QUASICONFORMAL VARIATION OF THE GREEN’S FUNCTION
Ignacio Guerrero

In this paper we study the variation of the Green’s function of a Riemann
surface due to a perturbation of the conformal structure. The perturbations
considered are parametrized by the complex dilatation of a quasiconformal map.

The basic idea in our approach is to consider the Green’s function of a Fuchsian
group. Results concerning Riemann surfaces are obtained via uniformization. The
advantage of this point of view is that we can make use of powerful results about
normalized quasiconformal maps of the unit disc. The main problem becomes to
justify the validity of term by term estimates in the series defining the Green’s
function.

Variations of domain functionals, in particular variations of the Green’s function,
have been extensively studied. For previous results we refer to Sontag [7] and
the references listed there.

Section 1 contains some basic results and definitions used in the paper. In
section 2 we treat the Fuchsian group case. Section 3 gives applications to Riemann
surfaces.

Results in this paper are based on part of the author’s 1975 Stony Brook
dissertation.

Finally, we would like to point out that we do not know how to generalize
the main varational formula for infinitely generated groups or, equivalently, for
arbitrary (not necessarily finite) hyperbolic Riemann surfaces.

1. PRELIMINARIES

1.1 A Fuchsian group I' acting on the unit disc U is said to be of convergence
type if

(L.1) > a-1v@D) <o,

veEer

uniformly for z in a compact subset of U. This condition is equivalent (Tsuji
[8, p. 522]) to the existence of a Green’s function on the Riemann surface U/T.
Actually, we can write explicitly the Green’s function as a function on U invariant
under I'. Namely

z—yl(a)
1— v(a)z

(1.2) Gz a) = 2 log

~
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Condition (1.1) assures that (1.2) converges uniformly on compact subsets of U — I'a.

Given a Riemann surface S which admits a Green’s function, we can represent
it by (1.2) via uniformization.

1.2 For a detailed presentation of quasiconformal mappings we refer to Ahlfors
[1] and Lehto-Virtanen [4]. In this section we will recall some basic results used
later on in the paper.

It is well known that given pn € L”(U,C), |p|l. < 1, there exists a unique
quasiconformal map w,: U — U fixing 0, 1 and having complex dilatation p.
Further, there exists a derivative

W,ss, (2) — W, (2)

S

(1.3) w,[n] ) = lin(r)l
and

1
14 w,p}j@=-— S Rw,),w,()w,) @) nt)dudy, t=u+iv.
v

[»

Here
(1.5) Ren=—2"Y v (1/F) =v @) £2/ &°
tt— 1)t —2)
For these results see Ahlfors [1, Chapter V].
For a quasiconformal map w with complex dilatation p we define K = %

The following result, due to Mori (see Lehto-Virtanen [4, p. 66] or Ahlfors [1,
p. 47]), will be useful: suppose that our map w is normalized by w(0) = 0, then
for every pair of points z,, z, with |z,| =1, |z,| =1

(1.6) |w(z,) — w(z,)| = 16|z, — z,| /%

1.3 The set of Beltrami coefficients M (I'), with respect to a Fuchsian group
I, is defined as the unit ball in the Banach space of all p € L™(U, C) such that

(1.7) poy vy’ /vy =p.

It is not hard to verify that p € M(T') if and only if w,ocyow ' is a Mobius
transformation for all vy € T,

2. VARIATIONAL FORMULA FOR THE GREEN’S FUNCTION
OF A FUCHSIAN GROUP

2.1 Let T be a Fuchsian group of convergence type acting on the unit disk
U. Given a Beltrami coefficient . € M('), I, = w Tw ! is again a Fuchsian
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group of convergence type. This follows from a result of Pfluger [5] on the invariance
of the class of hyperbolic Riemann surfaces under quasiconformal mappings. Given
a € Uwehave afunction M (') X (U —TI'a) —» R given by (1, 2) - G, (w, (2),w, (a)).
Here G, denotes the Green’s function for the group I',. We note that

2.1) G, W, @),w, (@) =D hpzY),
vyeT
where
w, (2) — w,(y(a))
(2.2) h(u,z,y) =1 )
B T e, (v (@) w, (2)

WQ now compute the derivative of A (-,z,v) at v in the direction p. We denote
it by ~A(v,2,v) [1r]. Clearly
w, 1] —w, [n](v(a))
w,(z) — w,(y(a))
L BB @ w @)+ w, @) b, [1]6) }
1-w,(v(a) w, (2)

h(v,z,y) ] = RE{
(2.3)

Using formula (1.5) for the variation of a normalized quasiconformal mapping
we obtain

[R(wv (6),w,(2)) — R(w, (), w, ty(a))

Sc w,(z) — w,(y(a))

w,(2) w,(y(a)) *Rw, t),w,(y(1/a) — w, (y (@) R(w, (¢),w, (2))
1- w,y(a)) w,(2)

. 1
h(v,z,v)[u] = Re{— —

v

(2.4) -

(w,), () n(t) dudv}, t=u+iv.

A long elementary computation yields

. 1 1
R,z =-= B
(v,2,v) [1] o Sc I:wv(t) —w,(v(@) w, () —w,(y(1/a)) ]

(2.5) . 1
8 [wv(t) - wv(Z) B wv(t) — wv(l/é‘) ](wv )t(t) " (t)dudv.

In the calculations, integrals which contain £ are transformed by the change of
variable s = 1/£ In doing so, it should be recalled that w_ (1/5) =1/ w, (s) and
v(1/5) =1/~ (s).

2.2 In this section we will show that the series
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(2.6) 2 h(v,z,v)[r]

converges absolutely and uniformly in a neighborhood of v =0 and for 2z in a
compact subset of U — I'a.

Denote by Jwv (¢) the Jacobian of the map w,, we have

|<wv),-(t)|2)
(w,), &) 2(1 - | =, ),
| | |(w,), ®)] ’
therefore
2.7) |(w,), (&) o
. w,), < —
1—v|
From (2.5) and (2.7) we obtain
: 1 el 1
h( X2 )[ ] =
e = T S w, () — w, (v(a)
1 1 1
- - J, (t)dudv,
w, @) —w,(y(1/a)) | |w@)—w, k) w@¢)-w, (1/2) ’
by change of integration variable
: 1 el 1
h(v,z, =—
e = T Xc t— w,(+(a)
(2.8)
1 1 1
— — dudv.
t—w,(y(1/a)) t—w, () t—w,(1/2)
To estimate integral (2.8) we have to study
1 1
I(V,Z,’\[) = - dudv
Sc t—w,y@) t-w (v(1/a)) | |t—w, ()

and I(v,1/2,~). It will be sufficient to consider I(v,z,v).
First note that

1- 2 dud
©29) I,z = L 10r0@) S | udv
C

lw, (v(a))]| t—w,(y(@)| |t —w, (v@/a)||t - w, ()|

We will make use of the following lemmas:

LEMMA. Given € >0, 1 — |w, (y(a))| <€ for all v,|v|| small, and all y €T
except a finite number N (g).



QUASICONFORMAL VARIATION OF THE GREEN’S FUNCTION 355

Proof. Using estimate (1.6) one sees that there exists § > 0 such that for every
[[lv]| small

w,{2:1-3<|2|=1}C{2:1—-e<|z|=1}.

Now, the limit set of I is contained in the unit circle {z:]|z| = 1}. Therefore,
except for a finite number N (¢) of elements y €T, 1 — 8 < |vy(a)| < 1.

LEMMA. LetK C C compact. Then for a,b € K, 0 < |a — b| small, there exist
positive constants o, B € R such that

S dudv 1

=a +B log—.
x lt—al|t—-b| la— b

Proof. Let R be the radius of circle centered at 0 and containing K. Set
t—a=(a— b)s,s=x-+1iy.

S dudv S dudv S dxdy
= < -
x|t—allt—b| msRIt‘aHt_bl |s|s(2R/|a—b|)|s”S+1|

S dxdy dxdy

Isl=3/2 Is|ls+ 1]

A

=

+ (const.) S

3/2=|s|=2R/|a—b| |s] 2

=a+ f Log—.
B g|a_b|

du dv

x1t—c|

LEMMA. Let K C C compact. Then g(c) = S , ¢ € C is continuous.

Proof. Let ¢,¢’ € K. Then

dudv
xlt—cllt—c’|

[t ~¢"|~|¢—cll

x lt—cllt—¢'|

lg(c) —glc)] = S dudv=|c—¢| S

1
s|c—c’|(a+Blog )—>0, asc— ¢’
le—c’|
du dv
If c & K, p is bounded.
xlt—cl|lt—rc’]

LEMMA. Let K,, K, C C be disjoint compact sets. Then there exist positive
constants a, B € R such that

du dv
=a +B log————
clt—allt—5||t—c| la —b|

forallc € K,,and a,b € K,,0 < |a — b| small.



356 IGNACIO GUERRERO

Proof. Take K,, K, C C compact sets so that K, C K,, distance 0K ;,K,) > 0,
i1=1,2,and K, N K,= 9.

S dudv X dudv
¢ lt—allt—=0b]]t—c| c—&uRy [t —al |t — bt — ¢
S du dv S dudv
+
& [t—allt—0b]||t—c]| &, |[t—al|t—b||t—c|

du dv du dv 1

=A+B C =a +B log————.
& 1t—c] & |t—al|t—b] |a — b

From (2.9) and the above lemmas we obtain, for z in a compact subset of U and
for almost all y € T,

1 _ 2
I(v,2,v) = |w, tv(@)| (M1 + M, log
lw, (y(a))]

|w, (y(a))]
1-|w,(v(a)?

), M,>0,M,>0,

or, observing that |w, (vy(a))| is uniformly bounded away from 0 and uniformly
bounded by 1, the equivalent estimate

(2.11) Iw,2,v) =1 - |w,(y(@)PA, — Az log (1 — |w, (v(a)]),
A, >0,A,>0.

Now, given z € U, define z* = z/|z|. Using Mori’s theorem (section 1.2)
1-|w,@)] =|w ) —w, ()| =16|z* - 2|"/* =16(1 — |z|)"/*,
and considering the inverse map we obtain the double estimate

(2.12) (@—2p/16)*=1—|w,(2)] =16(1 — |z)*'*

1+ vl
Recall that K =

. Using (2.11) and (2.12)
1— v
I,z,y) = 1 — |y(@]D* (A - Blog(1 — |v(a)|)
(2.13) =1 - |y@)*®1 - |v@]®@ — Blog(l — |v(a)])
I(w,z,v) = K, (1 = |[y(a@)) "/

Beardon [2] has shown that for every finitely generated Fuchsian group of
the second kind there is {, < 1 such that

D a-|v@) <w, fort>t,.

vy



QUASICONFORMAL VARIATION OF THE GREEN’S FUNCTION 357

Choose 8 and ¢ sufficiently small so that 1/K — 3 > ¢,, for [|v|| <e. This proves
the statement at the beginning of the section, with the additional hypothesis on

I to be finitely generated.

2.3 Denote by G(z,a)[n] the derivative of the map v G, (w,(2),w,(a)) at
v = 0 in the direction . The preceeding section shows that G(z, a) [.] exists and

1
Gz a)lp] = —— [ ]
'vezl‘ t— v(a) t—v(l/d)
(2.14)
1 1
X — w(¢) dudv
t—z t—1/z

Let w be a fundamental region of I"' in C. Then

. 1 1
G (z, - B
(za)[p] = 2 2 Sﬁ(m) [t—y(a) t—~v(1/a) ]

BEF ~y€r

[ ! ! ] t)dud
X - t)du dv,
t—z t—1/z "

by a change of variable in the integral we obtain

Geam = -— [ 1 1 ]
z,a - B
P 27 B,vEr Jo B@E) — v(a) B(t) —v(1/a)
1 1
X - o 4 2d
I:B(t)—z B)—1/z j|“’ B @) B () dudv

! > S [ 1 1 ]( .
2m o2 Jo Ly eB@t)—a yTleB(@#)—1/a Y oB) (@)

1 1
X - ’
[B(t)—z B(t) —1/z ]B (¢) p(¢) dudv

__ 1 [z( 1 1 ) ]
2@ J, L W) —a (@) -1/a v

X[Z( 1 1 ), ]
A \B®) -z B —1/z B’(t) | (t) dudv

. 2 G oG
G a)[n] = —— S —a——(t a) (t 2w (¢) dudv.

w

. 4 aG aG
(2.15) G (z,a)[n] = ——Re X ;t— (, a) (t 2)u (¢) dudv

v

Here we have o = 0w N U.
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Now, we consider the function v — G, (z, a) for z,a fixed and ||v] small. Using
(2.15) and the chain rule we can compute the differential d,G(z,a)[] atv = 0

4 G G
doG(a)[p] = ——Re |\ — (,a)— (,2)n (t) dudv
m o 0 at
(2.16)

G G ‘
— 2Re {—— &) wn] () + — (z8) w [u](é)}.
9z a&

3. APPLICATIONS

3.1 Let S be a finite Riemann surface with boundary curves. It is known that
these conditions are equivalent to the existence of a uniformization of S by a
finitely generated Fuchsian group of the second kind. Let p. be a Beltrami differential
on S and denote by S, the Riemann surface topologically equivalent to S with
the conformal structure induced by pn. We have a commutative diagram

where p is a universal covering map, . = pop ? /p’ and p, (w; (2)) =p (). It is
easy to see that the map p, is holomorphic. If I" is the covering group for p,
F,=w; I‘w;1 is the covering group for p .

Fix p, ¢ € S and z,a € U such that p(z) = p, p(a) = q. Then
Gs, (P, q) = G, (W, (2),w; (a)).
To compute the differential of p —» G Su( D,q) one observes that the map p — [

is linear and uses the results in section 2 to obtain

4 G G
3.1) doG(p,q)[r] = — —Re S — (rp)— (rq)n(r)dA,.
™ sdr ar

3.2. Now we consider the variational problem for a plane domain. A similar
formulation, for the simply connected case, can be found in Sontag [7]. Let Q
be a plane domain of finite connectivity. Assume m is a measurable, complex
valued function on € depending on a complex parameter ¢ as follows

N, (2) = tv(z) + te,(2),

v and &, being bounded measurable functions with ||¢,||,— 0 as ¢ — 0. Denote by
/. the normalized quasiconformal map of C U {w} leaving 0, 1,  fixed and with
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complex dilatation v,. Using the same procedure as in section 3.1 we obtain

1 4 G G
(3.2) ltin(r}T [G.(f.(2), f.(a)) — G(z,a)] = — —Re S — (w,2 )—— (w,2)v (w)dA,,

™ QW
Using the chain rule

1 4 0G G
llm—- [G,(z,a) — G(z,a)] = ——Re S — (w, z)—(w a)v (w)dA ,,
t—0 T oW

(3.3)
G . oG )
— 2Re {— (za)fv]1@)+—(a,2)f [V](a)}
Jz2 . dz

In (3.2) and (3.3) G, denotes the Green’s function of f, ().

3.3. We now derive as a special case of (3.1) a variational formula of Schiffer
(see Schiffer and Spencer [6, p. 313]).

The Schiffer interior variation can be obtained as a quasiconformal variation
as follows. Let S be a Riemann surface as in 3.1, p, € S and vy a simple closed
analytic curve bounding a cell which contains p,; assume further that -y is contained
in a single coordinate chart. Choose a local parameter z so that z(p,) = 0 and
z(y) is the boundary 9 U of the unit disc. Let r(z) be a function holomorphic

in a neighborhood of d U. We have a representation r(z) = 2 a,z". Gardiner

[3] has shown that the classical Schiffer variation is a quasi-conformal variation
with p_(p) = 0 for p outside vy and

Z ni"- 1
(3.4) p,(2)=—— ,

1+e E a,nz""!
n=1

for z = z(p), p inside .
We note that

(3.5) m(2)=e > a_,ni""" +o(e).

Stokes’ theorem gives

. 1 1 R (2)
(3.6) nt" " h(t)dudv=— t"h(t)dt= dt,
le1=1 le]=1 2‘ le]=1

2i t"

for A (t) holomorphic on |¢] = 1.
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For p, q outside v, z = z(p), a = 2(q), from 3.1, 3.5, 3.6 we obtain

. 4 € b
G(p,g)[n,] = ——Re— S (2 a_nt_")G,(t,z) G,(t,a)dt + o(e)
|t|=1 n=1

o 21
3.7)

we

2
- —Re—e.g r(s) G.(s,p) G, (s,q)dZ, + o (&)
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