformal homeomorphism, then

1
(1) < el e <luesflls, o< Clulls, o

Up=

Jfor all functions u € BMO(G’). The constant C in (1) depends only on K and the
dimension n.

2. THEOREM ([S: Theorem 3]). If an orientation preserving homeomorphism
S+ G — G’ has the properties
(@) fisdifferentiable a.e. and f&€ ACL,
(b) the mapping u— u-f is a bijective isomorphism of the spaces BMO(G’)
and BMO(G) for which ||uef|« ¢ <C|ul«, ¢
then f is quasi-conformal.

For definitions of quasi-conformal and ACL mappings see [8].
The purpose of this note is to show that by localizing the problem the analytic
assumptions (a) in Theorem 2 can be dropped. More precisely, we shall prove

3. THEOREM. Let f: G — G’ be an orientation preserving homeomorphism. If
there exists a constant C such that

1
(2) < Nulls,o<luesfll, o< Cllulls, o
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holds for all subdomains DC G and for all u€ BMO(D’), D'=fD, then f is
quasi-conformal.

NOTE. (2) implicitly assumes that uef€ L} (D) whenever u € BMO(D’).
However, we shall need (2) only for continuous functions # and for such u no
integrability or measurability assumptions are needed.

Since quasi-conformality is a local property, Theorems 1 and 3 yield immedi-
ately

4. COROLLARY. A homeomorphism f: G = G'is quasi-conformal if and only
if (2) holds for some constant C.

It remains open whether the non-localized version of Theorem 3 is true.

For Theorem 3 we need to recall the following notions and results.

We say that a (proper) subdomain D of R" is uniform if there exist constants a
and b such that each pair of points x|, x, € D can be joined by a rectifiable arc
v C D for which

I(v) <alx;—x,|
min /(y(x;,x)) <bd(x,dD) for all x€y.
ji=12
Here /() denotes the length of v, v(x;,x) the part of y between x; and x, and
d(x,dD) the distance from x to the boundary oD of D.
For any domain D and pair of points x;, x, €D set

3)

kp(x, %) =inf | d(x,8D)""ds
T v
where the infimum is taken over all rectifiable arcs v joining x; and x, in D. The
mapping kp is called the quasi-hyperbolic metric in D. Furthermore, set

. _ L (Pl )<_Eu2@_ )
Jp(X1,X2) = ) In( d(x;,dD) +1 d(x,, D) )

F. Gehring and B. Osgood [3] have characterized the uniform domains with
the help of kp and jp: A domain is uniform if and only if

) kp(x,y)<cip(x,y)+d, x,y€D.

The uniformity constants of D depend only on the constants ¢ and d in (4).
In the following, let B,(x) denote the ball with center x and radius .

5. LEMMA. Suppose u(x)=Kkp(x,y), y€D.
@) IfB=B,(z)CD, |u(z)—ug|<n
®) [ull.,p<2n.

For the hyperbolic metric /4 of a simply connected domain D C R? the proof of
(a) and its corollary (b) is given in [2: Lemma 10.4]; the generalization to kp and
to an arbitrary domain D CR” is immediate. See also [4: Lemma 2.4], where the
original proof for u € BMO(D) appears.
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6. LEMMA ([4: Lemma 2.1} or [2: Lemma 10.2]). If u€ BMO(R"), x,y€D
and r=d(x,0D), s=d(y,dD), then

(%) lup, (x) — B, | < (crip(X, ¥) +dy)||u| « rn
where cy=e" and d,=2e".

Finally, let BC R" be any ball and let 9 be the inversion in dB. If # € BMO(B),
then (see [6: p. 8]) the mapping

_Jou(x), X€EB
Y=V hed(x), xER™B

belongs to BMO(R") and ||v| « e <M | tt| x, 5, M=M(n).

Proof of Theorem 3. Let x€ G be fixed, denote B,=B,(x) and choose ry so
small that

(6) diam(fB,) <d(f(x),0G) for r<ry.

In [4] P. Jones proved that a domain D C R" has the BMO-extension property
if and only if (4) holds. We shall modify the necessity part of Jones’ proof to
show that fB, is uniform for r <ry.

First of all, if D= fB, and y, € D, the mapping u(y)=kp(y,y,) is by Lemma 5
in BMO (D) with ||u||«, p <2n. Moreover, if >0 and u,(y)=inf{a, kp(y, 1)},
ye€D, then u, € BMO(D) by the lattice-property of the BMO spaces (cf. [6:
p. 2]). We have also the estimate ||u, |« <2|u] « <4n.

Next we apply (2) and get ||uq°f]«, 5, <4nC. But B, is a ball and thus u,°f has
a bounded extension v, with ||v, ||« r» <4nCM. Since v, is bounded we may use
(2) again to get ||vaof "+, 6 <4nC2M.

We have chosen r so small that the ball B with center f(x) and radius diam (D)
is contained in G’= fG. Therefore the restriction of v,°f ! to B has an extension
W € BMO(R") such that w, |p=u, and

Wl Rn S M||vgef ™|+, g-< 4nC*M?,
Now we can use Lemma 6 which gives two absolute constants ¢; and d; such that
) |(Wa)B,— (Wa)B,| < (C1ip (D1, ¥2) + A || Wall «, re
< Jp(yy, ¥2) +d;

whenever y, € D; here B; denotes the ball with center y; and radius d(y;, dD),
i=1,2, and c,=4nC*M?e", dy=8nC*M?e".

Note that the right hand side of the inequality (7) does not depend on «.. Hence
by letting o go to infinity in (7) we find that I“B,"u32| < ¢ jp()1,¥,) +d; holds
for u(y)=kp(y, ;). Finally, since B;C D, i=1,2, Lemma 5(a) implies

kp(y1, y2) = |u(y)) —u(»)|<cjp(y1, y2) +dy+2n.

The considerations above prove that D= fB, is uniform for every r <rg, with
uniformity constants a, b independent of r or x (cf. (4)). Thus if y€B, is such a
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point that diam(fB,) <3|f(x) —f(»)|, there exists an arc yC fB, (joining f(x)
and f(y)) with the properties (3). In particular, if z €y satisfies /(y(f(x),z)) =
I(y(f(¥),z)), we have

d(z,0fB,;) > l(v(f(x) 2))= ——1(7(f(x) SO

1 1
25 X =SW|> - diam(fB,).

Therefore the ball with center z and radius diam( fB,)/6b is contained in fB,.
Consequently

(6b)"
Q,
In brief, we have shown that there exists a constant H depending only on » and
C such that

[diam(fB,)]" < m(fB;), r<ro.

. [diam(/B,)]"
®) lim sup

r—0 m(fBr)
But by a well known argument (8) implies the quasi-conformality of f. (For
details, cf. [1: Theorem 2, p. 94], or [7: Theorems 6.11 and 6.12].)
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