FREE INVOLUTIONS ON COMPLEX PROJECTIVE SPACES
Richard H. Sady

0. INTRODUCTION

Let hCPN denote a compact manifold of the same homotopy type as complex
projective space CPN. An easy consequence of the Lefschetz fixed point theorem
is: the only group which can act freely on hCPN is the cyclic group Z/2Z. More-
over, in this case it also follows that N must be odd. The purpose of this paper is
to classify all free (PL and TOP) Z/2Z-actions on hCP2n*l | (The existence of a
free smooth involution on any hCP3 was proven by Petrie [2]. His results are im-
plied by Corollary B, below, and the fact that #;(PL/O) = 0 for i <17.) We will give
invariants which detect the existence of a free involution on hCP2ntl apd determine
the structure of the set of equivalence classes of free Z/2Z-actions on hCP2ntl |
In particular, we show that there exist exactly 2" distinct free PL involutions on
CP2ntl | We assume familiarity with the surgery exact sequence [7]:

w 6 o
LS, (m, w) = 5M) — [M, G/H] > Li(n, w),

wtéere H=PL or TOP, M is a PL or TOP n-manifold, 7 = 7;(M), and w = w;(M).
g H(M) denotes the set of simple homotopy structures on M.

1. STATEMENT OF RESULTS

In this section, we explain our main results in the topological category. The
minor modifications necessary for extending these results to the PL case are given
in Section 8.

We write Free Inv(hCP22"1) for the set of conjugacy classes of free involutions
on hCP2ntl | Note, for example, that Free Inv(CP2"*1) # @, In terms of homogene-
ous coordinates, we can easily describe an element of this set:

Tlzg 2y :2y4q) = (-2 :2g: 537, ].

(In fact, this is the free involution on CP2n*1 jnduced by the antipodal map in the
fibres of the fibration S2 — CP2ntl - HP" where HP" denotes quaternionic pro-
jective space.) Henceforth, T will denote the above involution and X = X4n*2 will

denote the orbit space CP2nt+l / ( T>. Let 7: CP2ntl — X pe the natural projection.
Now suppose there exists a free (TOP) involution S on hCP2n*l | Let 5 denote

the Z/2Z-bundle p: hCP22+!l — Y, where Y = Y492 ig the orbit space

hCcp2ntl / < S> and p is the natural projection. Define &1op(Y)P to be the set of
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those elements [M, f] € #Top(Y) satisfying £*P(Y) = P(M), where P( ) is the func-
tion which assigns to any compact manifold its total Pontryagin class in H*( ; ®).
(Any such f will be called a Pontryagin equivalence.) Letting j: G/TOP — BTOP
denote the inclusion, we define [Y, G/TOP]P to be the set of homotopy classes of
maps ¢: Y — G/TOP satisfying (j¢)*(P) = 1, where P € H¥(BTOP; ®) is the univer-
sal total Pontryagin class. (Such a map will be called a Pontryagin normal map.)
Our main results follow.

THEOREM 1. There exists a bijection of sets:

Free Inv(hCcP2tl) = @ Y)P

TOP(

THEOREM II. ¥ 1op(Y) admits an abelian group strvucturve such that
S rop(Y)P is a subgroup and '

6 o
0 = Frop(VP = [Y, G/TOP]? — L, ,,(Z/2Z, -) — 0

is an exact sequence of abelian groups. Moveover, as abelian groups,
n+l
[y, G/ToP]? = Il (z/22),.
i=1
An easy consequence of Theorems I and II is:

COROLLARY A. If it is nonempty, Free Inv(hCP21tl) is an abelian group.
Moveover, in this case, Free Inv(hCP2ntl) £ [n]Z/2Z, a divect sum of n copies of
7./27.

Finally, we prove:
THEOREM 1Ill. Thevre exists an exact sequence of abelian groups:

n

# K
0 —> Fpop(¥P —> Poopl¥) Lo Frophep?ntly L5 I1 (Z/2Z), —> 0.
i=1

(Heve & pop(hCP21tL) is given an abelian group structure as described by Sullivan
[5], and k is defined in Section 1.)

Letting f: M — CP22t! pe a homotopy equivalence, we also have:

COROLLARY B. Theve exists a free involution on M if and only if k[M, f]= 0.

Remark. The above results are all true in the piecewise linear category, with
the one exception that in Theorem III, “i = 1” must be replaced by “i =27,

Note. After this work was completed, I discovered that a version of this corol-
lary was proven independently by F. Hegenbarth [1].

2. THE GROUP [X, G/TOP]P

In this section, we determine the structure of [X, G/TOP]P (Theorem 2.6). The
following results are needed.

LEMMA 2.1 (Sullivan [4]). There are primitive cohomology classes
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K=Ky, ,= 2 A, ,cH*?(G/TOP; Z/22Z)
i>1

and

Ky, = 2 A, ¢ B (G/TOP; Z/2Z)
i>1

such that K,, is the mod 2 reduction of an integrval class

=1, = E)l L, e H (G/TOP; Z),
1

and such that the map X x L: G/TOP — Il < | K(n,(G/TOP), n) induces an iso-
morphism in Z/2Z-cohomology. -

In particular, the localization of G/TOP at the prime 2 has the homotopy type
of a product of Eilenberg-MacLane spaces. Hence, it is immediate that

[X, (G/TOP) ;)] = II HY(X; Z,) x 1l "*-2(x; z/22),
i>1 i>1

the correspondence being [¢] <> ¢* % X ¢*K, where

2= 2 44 « HY (G/TOP; Z )
i>1

satisties (j,), L =2, j, denoting the inclusion Z — Z ;). Letting
i: G/TOP — (G/TOP) ;)

denote inclusion, we have:

PROPOSITION 2.2. The induced map ig: [X, G/TOPIP — [X, (G/TOP),)IP is a
bijection.

Note. Here [X, (G/TOP);)IP is the set of homotopy classes of maps
Y X — (G/TOP)(Z) satisfying (j(2)¥)*(P(;)) = 1. Before proving this proposition,
we first determine the structure of H¥*(X; Z) as an algebra.

LEMMA 2.3. Let A denote the ving Z ov Z/mZ. Then, as algebras,
H*(X; A) £ HYHP?; A) ®, H¥(RP?; A).

Proof. The base of the fibration RP2 — X — IHHP" is 3-connected so
H*X; A) —» H*(IRPZ; A) is a split epimorphism. By the Leray-Hirsch theorem, the
isomorphism follows, as a map of H*(IHP®; A)-modules. But if z € H2(RP2; A) is
any element, then 2z = 0. Thus 2z2 = 0. Now if A = Z, then clearly z2 =0, since
H4X; Z) 2 Z. If A =7Z/mZ, then z = p(a) for some a € HXX; Z) (p denoting re-
duction mod m). Thus a2 =0 and so zZ = 0. Hence, the above isomorphism is a
map of algebras. (The reader may try to convince himself that Lemma 2.3 is also
true for any commutative ring A.)

COROLLARY 2.4. H4t3(X; M) = 0 for any abelian group M.
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Proof. If M is cyclic, the result follows from Lemma 2.3. Hence, if M is
finitely generated, the result is also true. Now, for M arbitrary, take direct limits.

Proof of Proposition 2.2. First we show that is: [X, G/TOP] — [X, (G/TOP ;)]
is injective. Since G/TOP is an H-space, [X, G/TOP] and [X, (G/TOP),,] are
groups and iy a homomorphism, so it suffices to show kernel iy = (0). Let
¢: X — G/TOP be such that i#(¢) =i o ¢ is null-homotopic. We can assume
i: G/TOP — (G/TOP)(Z) is a fibration with homotopy-theoretic fibre F. We have:

F ——> G/TOP

A

X —> (G/TOP)(Z) .

iod¢

Now ¢ is null-homotopic if and only if a sequence of obstructions in Hi(X; =, (F))
vanish, i > 1. The homotopy sequence of the above fibration yields:

Z,)/Z if i= 3 (mod 4)
Wi(F) =
0 if i # 3 (mod 4) .

But for i = 3 (mod 4), H\(X; Z,y/Z) = 0, by Corollary 2.4. This proves injectivity.
Restricting iy to Pontryagin normal maps, we show that iy is surjective. Let

¢: X — (G/TOP)(Z) be a Pontryagin normal map. Recall that G/TOP is, up to homo-
topy type, the fibre product of i, and i, in the diagram:

; (G/TOP)(5y _i;

T

1

G/TOP (G/TOP)(Q) .

\

(G/TOP)(odd)

Now, by Sullivan [4], [X, (G/TOP)(Q )] = [X, (BO)(Q)] z H**(X; @), where P is the
%

Pontryagin character. Thus, [X, (G/TOP)(Q)]p = 0, and therefore i, ¢ is null-
homotopic. Thus, assuming i, is a fibration, we can lift i; ¢ to a map

$: X — (G/TOP) ,4q)3
hence, i, 5 =i; ¢. We therefore have a unique map ¥: X — G/TOP such that
i'Yy =¢ and iy = ¢. Clearly, ¢ € [X, G/TOPP, so

iy: [X, G/TOPP — [X, (G/TOP),,,IP

is onto.

Note that Proposition 2.2 greatly simplifies the calculation of [X, G/TOPP be-
cause of Sullivan’s determination of the homotopy type of (G/TOP)(Z) . The follow-
ing proposition leads to the main result of this section.

PROPOSITION 2.5. [X, (G/TOP),,P =1I,+, u*-%x; z/22).
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Proof. Let ¥: X — (G/TOP)(,) be a Pontryagin normal map. By Lemma 2.1, it
suffices to show that ¥*£4; =0 for i > 1. Recall the relationship between Sullivan’s

& -class and the universal Hirzebruch class L = Ei > Ly, € H4*(BTOP; Q) is
simply j*L = 8 Z [5]. Hence, 8¢*(£y;) = (j¥)*(Ly4;) = 0, since each Ly, is a rational
linear combination of the universal Pontryagin classes P, P,, ---, P; and, by hy-
pothesis, (jy)*(P,) =0 for i > 1.

Finally, we have:

+1
THEOREM 2.6. [x*"*2 g/roplP = I, (z/27), .
Proof, By Propositions 2.2 and 2.5 and Lemma 2.3,

n+l n+1
[X, G/TOPIP = [, (G/TOP),)IP = Il u*-2(x; z/2z) = I (Z/22),.
i=1 i=1

3. UNIQUENESS OF THE ORBIT SPACE X

Let t be any free involution on hCP2n*+l | The following theorem enables us to
generalize the results of Section 2 to any homotopy CP2ntl

THEOREM 3.1. The orbit space hCP2ntl/ <t> has the same homotopy type as
X4n+2

Proof. Let Y4n+2 denote hCP2n+l/{ t> and p: hCP22*t1 — ¥ pe the natural
projection. The 2-skeleton of X is just X(2)=¢cpl/ <T> = IRP2. Since
7,(Y) 2 Z/2Z, there exists a map g: RP2 — Y which induces an isomorphism of
fundamental groups. Now, the image of gg: 7,(RP2) — m,(Y) £Z is d - m,(Y) for
some integer d. We claim that, for any integer m, the map g may be altered to
obtain a m-isomorphism f: RP2 — Y such that the image of fy: n, (RP2) — 7,(Y)
is (d +2m) - 7,(Y). The map f is defined tobe @ o (g\/ (p o h)) o i, where
i: RP? — RP? V S2 is the pinch map, @: Y VY — Y is the folding map, and
h: S2 — h€P2ntl has the property:

image (hy: m,(S%) — 7,(h€CP22*t1)) = m - 7,(hCP2nF]),
The reader may convince himself that f is as required. We now appeal to the fol-
lowing:
LEMMA 3.2. If f: RPZ2 — Y4*2 s any Ty -isomorphism, then

fp: 1, (RP2) — m,(Y)

has image d - 1,(Y), where d is an odd integer.

Proof. Suppose not. Then d is an even integer, and by the argument preceding
the lemma, we can assume d = 0; that is, fu: 7, (RP2) — 7,(Y) is zero. Then f ex-
tends to a map f;: RP> — Y. But

HY(RP*3 RP3; 7, (V) =0 if 1 <3,
and
7, (Y) S, (cP?™1) = 0 if 3<i<4n+3.
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Thus, the groups H{(RP*"t3, RP3; m;_1{Y)) = 0 for all i. Hence, f; extends to a
71 -isomorphism f,: RP4n+3 — Y, This implies that

3: HU(Y, Z/2Z) — H!(RP*'3; 7/27Z)

is at least an epimorphism. Hence, if 0 # B € HL(RP4nt3; Z/27Z), there exists an
a € H(Y; Z/2Z) such that f5(e) =B, and & # 0. But 0 # g4n+3 = f5(a4nt3), so
a4nt3 % 0, This is absurd since a4nt3 ¢ H4nt3(y4ntl. 7 /97) = 0.

By Lemma 3.2 and the remarks preceding it, we can construct a map
f: RP2 — Y which induces an isomorphism on the first two homotopy groups. This
map extends to X, since the obstruction groups H(X, X(2); 7;_1(Y)) are all zero for
i> 3 (for i = 3, examine the long exact sequence of (X, X(2)) and use Corollary 2.4;
for 3<i<4n+3, m;_,(Y) =0). Hence, we have a map f: X — Y satisfying
fy: m;(X) 2 7;(Y) for i =1, 2. Thus fy: ﬂz(i) - 112(?) is an isomorphism, where f
lifts f. (Here i, Y denote the universal covers of X, Y, respectively.) Thus
f: X — Y is (4n + 2)-connected, since

7,(X) = 7,(Y) = n(CcP>™!) =0 if 3<i<4n+2.

The Hurewicz theorem implies that f*: H-l(f'(; Z) — Hi(i'(; Z) is an isomorphism for
i <4n+ 2 and an epimorphism for i = 4n + 2. Since

H4n+26(; Z) = Z = Hy,y, (Y; Z),

~

f, is also an isomorphism for i = 4n + 2. Hence, 1 X—>Yisa homology equiva-
lence (H;(X; Z) = H;(Y; Z) =0 if i > 4n+2). Whitehead’s theorem now applies, so
f: X — Y is a homotopy equivalence.

4. DETERMINATION OF ¢ 1op(Y)P

Recall that Y47*2 = heP2ntl /() and 5 denotes the bundle p: hCP??+! — ¥,

For any space Z, let Z denote its universal cover. The theory of nonsimply con-
nected surgery gives us the following commutative diagram, with the rows exact:

0 (o}
0 —> S ropheP??tl) —— [nep?rtl | G/TOP] —— L, ,,(1)

[t [t fi

g
0 —> Fpop(¥) > [Y, G/TOP] > L, ,(Z/22Z, -).

The zeroes on the left follow from: Ly, ,3(1) =0, Ly, .3(Z/2Z, -) = 0 [6, page 162].
Here Y = Y4n*2 and p, =p, =p. The map p# is defined by p’lé[M, f] = [M, f], where
f lifts f. The map pﬁ is defined by composition and ij is the “transfer” induced by
the inclusion iy: {1} — Z/2Z. The goal of this section (Theorem 4.4) is to show
that & op(Y)P = kernel p#f . We first show the following.

THEOREM 4.1. If #*: [X4nt2 G/TOP] — [CP2ntl | G/TOP] is defined by
composition, then kernel 7# = [X, G/TOP]JP .

Note. 7™ is in fact a homomorphism of groups since G/TOP is an H-space
using the operation of Whitney sum.
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Proof. Suppose ¢: X — G/TOP and 7%(¢) = ¢7 represents zero in
[cpP2ntl  G/TOP). Then, if L is as given in Lemma 2.1, we have:

0 = 8(¢m)*Ly; = (¢1)*(*Ly;) = 7*(j¢)*Ly;,

which implies that 7*(j¢)*L,; = 0, since HY(X; Z) = Z, i > 1 (Lemma 2.3). But
7% H4(X; z) — H4(CcP2ntl; Z) is an isomorphism for all i (from Lemma 2.3).
Hence, (j¢)*Ly; =0, i > 1. Thus (j¢p)*P; =0 for i > 1, and so (jo)*P = 1
(P=1+P; +P, + - is the universal total Pontryagin class); that is,

¢ € [X, G/TOP]P.

We have shown: kernel 7 C [X, G/TOPJP. To prove the reverse inclusion, recall
[7] that there exists a bijection:

n n
Sux X Sgpupi [CPPPY G/TOP] — 11 (2),, x 11 (Z2/222),,,,,
i=0 i=0
where s,;(f) = U(flq;pi)’ 1 <i<2n+1, o denoting surgery obstruction. Moreover,
it is not difficult to show that (| _ ;) = {L(CP?!) - (£5§*L - 1), [CP?1]). Now

suppose ¥: X — G/TOP is a Pontryagin normal map. Then (j)*L = 1. Clearly
then, the homotopy class [yn] € [CP2ntl | G/TOP] is zero if and only if
s,; () =0 for 1 <i<2n+ 1. But

{L(CP?) - (Wm**L - 1), [CP?])

(L(eP2l) . (r*GY)*L - 1), [eP?i]) = (o, [cP?]) = 0.

s4;(ym)

I

1<1i<2n. Also, syp () =o@m| o) = ito(y| dir?-

We now use the following:
LEMMA 4.2. if: Ly;,,(Z/2Z, -) = Ly, ,(1) is zero.
Proof. By periodicity of the L-groups, it suffices to prove this for i = 0. Let
A denote the group ring Zu, where 7 = {1, T}, T2 =1. Let
a =[H, 2 p) e L,(Z/2Z, -),

where H is a free A-module with basis e, f such that (e, ) = A(f, f) = 0,

Me, 1) = 1, and p(e) = p(f) = 1. Thus, if@ = [ifH, i¥, i p] € L,(1) and ifH hasa
pasis {e, f, eT, fT}. It is easily checked that the mod 2 reductions of e, f, eT and
fT (denoted by the same symbols) give a symplectic basis for iﬁ H®)\ Z/2Z (with
respect to iﬁ A, reduced mod 2). Recall [6] that there exists an isomorphism

c: Ly(1) — Z/2Z, given by the Arf-invariant. Now, by definition,

ciba) = i pe) i u® +if e i pT) = 1-1+(¢-D-(-1) 20  (mod2).

Hence, iﬁa =0 in L,(1).
Therefore, sy, ,(y7) =0. We conclude that [y7] =0, so
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[X, G/TOPIP C kernel 7

and the proof of Theorem 4.1 is complete.
Since Y is of the same homotopy type as X (Theorem 3.1), we have:
COROLLARY 4.3. kernel p¥ = [y, G/TOPIP.
The main result of this section is:

THEOREM 4.4. kernel p" = #1op(Y)P

Proof. By kernel p*f we mean those elements [M, f] € & roplY) satisfying

pi‘f [M, £f] = [h€P%nt] | id]. Note that @ restricts to a map (also called 6):
& 1op(Y)P — [Y, G/TOPJP. Suppose [M, f] € ker p¥ . Then

0 = 6p%[M, £] = pf 0 [M, £].

Thus 6 [M, f] € ker pg = [Y, G/TOPJP (Corollary 4.3). Thus f: M — Y is a Pontry-
agin equivalence. Hence, ker p’*f C P roplY)P. If [M, f] € ¥ 7op(Y)P, then

6 [M, 1] € [Y, G/TOP]P =ker p§. Thus, 0 =p# 6 [M, f] = 6p# [M, f], which implies
pﬁ‘f [M, £f] = [hCP?"*! | id), since 6 is injective. This proves the reverse inclusion

and therefore the theorem.

5. PROOF OF THEOREM I

In this section, we prove Theorem I of Section 1. Let c: CP2ntl — gpantl pe
the diffeomorphism defined by conjugation of complex coordinates. Then c is equi-
variant with respect to T and so induces a diffeomorphism c: X — X.

LEMMA 5.1. If ¢ [X, G/TOP] — [X, G/TOP] is defined by composition, then
c# = identity.

Proof. We have a commutative diagram:

0 —> [X, G/TOP] B 2N [X, (G/TOP) ]

lc# lc#

i
0 —> [X, G/TOP] s (X, (G/TOP)(Z)]
with the rows exact (see the proof of Proposition 2.2), so it suffices to prove that
ct: [X, (G/TOP)(Z)] - X, (G/TOP)(Z)] is the identity. There exists a commutative
diagram (by Lemma 2.1): ,

[X, (G/TOP) ;)] —— 1l H¥(x; Z,)) x I>I H4-2(X; Z/27)
= i>1 i>1

17 %2
v
[X, (G/TOP) ;)] ——> IT mx, Z ,) X 1>1 H4-2(X; Z./27Z),
= i>1 i>1

* *
et c. Xc¢
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where c¢; =c, =c¢. Since cg is an isomorphism, it must be the identity because
each H%-2(X; Z/2Z) = Z/2Z. Also, c*: H¥i(CP2ntl; Zz) — Hii(Ccp2ntl; Z) is the
identity. (For i =1, H¥(CP2ntl; Z) is generated by ozz where a € H?‘(CIJPZHJrl Z)
1s the generator. But c¥(a) = -a, so c*(a?) = a?; S1m11ar1y for 2 < i< n.) Since

*: H41(X; Z) — HH(CP2ntl; Z) is an isomorphism for all i (Lemma 2.3), it fol-
Iows that cf = identity. Thus c# is the identity.

COROLLARY 5.2. c¢,: #1op(X) = #1opX) is the identity, where
¢, [M, f] =M, c o f].

Proof. We have a commutative diagram:

0
0 —> PropX) —> [X, G/TOP]

lc* 6 ic#

0 —> PropX) —> [X, G/TOP],

where the rows are part of the surgery exact sequence. Now use Lemma 5.1.

PROPOSITION 5.3. Let M have the same homotopy type as X and let
h: M — M be a homotopy equivalence. Then h is homotopic to a homeomorphism.

Proof. Using Corollary 5.2, one can easily show that there exists a homeo-
morphism y: M — M such that y, = -id: 7,(M) — 7,(M). We show that either h~ id
or h~ y. Let g denote e1ther id or Y- The first obstruction O (h, g) for making h
homotopic to g lies in HI{(M; 7;(M)) £ Hom(H; (M), 7,(M)) = Hom(ﬂl(M) 71(M)), and
it is well known [8] that O;(h, g) corresponds to h, - g, € Hom(n;(M), 71(M)) under
the above isomorphisms. But clearly h, - g, =0, so Ol(h, g) = 0. The second ob-
struction O,(h, g) lies in HZ(M; 7,(M)Y), where t denotes the action of 7(M) on
7,{M). Let A denote the integral group ring Zn;(M). Then if j is given as in the

coefficient sequence: 0 — Zt ] A — Z — 0, we have a monomorphism
e T2 (- ty - H2(M- A) = H2(M:
]*- H (M7 WZ(M) ) H (M; ) H (My WZ(M)) .

But H2(M; 7,(M)) ¥ HZ(M 7,(M)) —Hom(nz(M) 7,(M)) and, as before, O,(h, g)
corresponds to h, - g, € Hom (1,(M), 7,(M)) under the above isomorphisms, where
h and g are 11ft1ngs of h, g, respectlvely, to M. But R 02( g) = Oz(h, g) Now if
h is orientation preserving, then h - 1d =0, so Oz(h, g) = 0. Thus Ox(h, g) =
Similarly, if h is orientation reversing, then h =0, so Oz(h g) = 0. Smce the

groups Hi(M, 7. {(M)) are zero for i> 3 (7;(M) =0 1f 3<i<4n+2; HI(M; A) =0 if
i>4n+2, where A is any abelian group) there are no further obstructions. Hence,
either h ~ id or h ~ y and the proof of Proposition 5.3 is complete.

Define a map ¥: #1pop(Y4*+2)P — Free Inv(h€P27*1) as follows: let
[M, f] € #pop(Y)P. By Theorem 4.4, [M, T]=[nCP?**!, id], so f is homotopic to
a homeomorphism g: M — hCP20*! | Let y [M, ] be the conjugacy class of gtg™!
where t € 7 (M) = Z/2Z is the generator, considered as a covering transformatmn
M — M. Clearly, ¥[M, f] is independent of the choice of g. We first show that ¥
is surjective. Let S' € Free Inv(hCPzn“) and let M denote the orbit space
hCcp2ntl/ < S' > By Theorem 3.1, there exists a homotopy equivalence f: M — Y.
Hence, [M, ] € 915p(Y). Since any homotopy equivalence: hCP2ntl — hep2ntl g
homotopic to a homeomorphism [5], [h€CP27*!  id] = [M, {] = pf[M fl, so
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[M, f] € kernel pg = ProplY)P. Clearly ¢ [M, ] ~ S'. We now show that ¥ is in-
jective. Let [M;, f;] € #7op(Y)P, i =1, 2. Suppose ¥[M,, f;]=¢¥[M,, f,]. Let
g;: M; — hCP2ntl | j =1, 2, be homeomorphisms such that g; ~ f,, where f; isa
lifting of f; to M;. Let t; € 7;(M;) = Z/2Z be generators, i =1, 2. By hypothesis,
g, t1 gl'l ~ g, t2 gél ; that is, there exists a homeomorphism

H: h€P?"*1 — heP27*! . such that Hgt; gi! = g,t, g5 H.

If welet h= gél Hg,, then h: ifil - ﬁ[z is a homeomorphism whi(_:h is equivariant.
Thus h induces a homeomorphism (also called h) M; — M, . If f, is a homotopy
inverse of f,, then h-1 f_2 f;: M; — M, is a homotopy equivalence. By Proposition
5.3, there exists a homeomorphism g: M; — M, such that h-1f,f, ~ g. Set G = hg.
Then G: M; — M, is a homeomorphism, and

= ~ _1 £ = £ ~
£,G = f,hg ~ f,hh 5, £ = £,5,0 ~ 1.
Hence, [M;, f;] and [M,, f,] are equal in #1op(Y)P. This completes the proof of
Theorem 1.
6. PROOF OF THEOREM II
According to Rourke and Sullivan [3], the surgery obstruction

o: [Y, G/TOP] — L, ,,(Z/2%Z, -)

is given by the formula: o(f) = <V2 - f*K, [Y]> , where V is the total Wu class of Y

and where K is as in Lemma 2.1. Primitivity of the class K implies that ¢ is a
homomorphism. Recall (Theorems 2.6 and 3.1) that there exists a bijection

n+1 n+1
[Y4n*2  g/TOPlP <—> Il H¥-2(y, Zz/27) = Il (z/22),,
= =1 i=1

the correspondence being ¢ <€<—> ¢*K. Hence, there exists a Pontryagin normal
map f: Y — G/TOP satisfying: £*4, , =0 for 1<i<n and (%, ,,, [Y]) # 0.
In this case, Sullivan’s formula yields: o(f) = (f*4, ,,, [Y]) # 0. Hence, 0 is
surjective (since Ly ;,(Z/2Z, -) = Z/2Z [7]). The surgery exact sequence

0 — ProplY) 9, [¥, a/Topr] % Ly, (Z/2Z, -) implies that kernel 0 = L1rop(Y).
Thus, Ppop(Y) has the structure of an abelian group. Moreover, Theorem 4.4 im-

plies that #pop(Y)P is a subgroup. Hence, restricting ¢ to Pontryagin normal
maps, we have an exact sequence of abelian groups:

6 o
0 = 7op(Y)P = [Y, G/TOPP = L44,2(Z/2Z, -) — 0.

Combining Theorem I and the above comments, this exact sequence becomes:
n+1l

0 — Free Inv(heP?**!) — II (z/22), — z/22 — 0.
i=1

Corollary A (Section 1) follows easily from this.
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7. PROOF OF THEOREM Il

nt+1l
Let k = II._| k,;_,, where ky; ,: [CP2nt]l G/TOP] — Z/2Z denotes the

function ky; ,(f) = (£*K, X4i-2> ; X4;.2 is Poincar€ dual to the generator
¢, € HY(CP?i-1; Z/27); and K = Ei>1 #4; > is given in Lemma 2.1.

# n+l
LEMMA 7.1. [x%0*2 g/rop] TS [ep2ntl, g/Top) &> 11, | (Z/2Z)4;_, is
an exact sequence of abelian groups.

Proof. Tt has been noted (Section 4) that 77 is a homomorphism. Also, the
primitivity of K again implies that « is a homomorphism. We first show: ka = 0.
If ¢: X — G/TOP, then ky; »(1#9) =ky; o(¢m) = ((@n)*K, x4i_2 ) = 0 since
¥ H4i-2(X; Z/2Z) — H4-2(cp2ntl; Z/27) is identically zero (from the Gysin
sequence of the 0-sphere bundle CP2**! — X with Z/2Z-coefficients). Hence,
image 7* C kernel k. Now suppose y: CP2ntl — G/TOP satisfies k() = 0. Let

n+l
K, denote the product Hi:l K(Z/2Z, 4i - 2). The obvious map j: G/TOP — K,

will be assumed to be a fibration, with fibre F. Note that the homotopy sequence of
this fibration yields:

Z i= 0 (mod 4)
TTi(F) =
0 i# 0 (mod 4).

If vy; , € HY2(K(Z/2Z, 4i - 2), Z/2Z) = [K(Z/2Z, 4i - 2), K(Z/2Z, 4i - 2)] cor-
responds to the identity map under the above isomorphism, then

nt+1
<(j'l/)* E L4i—2)’ x4i‘2> = (¥*K, x45 ) = k@) = 0.

i=1

Thus the composite CP2ntl lk* G/TOP LR K¢ is null-homotopic, so ¢ factors through
F: there exists a map ¥ CP22*l — F such that iy, = ¢, where i: F — G/TOP is

the inclusion map. The obstructions to extending ¥ to X472 jie in the groups
HY(X, CP22*1; 7. (F)) =0 unless i - 1 = 0 (mod 4). But, examining the long exact
sequence of (X, CP2ntl) we see that

H4i+1(X’ CP2n+1; "4]’_(F)) =0.

(Recall from Corollary 2.4 that 7*: H4{(X, Z) — H*(€P?""1; Z) is an isomorphism
and H¥+1(X; Z) = 0.) Thus, there exists a map ¢': X — F such that ¢'7 = io .
Clearly, iY": X — G/TOP satisfies 7#(iy') = ¢. Hence, kernel k C image ¥ .

n
LEMMA 1.2, If k = II,_| k4, 5, then

n

#
T K
ngop(X) —> yTOP(CP2n+I) —> H (Z/2Z)4i_2 —> 0
i=1
is an exact sequence of abelian groups.

Proof. Consider the following commutative diagram, the rows being exact:
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n nt+l
> Il (z/22),;,_, — 1l (z/22),, , —> Z/22 ——> 0

i=1 i=1

K K

¢ o
0 ——> Fpop(CP?rHl) —— [¢p2ntl | G/TOP] —> L,_,,(1)

A
[+t " 1

g
0 —> FopX) ————> [X, G/TOP] > L, ,,(Z/2Z, -1),

where m; =7, =7, X = X402 Now mﬁf = 0, since rcwiie =0 by Lemma 7.1. We
need only show: kernel k¥ C image n#. Suppose x € & 1op(CP2ntl) and k(x) = 0.
Let 6(x) =y € [CP?**l  G/TOP). Then k(y) = 0. By exactness (Lemma 7.1), there
exists z € [X, G/TOP] such that ﬁgz =y. Choose f € [X, G/TOP]P as in Section 6.
Then o (f) is a generator of Ly, ;2(Z/2Z, -). We have:

wg(f +z) = ﬂg(f) +1r#?f(z) = ng(z) (Theorem 4.1) .

If o(z) =0, replace z by f+ z. Hence, we can assume that o(z) = 0, so there exists
Xg € S1opX) with 6(xp) = z. But Bﬂ#(xo) =73 0(xg) =y. Since 0(x) =y and 6 is
injective, we conclude that ﬂ’li*(xo) =X, and so kernel k C image 111#. Finally, k is
onto, by calculations of Sullivan [5].

It is clear that the proofs of Lemmas 7.1 and 7.2 also work if CP2ntl js re-
placed by hCP22"1 and X is replaced by Y. Theorem II now follows from Lemma
7.2 and Theorem 4.4. Corollary B is an immediate consequence of Theorem III.

8. EXTENSION TO THE PL CATEGORY

We now briefly indicate how these results may be extended to the piecewise
linear category. Most of the details are left to the reader.

Theorem I remains unchanged if PL replaces TOP. This is true since Theo-
rem 4.1 is still valid with PL replacing TOP. However, the proof of Theorem 4.1
must be slightly altered. Here one needs to show that

[ePN, G/PL] — [CPN, G/TOP]

is a monomorphism. Theorem 4.4 is then true with PL replacing TOP, and the
proof of Theorem I proceeds as before.

In Proposition 8.3, we show that [Y, G/PL]P = [Y, G/TOP]P, so Theorem III is
still valid if PL replaces TOP. Hence, Corollary A is also true in the PL cate-
gory.

Lemma 7.1 is true word for word if PL replaces TOP. But Lemma 7.2 must
be altered to read:

n

LEMMA 7.2'. If k =11, 5 ky; », then
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n

#
T K
P o (K) —> Sp (€P2ntl) —» H2 (Z/2Z)y;_, —> 0
1=

is an exact sequence of abelian groups.

It will become evident why k, does not appear here after one reads the proof of
Proposition 8.3 below. (Obviously, the diagram given in the proof of Lemma 7.2
must be similarly changed in order to prove Lemma 7.2'.) Recall the following re-
sult, due to Sullivan:

LEMMA 8.1 [4]. There exists a homotopy commutative diagram (localized
at 2):

G/PL ——> Ex Il K@_(G/PL), n)
n>6

l A lpxm

c/Top =XEs 1 K(n_(G/TOP), n)
n>2

b

wheve E is detevmined by the fibvation K(Z, 4) > E b, K(Z/2Z, 2) with K-invar-
iant 6Sq%(t) € HX(K(Z/2Z, 2); Z) = Z/AZ and p = £ x Ly, with

£, ¢ HX(E; Z/2Z) = Z/2Z and %, € HYE; Z) = Z

being genevators.

Remark., E is an H-space since E = QE3, where Ej is the 2-stage Postnikov
system obtained as the fibre in the fibration E; — K(Z/2Z, 3) — K(Z, 6) with K-
invariant 6Sq2(ts).

Hence, localized at 2, we have:

[Y, G/PL] £ [v, E]x II u%(y; z)x II w* %y, z/22).
i>2 i>2

LEMMA 8.2. Theve exists an isomovphism of groups (localized at 2):

11

[Y, E] £ A = {(a, b) € HXY; Z/2Z) x HXY; Z): a% = p(b)},

p denoting veduction mod 2.

Proof. There exists a map g: E — K(Z, 4) satisfying (gi)*(t4) = 214, where
ty € HYK(Z, 4); Z) is the canonical generator (this map is determined by £,). Let
L, € H%(K(Z/2Z, 2); Z/2Z) be the generator. Define a map ¥: [Y, E] — A as fol-
lows: ¥(f) = ((pf)*(¢ ), (g0)*(L 4)). One easily checks that  is an epimorphism.
Suppose ¥/(f) = (0, 0). By the covering homotopy property we can assume pf is con-
stant, so f factors through K(Z, 4): there exists a map f;: Y — K(Z, 4) such that
ify =f. But 0 = (g)*(¢ ,) = (gif;)*(1 4) = ff(gi)*(1 o) = 2f] (L) € HX(Y; Z) = Z, so
f;"(L4) = 0. This implies that f is null-homotopic, and therefore ¢ is also a mono-
morphism.

Finally, we have:
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PROPOSITION 8.3. [Y, G/PLIP = [Y, G/TOP]IP.

Pyroof, As before (Proposition 2.2), one can prove that

[Y, G/PLIP = [Y, (G/PL),yPP = [Y, E(,)P x II n4i-2(y, z/27).
i>2

(Here [Y, E:]p is defined in the obvious way.) Thus, we need only show that
[Y, E(;)]P = H2(Y, Z/2Z). Consider the composite (localized at 2):

i i
E — G/PL — BPL.

Now, if f: Y — E satisfies (jif)*(P) = 1, then, in particular, (jif)*(L,) = 0. We have
0 = (jif)*Ly = £*(ji)*Ly = £*24 = (gf)*(v ), where g is given in the proof of Lemma
8.2. Hence, restricting the map ¢ (see the proof of Lemma 8.2) to [Y, E]P, we have
an isomorphism y: [Y, E|P — H2(Y; Z/2Z).
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