SOME EXTREMAL PROBLEMS IN CONFORMAL AND
QUASICONFORMAL MAPPING

Andrew N. Harrington

INTRODUCTION

This paper centers around extremal problems for which the extremal functions
are univalent mappings of multiply connected domains in the extended complex
plane onto domains bounded by arcs of generalized lemniscates, arcs where

n
|w— w;|%
J=1

is constant for some complex constants w,,w,,...,w, and nonzero real numbers
X;,%9,...,X,. We formulate an extremal problem for conformal mappings, apply
variational methods, and prove that the solution of this extremal problem provides
a new proof of a canonical mapping theorem. We modify the extremal problem
so it applies to general classes of quasiconformal mappings in order to obtain
a new representation of the dielectric Green’s function for multiply connected
domains.

The theory of lemniscates has always played a significant role in the theory
of conformal mapping. On one hand, Hilbert has shown that one can approximate
quite general sets of continua by lemniscates. On the other hand, the Green’s
function with pole at o is obviously elementary in the case of a domain whose
boundary is an entire lemniscate.

Julia [4, Chapter 5] extending the work of de la Vallée Poussin, proved
THEOREM 1. 7o each n-tuply connected domain A in the complex plane there
n—1

corresponds a polynomial P(z) = [] (z — 2,) such that A can be mapped conformally

J=1
onto a domain with the property that |P(z)| is constant on each component of
the boundary.

Walsh [21] proved theorems about conformal mappings onto regions bounded
by all of one or two generalized lemniscates. Jenkins [3], Landau [7], and Pirl
[10] have given alternate proofs. In [22] Walsh and Landau considered a limiting
case of Walsh’s original theorems in which different boundary continua come
together. Dela Vallée Poussin, Julia, Walsh, and Jenkins all relied on uniformization
theorems for their proofs. Landau noted that the lemniscate mappings transform
certain harmonic domain functions into functions which are extendible harmonically
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96 ANDREW N. HARRINGTON

to the entire plane with the exception of a finite number of points. He constructs
a sequence of mappings converging to the desired lemniscate mapping. Pirl used
the Koebe continuity method.

In this paper we prove a theorem equivalent to results of Grunsky [1] which
generalize results of Julia and Walsh:

THEOREM 2. Let Z be an n-tuply connected domain in the extended z-plane,
which contains o, and whose complement consists of proper continua, &,, &,,... &,.

Let x,,%,,...x,, be real numbers, not all zero, with m > n, and 2 x;,=0. Let
j=1

2, 419%n 423 -1 2,y = 00 be distinct points in Z. There is a conformal mapping f of

2 onto a domain D with complement consisting of components E,E,,...E,, such

that f (c0) = oo, and all points w on OE, satisfy

m—1
¢, + 2 x;loglw—w;,| =0 k=12,..n,
j=1

J

wherew; € E; forj = 1,2,...n;w; = f(z;) forj =n + 1,n + 2, ... m, and the constants
¢, are determined up to an additive constant by

(0.1) —2mx, + > P, =21 > x,0,()
Jj=1 j=n+1
=0,k=12,...n,

where ; is the harmonic measure of 8 &, with respect to 9, and {£;,}} ,_, is
the matrix of periods of the harmonic conjugates of ,,Q,,...Q,,.

Grunsky used uniformization to obtain his results. Kithnau [5] used variational
methods to prove the existence of a sequence of solutions to extremal problems,
whose limit is the mapping in Grunsky’s theorem, but he did not show that the
limit function itself is the solution of an extremal problem.

In the first section we define a functional x on the class 3 of conformal mapping
functions of a multiply connected domain & containing o, which hold the point
at o fixed. It follows that there is a function fin 3 maximizing x. To characterize
f by variational methods [14, 15] we define varied mapping functions T o f where
T (w) is a conformal mapping of f(2) of the form

Ap?® 3
Tw)y=w+———+0(p") for|w— w,| >p.
w — wo
We derive an asymptotic formula

0=x[Tof] —x[fl=p%Re{As(w,)} + O(p°).

By considering the function s(w,) appearing in this relation, we show that any
extremal function satisfies the conditions in Theorem 2. We calculate x [f] and
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consequently obtain a distortion theorem for conformal mappings and isoperimetric
inequalities for multiply connected domains.

To discuss Section 2 we need to define K (z)-quasiconformal mappings. Let
K (2): Z — [1,x) be a measurable function whose essential supremum || K|, is finite.
A homeomorphism f: & — C U {x} is K(z)-quasiconformal (K (z)-q.c.) if fis locally
absolutely continuous on a.e. horizontal and vertical line in 2 and satisfies the
dilatation condition

VA R S
L@ - 1f]

Since || K ||, < o, each K (z)-quasiconformal mapping is || K || .-quasiconformal accord-
ing to the usual definition [8].

K(z) fora.e. z€E 9.

After making certain restrictions on K(z), we generalize x to be defined on
3. x the class of K (z)-quasiconformal mapping functions of , taking o to c. There
is a function f which maximizes x over this class. Using variational methods,
we will show

Kzy—1
K(z)+1

(0.2) (Jof);= (Jo f), a.e.in Z,

m—1

where J(w) is of the form — 2 x; log (w — w;) and Re J(w) is constant on each

=1
compunent of the boundary (;f the image of f. If we define U(z) = Re(Jo f(z))
and V(z) = Im(J o f(2)) locally, then (0.2) is equivalent to the generalized Cauchy-
Riemann equations

KU,=V, KU=-V

§ . a.e.in Z.

We prove that consequently U is a weak solution of div(K grad U) = 0. With
properly chosen parameters U plus a constant is a weak fundamental solution
of this equation. Thus the dielectric Green’s function of & with respect to K(z)
can be represented as an extremal quasiconformal mapping function composed
with the real part of a linear combination of logarithmic terms plus a constant.
Schiffer and Schober [18] have represented the dielectric Green’s function as the
solution of a different extremal problem composed with the real part of an analytic
function. This analytic function is not necessarily a simple linear combination
of logarithmic terms like J(w).

The variational method for quasiconformal mappings [6, 12, 16, 17, 19] involves

. a(l)
variations of the form 7' (w)=w — — S . du, + O(e®) for appropriately
m Jel—w
chosen a({). We use p to denote two dimensional Lebesgue measure. Once again
we calculate an asymptotic expansion involving the extremal function f,

O0=x[Tef] —xf]l= —%Re S s(@)a(g)du, + O(e?).

[+
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The references mentioned above allow us to conclude that Jof satisfies the

differential equation (0.2) with J(w) = X vV s(w) dw.

When K (z) satisfies additional conditions, we can solve (0.2) sufficiently to
compute the maximum of x over X,. Then we can obtain inequalities for
the distortion of various domain-dependent quantities under K (z)-q.c. mappings.

The author expresses his gratitude to Professor M. Schiffer for his help and
encouragement at all stages of this work.

1. THE EXTREMAL PROBLEM FOR CONFORMAL MAPPING

Notation. The following notation and assumptions will be used throughout
this paper. The symbols &, &, x;, z;, ;, and &, are defined as in Theorem

2. In particular note 2 x; = 0. We denote the component of the boundary of &

=1
contained in &, by é’, 9, is the interior of &. 3 and X are the classes of
conformal and K (2)-quasiconformal mappings of & holding « fixed. If f is any
element of X or 2, we let f(Z)=D, and E,,B;, and D; are defined relative
to D as &;, %;, and Z, are to Z. In general w; is a chosen point of E; forj = 1,2, ... n,
and w; = f(z;) forj=n+1,...m.

The Green’s function of D, g, and the regular part of the Green’s function,
h, satisfy the following properties for each fixed { € D:

i) g(w,{) is harmonic in D — {{},
(w,) + log|w — ] if ¢ is finite
i) h(w,c)={g -4l
gw,?) — log|w|if { = o0
is harmonic at ¢,
i) g(w,{) > 0asw — dD.
We will abbreviate Z(w,w) as h(w). The functions g, and A; are defined in a

corresponding manner for D;, as o and £ are for Z. We extend A,(w) to all of
E; by defining A;(w) = —» if w € B,.

Let o;(w) be the harmonic measure of B; with respect to D. Let P, be the
period of the harmonic conjugate of w; about B,,.

We interpret the product of 0 and —w as 0 and f’ (») as lim f(z)/z.
Let f € 3. We define '

m—1

(1.1) x[fl = sup 2 x;x, log |w; — w,
wjeEj i k=1
Jj=12,..n J#k

j=n+1

+ 2 xj?hj(wf) + E szl()glf’ (z;)] — x,, log|f’ (°°)|i|
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For a given f € X a set of points {w;}_, with w; € E;, such that the supremum
in (1.1) is attained, will be called a set of optimal foci for f.

LEMMA 1. Each function f in 3 has a set of optimal foci.

Proof. We show that the extension of A;,(w) to be —x on B; makes A;(w)
continuous on E;, and thus x [f] is the supremum of a continuous function on

the compact set >< E;. If w;, € D;, let F; be a function which maps the unit

=1
disk {]2] < 1} conf"lormally onto that component of D, containing w; so that F;(0) = w,.
Using the conformal invariance of the Green’s function, the fact that the Green’s
function for the unit disk with pole at 0 is —log|z|, and the Koebe 1/4 theorem
we obtain

(1.2) h;(w;) = log | F/ (0)| = log (4 inf|w — w;|).
w € dbDy

Consequently A, (w,) - —w as w;,— 9D,.

LEMMA 2. There exists f € 3 such that x [f] = Sup X.

Proof. Let {f,}._, be a sequence of functions in 3 such that x [f,] # —o,
and

(1.3) lim x [f,] = sup x.

v =

Let z, and 2, be distinct points in Z. Since it is easily seen that x [af + b] = x [f]
for all a,b € C, a # 0, we can choose the f, so that f, (z,) = 2,, f,(2,) = 2,, f,(0) =
for each v. By [8] there is a subsequence of {f,}, which we will relabel {f,},
such that for some f € 3, f, — f uniformly on compact subsets of Z. We will
derive the necessary inequalities to show that fis an extremal function.

Let {w;,}_, be a set of optimal foci for f,. Let D,, be associated with f, as
D;is with f. Let I = {j € {1,2,...n} such that x; # 0}. Since x [f,] # —x, it follows
that for eachj € I and v = 1,2,3,...,D;, # 8§, and there is a function F;, mapping
the unit disk A conformally onto that component of D, containing w;, so that
F;, (0) = w;, . Since the sets D;, are bounded, {F},},_, is a normal family for each
J €L We can again take a subsequence of {f,}, which we relabel {f,} again,
so that for each j € I there is a function F, such that F,, (z) —» F;(z) uniformly
on compact subsets of A as v—.o. Let &;, be the regular part of the Green’s
function of D;,. Using the first part of (1.2) and the extremality of {f,} we obtain

1.4) log|F; (0)| = lim log | F}, (0)| = lim A, (w,,) > —oo, JEL

Consequently F; is not a constant function, and F;(A) is an open set.

Because f, — f uniformly on compact subsets of 2,
(1.5) Q£ F,(A)C D, jEL
For each j € I let

(1.6) w; = lim w;

Jv?
v—> o
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and let ﬁj(wj) be the regular part of the Green’s function for F;(A) at w,. From
(1.4), (1.5), and the maximum principle we obtain

1.7) lim &, (w;,) = log |F/(0)| = &,;(w;) = h; Ww;).

We can use (1.6), (1.7), and the uniform convergence of f, to f to prove the final
relations

m—1 n
(1.8) supx = limx [f,] = z x;x,log |w; — w,| + Z x}h; (w;)
v j =1 F=1
yof g
m—1
+ 3 xfloglf’ ()] — 22 log | £ ()]
J=n+1

=x [f] =supx.

Now that we have proved that an extremal function exists, we shall characterize
all such functions by variational methods.

Proof Of Theorem 2. Let f € 3 be an extremal function for x with optimal
foci {w;};_,. Let A; be the component of D, containing w; for j € I. Let 6 be
a real number, /€ I, and w, € A, — {w_ }. Let p > 0 be small enough so that
Tw) = w + (p*e’®/(w — w,)) in schlicht in D. Then f* = Tof is in 3. Let g; be
the Green’s function for the domain bounded by 7'(6D;), and let w* = T'(w). For
J € I — {7} we have the statement of conformal invariance .

(1.9) g (ww;}) = g;(w,w).
For g7 we have the asymptotic expansion of Schiffer [15, pp. 299-300].
(1.10) g} (w*,w}) — g, (ww,) =p”Re{e” G, (w,w,) G, (w,,w,)} +0p®) °

where G (w, §') is analytic in w and g, (w, {) is its real part.

After a long but straightforward calculation using (1.9) and (1.10) we find
that

(1.11) 0=xI[f*1-xIfl= sze{e"" [(x, G w,,w )"

_ (2_ ———-w J—Cjw) :|} +O(p3).

The left-hand inequality is due to the extremal property of f. After dividing by
p” and letting p tend to 0, we obtain

0 zRe{ e’ I:(x,G} (w,,w,))* — (z —L—) :I}
=1 W, — W;

Since this is true for any real number 0,
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0=(x,(G, (wo’w/))2 - (2 "'_.ZCJ_"_') .

j=1 W, — Wy

Since w, can be any point in A, — {w_} we will replace it with w and find

m~-1 xj
(1.12) x, G (ww,)=— 2 forwe A, — {w, }.
j=1 W= w;

The sign of the right-hand side was chosen so that the singularities at w, match.

Integrating and taking real parts, we obtain

m—1
(1.13) x, 8, (ww,)=— (2 x,log|lw — wjl) -c,
j=1

where ¢, is some real constant. On the boundary of A, g, (w,w,) = 0 so

m-—1
(1.14) — x;loglw—w;|=c, forwe€E dA,.

j=1

The complement of D may contain more than U AJ. If so, let E be a proper
jer

connected continuum contained in C — U A; U D.

JEI
Schiffer has shown [14, 15] that for any w, € E there exist functions of the
form

(1.15) Tw) =w + (Ap*/ (w — w,)) + O(p°)

which are analytic and univalent in the complement of E and where O (p®) can
be estimated uniformly for |w — w,| > p. Let f* = T'o f. After a calculation similar
to (1.11) we obtain

y m—1 xj 2 s
(1.16) O0=xI[f*] —x[fl=p Re{—A(z;—_—w—) }+0(p ).

Schiffer has also shown [14] that if (1.16) is true for all T'(w) of the form (1.15),
and if E contains no points where

(1.17) s(w) = (2 (x; /(w— w,-))) =0,

then E is an analytic arc satisfying s(w)dw® < 0. Thus Re (\/; dw) = 0. x was
defined so s(w) would be a perfect square. Therefore we may integrate simply

m—1

and find that x;log |w — w;| is constant on E. Consequently, for 2 = 1,2, ...n,
=1
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D, # 9 _precisely when x, # 0. Also dFE, lies on a generalized lemniscate given

m-1
by 0 = (E x;log|l w — wj]) + ¢, where ¢, is some constant.

j=1

To characterize the constants c,, we note that

m—1 n m
(1.18) Z x;log|lw — w;| + 2 c;w; (w) + E x;gw,w;) =0
j=1 Jj=1 Jj=n+1

identically for w € D since the left-hand side is a regular harmonic function in
D, which is zero everywhere on the boundary. If we consider (1.18) on a smooth
cycle vy, homologous to B,, take the normal derivative, and integrate around v,,
we obtain

(1.19) —2ka+2cpjk 2w Z xw, (W) = fork=1,2,...n.
Jj=n+1

Both the period matrix and harmonic measures are conformal invariants so (1.19)
is equivalent to (0.1) in Theorem 2. The null space of the matrix & consists of
n-vectors whose components are equal, so the n equations (0.1) determine the
¢/s up to an additive constant.

Now we can calculate x [f] for the extremal function to prove

THEOREM 3. With notation as in the beginning of this section, let f E 3
let w; € E; for j = 1,2, ...n, and define

1
(1.20) R = (By) vl suchthat # 7' = o (2l
then

(1.21) 2 x,; %, log |w; — w,] +Ex2h (w;)

Sk=1
J+k
m-—1
+ S 22log|f ()] — xZlog |’ @)l
Jj=n+1
n-—1 m
— 2 %jk<xj+ 2 x/Qj(z(’ )( E x,Q (Z, )
J, k=1 =n+1 =n+1
2 X% 2 (2,2,) — 2 x4 (z;).
Jk=n+1 j=n+1
J#k

There is equality in (1.21) if and only if B, lies on a generalized lemniscate given

m—1
by 2 x;loglw—w;|+¢,=0foreachk=1,2,...n

Jj=1
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Grunsky [2] proved an equivalent result for domains with smooth boundaries
using a potential theoretic inequality. He extended his result to an arbitrary domain
by exhausting the domain with a sequence of smooth domains. In our proof of
Theorem 3 we have avoided such approximations by smooth domains by consideration
of the functional .

Proof of Theorem 3. After using (1.13) to find A;(w;) for the extremal function,
we can use (1.18) and the transformation properties of g, »;, and 2 under conformal
mapping to show that

(1.22) Sl;}px = — 2 c; (xj+ 2 kuj(zk)) - 2 X%, 2 (2;,2,)
j=1 '

k=n+1 Jk=n+1
J#k

— i x; £(z;).

Jj=n+1

To restate sup x in such a way that the constants c; are eliminated, we can use
>

the fact that Z &, = 0 to transform the linear system (0.1) into
J=1

m

(1.23) ¢, — ¢, —-2 k(x,TZ E x,Qk(z,)) forj=1,2,...,n— 1.

=n+1

Thus sup x equals the right hand side of (1.21), an expression purely in terms

of the parameters X; and classical quantities associated with the domain <, Because
we have calculated the maximum value for x, the inequality (1.21) holds for
all functions in 3.

If we let f(2) = z and & = D, we can obtain a corollary about the relationship
between domain dependent quantities for a given n-tuply connected domain D

with no mention of conformal mapping. To help eliminate reference to 2 we
define the matrix

1
(1.24) = (R,;,)" 72, such that R™* —;(Pk)’k L

COROLLARY 1. Let D be an n-tuply connected domain containing o, whose
complement consists of n proper continua E,,E,,...,E,. Let w, € E, for each
j=12,..,n,andletw, ., ,w,,,,...,W,, = o be distinct points in D. Then with nota-
tion as in the beginning of this section,

(1.25)
m-—1 m n
E x;x,log|lw, — w,| + 2 x;x,8(w;,w,) + 2 x’h, (w,)
j=1

Jk=1 SLhk=n+1
J#k Ftk

+ z x; h(w)+n§: J,e(x + z x,w; (w,)(xk+ i x,mk(w,))so

j=n+1 5 k=1 =n+1 =n+1
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m—1
There is equality in (1.25) if and only if z x;log|w — w;| +¢,=0 on B, for
=1
k=12,..n. ’

A very special case of Corollary 1 was proved by G. Polya [11] in 1922. To
state his result we need two definitions. Let A be a bounded simply connected
domain in the w-plane such that A is also simply connected. Let w, € A. Let
F be a function which maps A conformally onto a disk with center F(w,) such
that F’(w,) = 1. Then the radius of the image circle is the interior radius of
A at w,. Let A be the complement of A in the extended complex plane. Let H
be a function which maps A conformally onto the exterior of a closed disk such
that H(w) = w + 0(1) at «. Then the radius of this disk is the exterior radius
of A. It is easy to show that if D = A and D, = A, then in our standard notation
the i’Izl(t()%riOI' radius'of A at the point w, is e¢"1*“?, and the exterior radius of A
ise .

COROLLARY 2. (G. Polya) If A is a bounded simply connected domain in
the complex plane such that A is also simply connected, then the interior radius
of A at any point w, in A is less than or equal to the exterior radius of A, with
equality only if A is a disk with center w, .

Proof. LetD=A,n=1,m=2,x, =1, x,= -1, and apply Corollary 1.

We consider one other way to specialize Corollary 1. Let.
0 = xn+1 = xn+2 = e = xm’
and we have

COROLLARY 3. If > x;=0, then
=1

J

n n n—1
(1.26) 2 x;x,loglw; — w,| + Z x2h; (w,) + z X%, R;= 0.
Jk=1 i=1 FEk=1
J#k

Since the parameters x,,x,,...,X,_, may be chosen arbitrarily while we set
n—1

x,=— 2 x;, (1.26) provides a fairly simple bound on the quadratic form associated
1

j= .
with R. If the disks {|w — w;| < r,} C D; for each j, we can obtain one even simpler
bound using (1.26) and the maximum principle.

n—1 n n
2
_;_ x,%,R,= — E x;x,log|lw;, — w,| — E x; logr;.
k=1 j=1

Jr k=1

Another consequence of (1.26) is the domain monotonicity of the quadratic
form associated with R:

COROLLARY 4. Let & be an n-tuply connected_domain containing «, whose
complement consists of components &, where & C &; for each j=1,2,...,n. Let
2 be the matrix for 2 corresponding to %. Then the mairix # — % is positive
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semidefinite, and it is positive definite if @j N Z is nonempty for j=1,2,...,n,
where Z; is the interior of &,

Proof. Let x,,x,,...,x, be real numbers, not all zero, whose sum is zero. Let
Xpi1 = %X,,0=...=Xx,, =0. Let f be an extremal function for x over 3 with this
choice of parameters. Let Dbe the image of & under £, and let D and A; correspond
to D; and h;. Let f have optimal foci {w;};_,. Since D; C D;, we have by the
maximum principle

(1.27) h;w) =h;w,), j=12,..,n,
and thus
n—1 n n
(1.28) 2 XX Ty = 2 x;x,log|w;, — w,| + 2 x h; (w;)
J k=1 j!]::;l j=1
J

= 2 x;x,log| w; — w,| + 2 xR (w;)
=1

k=1

J#k

n—1

= 2 XXy X jns
J. k=1
SO

n—1
Jk=1

If x;# 0 and @i N < is nonempty, then we consider two cases. Either the
component of Z; containing w; intersects 2, or another component does. In the
first case the inequality (1.27) and the first inequality in (1.28) are strict. In
the second case D cannot be an extremal domain so that second inequality in
(1.28) is strict. In either case (1.29) becomes a strict inequality. Therefore, if @J n<v
is nonempty for each j, &% — & is positive definite.

2. THE EXTREMAL PROBLEM FOR QUASICONFORMAL MAPPINGS

In general the functional x does not make sense for f in the class X, defined
in the introduction because of the terms f’ (z;). With certain restrictions on K (2)
Schiffer and Schober [18] have defined a functional ® on 3, which has the same
functional derivative as f’(z;). We will use this functional to generalize x. Let

|z —z5l=r

Sess sup | K(z) — K (z,)| ifz, #

esssup | K(r) — K(z,)| ifz, = oo,

lz|=1/r

(2-1) ?\(r,z,,,K) =~2
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and let A(r,z,,f) be the area of f({|z — z,| = r}). Schiffer and Schober have shown
[18, lemma 1] that if K satisfies

3
(2.2) S A\(r,z2,,K)/r)dr <o forsomed >0, then
(1]
V Ar,z,,f)/w
lri_I,I‘l) rI/K(zo) for %o Foo

(2.3) D(z,;K,f) =

1
Ol 0;K(1/2), forz, =
( (172 f(1/z)) e

is well defined and finite for all f € 3 ..
| £(2) = f(z,)]

1/K(z,)

It is easy to show that if lim | |
2—>Zo 2 — zo

In particular, if K = 1, then ®(z; K,f) = |f'(z,)| forfE 3, = 3.

exists, then it equals ®(z,; K, f).

Henceforth we will assume K does satisfy (2.2) at 2,,,,2,.5,...,2,,- Then we
can use P to generalize x to be defined on 3.

m—1 n
(2.4) x[f] = sup Z x;%,log |w; — w,| + 2 x?h; (w;)
ijEj Frk=1 J=1

J=12,..n " j#£k

+ > 2} log @ (z; K, f)

J=n+1

Note that the generalized functional x depends explicitly on the parameters
K(z,,,,K(z,,5),...K(2,).

We can extend the definition of a set of optimal foci of f to f € 3 . The proof
of Lemma 1 still applies, so any function in 3, has a set of optimal foci.

LEMMA 3. There exists an f in 2, such that x [f] = sup X > —oo,

Proof. Schiffer and Schober [18, lemma 3] proved that there is a function
f, in 2 such that ®(z;; K,f,) > 0 for each j=n + 1, n + 2,...,m. This function
can be composed with a function F univalent and analytic on f,(Z) such that
Fof,is in % and each term h;(w;) in x [F of,] can be made finite. It follows
from the definition of & that

(2.5) q)(zj; K,Fof,) =(D(zj; K, f)|F (fo(z_}'))l >0

and thus x [F of,] > —oco.

Except in two places the remainder of the proof is just like the proof of Lemma
2 if we replace 2 by 2 and | f' (z;)| by ®(2;; K, f). Once again there is a normalized
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extremal sequence {f,} which converges to a function f uniformly on compact
subsets of Z. That this function is in 3, follows from a compactness result of
Strebel [20]. In the proof of Lemma 2 we used the fact that if f, — f uniformly
on compact sets, and f,, f € X, then f, (z;) > f'(z;). For the proof of Lemma
3 we substitute a result of Schiffer and Schober [18, lemma 2],

(2.6) lim @ (z;;K,f,) < @ (z;; K, f)

if f,, f € 34 and f, —> f uniformly on compact subsets of Z.

THEOREM 4. Let £ be an n-tuply connected domain in the extended z-plane,
which contains o, and whose complement consists of proper continua. Let
2,1 152n4ns -2y = be distinct points in 9. Let K: 2 — [1,%) be an essentially
bounded, measurable function satisfying (2.2) at z,,,,,2,,,0,---»2,,. FOr each real
valued m-vector ¥ whose coordinates x,,x,,...,x,, sum to zero there is a unique
function U (z;%) defined on Z satisfying conditions i)-iv). We abbreviate U (z;X)
by U(2).

m~—1

i) U)=-— 2 x;log|f(2) —w;| + C in I, where fE 2 x;w; is in the jth
j=1

J
component of the complement of the image of f for j=1,2,...,n, and w; = f(z;)
forj=n+1,n+2,...,m.

11) U(2) and V(z) = V(2;%) = Im(—— 2 x;log(f(2) — wj)) satisfy the genera-

lized Cauchy-Riemann equations
2.7 KU .=V, KU =-YV, aein9
iii)

%,

lim (U(z) + log|z — zj|) exists,j=n+1,n+2,...m—1;

2—>2] j

(2.8)

xm
lim (U(z) X log]z]) exists.

e (o)

iv) Ul(z) is continuous in I — {2, 1,242, ---s2m }; U(2) = ¢, on the jth component
of the boundary of Z forj=1,2,...,n, and c, = 0.

Remarks. To discuss this theorem we need some definitions. A real or complex
valued function F defined on a domain A has L? derivatives in A if F is locally
absolutely continuous on almost every horizontal and vertical line in A, and if
the partial derivatives of F are locally in L°.

A real valued function U defined on A is a weak solution of div (K grad U) = 0
in A if U has L? derivatives in A and if for any C? test function ¢ with compact
support in A
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S [£,(KU,) + t,(KU,)] dp. = 0.
A

We claim that the function U in the theorem is a weak solution to
div(K grad U) =0

inZ' =2 — {2,,1,2,42s -+, 2, }. It is proved in [8] that any | K|.-quasiconformal
mapping function f has L? derivatives. The same holds true for U since it is
a harmonic function composed with a || K||.-quasiconformal mapping. Let ¢ be a
C? test function with compact support in Z’. Then

S (tx(KUx)+ty(KUy»du=g t.V,—t,V.) dp
2’ Py

= - g (t:l:y - tyx) VdP« = 0’
'

so U does satisfy the definition.

If we view Z as an inhomogeneous dielectric medium with dielectric coefficient
K(2), #; as a conductor with charge x; for j = 1,2,...,n, and 2; as the location
of a point charge x; for j=n+ 1,n+2,...,m — 1, then U(2) is the electrostatic
potential in Z. In the special case where the only point charge in D is a unit
charge at z,,,, and x,,x,,...,x, are chosen so that all constants ¢; =0, U(z) is
the dielectric Green’s function of Z with respect to K(z) with pole at z,,,. The
theorem states that this dielectric Green’s function is given by a quasiconformal
mapping function composed with the real part of a linear combination of logarithmic
terms plus a constant. In the proof of Theorem 4 we shall see that this quasiconformal
mapping function is an extremal function for the functional x. '

First we prove

LEMMA 4. Let A be a domain in the extended complex plane with boundary
components I';, T,, ... I',. Let U and V be real, single-valued and continuous
functions in A which have L? derivatives and which satisfy the generalized Cauchy-
Riemann equations

KU =YV,

x y?

KU,= -V, ae.inA

Further let lim U(2) = c; for j = 1,2, ...,k. Then U is constant in A.

z—bl"j
Proof. There exist sequences of C” functions {S,(z)} and {T,(z)} such that
S,(z) » U(z2) uniformly on A, and such that given any compact set E in A,
T, (z) = V(z) uniformly on E, and the partial derivatives of S, and T, converge
respectively to the corresponding partial derivatives of U and V in L*(E).

For any 8 >0 1let A, = {z € A:|U(2) — ¢;| >3 for j = 1,2,...,k}. Assume U is
not constant; then for some 3 > 0, A; is nonempty. We will show that U is constant
on A;, which contradicts the definition of A;. Consequently U is constant on A.
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By Sard’s theorem [13]} the measure of the set
U S,({z: grad S,(z) = 0 or z = oo})

is zero. Therefore we can choose a number B, 0 < B <3, such that this set is
disjoint from the set {r: |r — ¢;| =B for somej = 1,2,...,k}. Let

Ay, ={z€ A:|S,(2) —¢;| >Bforallj=1,2,...,k}.
For large enough v, A; C A,, and A;, C A, and then

(2.9

A

S K[gradUlgdu_g K]gradUIzdp=S (U, V,-U,V,)dp
As Ag,

Ap,

S, 07T, as, aT,
= - dl.L +e (V),
ap ax ay dy dx

where (v) — 0 as v — . For our choice of 8, A, is rectifiable for large enough
v, and we can use Green’s identity on the last integral. Thus

S Klgrad U|*dp = — S T dS, + () =0+ e(v).
Ag

aAg,

Consequently U(z) is constant in A,, which is all we needed to show.

Proof of Theorem 4. If #= 0, conditions i)-iv) can be trivially satisfied. We
now consider the case & # 0. Let f € 3, such that x [f] = sup x- Let {w;};_
a set of optimal foci for f.

Following the development in [18], [19, Chapter 13], we consider a variation
of the form

e [ a ,
(2.10) T(w)y=w—— dp + O(e%)
o Jel—w
where a has compact support in &4 — {z,,,,,2,,,4,..-,2,,}, and the error term is

such that 7' is analytic outside of the support of a. Let f* = Tof. The varied
function also maps o to o, and for appropriate a({), [19],f* € 3«

As in the proof of Theorem 2, we want to calculate an asymptotic expansion
for x [f*] — x[f}. T maps D; conformally onto T'(D,) so equation (1.9) for the
invariance of the Green’s function applies. We also need to calculate how ® changes:

(2.11)  ®(z; K, f*) = Pz, K [) - | T (w))]

£ a(l) R
=®(z;K,f)|1—-—Re ———dp, + O (e °).

™ €~ wj)
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In a calculation like the one for (1.11) we find

c m—1 xj 2
(2.12) O=xI[f*] —xIf] E:RG{S —(EC ) a(C)du;}
C

Jj=1 J

+ O (e?).

The principal theorem for the variational method [19, Theorem 13.2] states
that if f satisfies (2.12) for all variations of the form (2.10), then f satisfies the

differential equation
m 2
K@ -1 (Z z)—w)

K@) +1 ("‘ )2
2 (z) - w;

-1

fi=— f. ae.ing.
= @) —w K+1 \14 f(z) ‘

m—1

Thus if we let U + iV = — D' x;log (f(2) — w,), then
=1

(2.13) [:(2) = f.(z) a.e.in ,

ie.,

3

M

K-1_—
(2.14) (U+iV),=—-——=(U+iV), ae.in9.
K+1

Separating real and imaginary parts, we find that U and V satisfy the generalized
Cauchy-Riemann equations (2.7).

Next we characterize the singularities of U. Schiffer and Schober have shown
in [18, Theorem 1] that if K satisfies (2.2) at a finite point z;, and if f is a
K (2)-q.c. function defined on A = {|z — z;| <3} such that the real and imaginary
parts of —log (f(2) — f(z;)) satisfy the generalized Cauchy-Riemann equations (2.7)

a.e.in A, then — log | f(2) — f(z;)| + log |z — ;| has a limit as 2 — z,. Similar

i
calculations show that (2.8) is satisfied.
The fourth condition in the theorem can be restated to say that the boundary
component B, lies on the generalizeq lemniscate given by

m—1

- 2 x,log|lw —w,|=c¢c— C.
k=1 .

The proof of this fact is almost exactly as it was in Theorem 2, so we will not
repeat it.
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To show that U is unique, assume U also satisfies conditions i)-iv). Let V
correspond to V. The period of V around %, or z; is the period of — 2 x;log(w — w))

around B; or w; which is 2= x;. V has the same periods so V — V is well defined
in A= 9 {2,152, IPTRENT } Corresponding singularities of U and U have the
same form so U — U is contmuous in 2. We can apply Lemma 4 to U — U and
V — V, and thus U — U is constant. Since U and U equal 0 on &, U= U.

In the proof of Theorem 4 we have derived some properties of f, an extremal
function for the functional x over the class 3 .. In general these properties are
not enough to calculate x [f] = sup x because we cannot find a useful representation

of the solution to the generallzed Cauchy-Riemann equations (2.7). If we make
further restrictions on K (z), we can derive a useful expression for U(z) and calculate

sup x.
2k

To describe the restrictions we will make on K, we return to our electrostatic
model. U(z) is the potential in & if & is a dielectric medium with dielectric
coefficient K(z), %, is a conductor containing a charge x; for j=1,2,...n, and
isolated point charges x; are located at z, for j=n + 1,...,m — 1. Let . (2) be the
potential with the same charges and conductors but no dielectric. To make U(z)

easy to calculate, we now introduce the restriction that K(z) is constant on each
component of each level line of ~ in Z.

THEOREM 5. With notation as in the beginning of section 2, let

n m

(2.15) 2= 50,E@+ D 1 62)

Jj=1 Jj=n+1

with the constants c; chosen so that ¢, = 0 and

1 3 :
(2.16) -_— —ds=x; for j=12,..,n,
2w Bn

where T'; is a smooth curve in & homologous to %;. Let K: 9 — [1,%) be a
measurable function such that || K||., < ; K satisfies (2.2) at 2, 1,2, 425 -3 2, ANA
K is constant on each component of each level line of p.. Let f € X ;. Let w; € E;
foreachj=1,2,...,n. Then

(2.17)

m-—-1

2 x;x,log |w; — w, | +2x2h (w;)

Jk=1
J#k

+ 2 xf- log ® (z;; K, f)

J=n+1

n-—1 B ; m 2.
= — ; + - dp(
J=1 * X B K(g) J=n+1 x K(Z ) S‘@n K(zj) K(C) 7 g)
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where

(2.18) lim (2 (2) + x;log|z—2;)ifj=n+1,..m—1

z—sz'

lim (. (2) — x,log|z|) ifj = m.

Proof. Let g (2) be a harmonic conjugate of .. We will show that the functions
U and V of Theorem 3 can be expressed as

z

(2.19) U(Z)=S dp(Q)/K() and V(2) =g (2).

Zy

Except at the isolated stationary points of ., we can use . and 2 as local
coordinates in the z-plane and calculate

KU/l=1=V, KU}=0=—Vﬂa.e.in9

Except at isolated stationary points of , the mapping .+ iz > U+ iV
is || K||.-quasiconformal. Since || K||..-quasiconformal mappings are differentiable
a.e. [8, p. 161], we can transform back to the usual (x,y) coordinates and obtain
the generalized Cauchy-Riemann equations in their usual form (2.7).

To analyze the singularities of U we consider the improper integral

(2.20)

r ( 1 1 )d @) = li (/L(Z) U )) ) +1
— = lim — 2) 1, =n y e M
w\K@) K@) T E\Ke) 7

We can show that the integral is convergent using the condition on K (z), (2.2),
and the fact that . has only a logarithmic singularity at z,. The fact that the
limit in (2.20) exists implies that U satisfies (2.8). U is clearly constant on each
boundary component of Z.

The only other condition used to determine U(z) uniquely in Theorem 3 was
that the multiple-valued function V has periods x;. With V(z) defined as the har-
monic conjugate of ., (2.15) and (2.16) ensure that this condition is also satisfied.

We can use the representation of U (2.19) to evaluate x [f]. We can see from
the definition of ® that if z;# and lim x;log(| f(2) — f(z,)|/|z — z;| "/ %)

exists, it equals ®(z,; K, f). We can show that the limit does exist by regrouping
terms:

(2:21)  x, log @(z; K, f)
= lim x,log (|f(2) — ()| /]2 — 2,| /%)

z—ij
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(2) gt 1
- [(;m - U(Z)) i (C_; wlog|fie) - w"') T KG) (” ©

7
k#j

+ leoglz—-zjl)]

z, ( 1 1 ) de ) + (C mﬁi log | |) o;
= - - xloglw, —w,| )} — .
L,, K) K@/ K(z)

k)

The calculation of ®(w;K,f) is similar. We can compute A;(w;) from (1.13), as

we did in Section 1, and then put the calculations for the different terms of x [f]

together to obtain the right hand side of (2.17). Since this is sup x, the inequality
Zk

(2.17) is true for any f € 2.

K, if 2] =p

Example. Let Lz) =
1 otherwise

Let Z be the domain in the extended complex plane whose complement consists
of & ={lz+a|=r}and &, = {|z —a| =sr},where0<r<ea.let f€E 3,;w, € E,,
and w, € E,. Then

(2.22) 2log |w, — w,| + h,(w,) + h,(w,) — 4log|f’ (»)]

(2 2)1 e o @ 2)
= - — og——mmm + (o} ar +r-).
K g20:r—r2 g

(24

We actually calculate the bound for f € 2%, D 3,, where K satisfies the
conditions of Theorem 5. We set m = 3, x; = x, =1, and x, = —2. Let ., be the
minimum value of . on {|z| =p} N Zand for z € Z let

K if n(2) = .,
Ke) — { r@=,
1 otherwise.

Applying (2.17) with all of our present assumptions we can calculate

(2.23) 2log|lw, — w,| + A, (w,) + hy(w,) — 4log | f' ()]
"= — ,,2-(2/K,)+20,.

Z is not a convenient domain for which to calculate ., and o, exactly, but
we may bound quantities such as ., and o; by comparing 2 with domains bounded
by generalized lemniscates. Let ¢(z) = — log|z”® — a?|. It is easy to check that
the maximum value of ¥ on ¢ Z occurs at z = *+(a — r), and the minimum value,
at z= x(a + r). Thus
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I " ={z229@) <V@-r}DZD2Z ={z2¢{)<tv(+r)}.

By the maximum principle we have the following relations between the Green’s
functions for these domains, » * (z,0) > 2 (2,%) > 2 ~(z,%). Thus

_2f _(Z,OO) > —2f(zxdo) > —2f +(Z: 00),

and equivalently ¥ (z) — ¥(a + r) > 2 (2) > ¢(2) — Y (a — r). One can check that the
minimum value of ¥(z) on {|z| = p} is Y (ip). Thus

— o= —[¥@p) — Y(a—r)].
Also,

o3 =lim (2 (2) + 2log|z|) = lim [y (2) —Y(a + r) + 21og|z|] = =Y (a + r).

Finally we can use the inequality (2.23) and the bounds for — .., and o, to obtain
the explicit bound on distortion in (2.22).

The following corollary to Theorem 5 gives a bound on the change in the domain

n-—1

dependent quantity 2 %;%, % in terms of the bound K on the distortion of f.

jk=1
COROLLARY. Assume the hypotheses of Theorem 5 and let x,,.,=x,,,
=..,X%,=0,then
n-1 n-1 .@}
(2.24) 2 (Zp — Ry x;x,, = 2 X; S 1-@Q/K@)d, ©),
. k=1 j=1 B

where the matrices 72 and R are defined as in (1.20) and (1.24).

Proof. In this special case where x does not involve @, x is defined exactly
like the corresponding functional in Section 1, so we will not distinguish between
them. Let f € 3. Let X (D) be the class of functions defined like 3 except
with domain D. Let x, correspond to x.except be defined for functions in 3, (D).
Let F maximize x , over 2 (D). By (1.21) we have

(2.25) : xp [F] =— E X%, R, .
LEk=1

FofeE 3s0

(2.26) sg}ngx[F#] =Xp [F].

In the conformal case K =1 the right hand sides of (1.21) and (2.17) are both
sup x. Comparing these to (2.17) with the more general K(z) in light of (2.25)
=

and (2.26), we can obtain the conclusion of the corollary (2.24).
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Example. If we let K be constant, we find

n—1 n—1
2 x;x, R, = 2 X%,
Jik=1

Jhk=1

x| -

when f € 3 4, and x,, x,,...,X,_, are any real numbers.

11.

12.

13.

14.

15.

16.

17.
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