# STRUCTURE OF CERTAIN POLYNOMIAL HULLS

## H. Alexander

#### 1. INTRODUCTION

Let X be a compact subset of  $\mathbb{C}^n$  with  $\hat{X}$  its polynomially convex hull. Conditions on X are known which ensure that  $\hat{X} \setminus X$  is a (possibly empty) complex analytic subvariety of  $\mathbb{C}^n \setminus X$  of pure dimension one. The case for X being a smooth curve was treated by Stolzenberg [11] and for X a connected set of finite linear measure, by the author [1]. The basic ideas in the subject were introduced by Wermer [12] and Bishop [4]. Whenever the set  $\hat{X} \setminus X$  is an analytic set of pure dimension one, it has locally finite "area". This is because pure k-dimensional subvarieties of  $\mathbb{C}^n$  have locally finite  $\mathscr{H}^{2k}$  measure [10], where  $\mathscr{H}^s$  is s-dimensional Hausdorff measure. Our first result is a converse. It is also contained in the work of N. Sibony ([9], Theorem 17, p. 158). We have included a proof as a steppingstone for the generalization in Theorem 2 below.

THEOREM 1. Let X be a compact subset of  $\mathbb{C}^n$ . If  $\mathscr{H}^2(\hat{X}\setminus X)<\infty$ , then  $\hat{X}\setminus X$  is an analytic subvariety of  $\mathbb{C}^n\setminus X$  of dimension one. More generally, if a point of  $\hat{X}\setminus X$  has a neighborhood of finite  $\mathscr{H}^2$  measure, then  $\hat{X}$  is locally a pure one-dimensional variety in a neighborhood of the point.

When the hypothesis of this theorem fails, it may occur that  $\hat{X} \setminus X$  can be a countable union of varieties, without being a subvariety of  $\mathbb{C}^n \setminus X$ . For example, let A be a countable compact subset of  $\mathbb{C}$  which is *not* discrete in its relative topology. Put  $X = T \times A \subseteq \mathbb{C}^2$ , where T is the unit circle. Then  $\hat{X} \setminus X = U \times A$  (where U is the open unit disc) fails locally to be a variety at each point  $(z, \alpha)$  with |z| < 1 for which  $\alpha$  is a cluster point of A. Notice that the set  $\hat{X} \setminus X$  has  $\sigma$ -finite  $\mathscr{H}^2$  measure. (We will take this to mean that  $\hat{X} \setminus X$  is a countable union of compact subsets each of which is of finite  $\mathscr{H}^2$  measure.) The next result describes the structure of a hull with  $\sigma$ -finite  $\mathscr{H}^2$  measure.

THEOREM 2. Let X be a compact subset of  $\mathbb{C}^n$  such that  $\hat{X} \setminus X$  has  $\sigma$ -finite  $\mathscr{H}^2$  measure. Then there exist a countable ordinal  $\mu$  (possibly an integer) and a family of compact sets  $K_{\alpha}$  with  $X \subseteq K_{\alpha} \subseteq \hat{X}$ , defined for each ordinal  $1 \le \alpha \le \mu$ , such that

- (i)  $K_1 = \hat{X} \text{ and } K_{\mu} = X;$
- (ii)  $K_{\alpha} \supseteq K_{\beta}$  for  $1 \leq \alpha < \beta \leq \mu$ ;
- (iii) The set  $W_{\alpha} \equiv K_{\alpha} \setminus K_{\alpha+1}$  is a relatively open dense subset of  $K_{\alpha} \setminus X$  for  $1 \leq \alpha < \mu$ ;
- (iv)  $W_{\alpha}$  is a nonempty pure one-dimensional analytic subvariety of  $\mathbb{C}^n \setminus K_{\alpha+1}$  for  $1 \leq \alpha < \mu$ ;

Received August 23, 1976.

This work was supported in part by the National Science Foundation.

Michigan Math. J. 24 (1977).

- (v)  $\hat{x} \setminus x = U \{ w_{\alpha} : 1 \le \alpha < \mu \}$  is a countable disjoint union of local varieties;
- (vi) If V is any branch (= analytic component) of some  $W_{\alpha}$ , then  $V \subseteq (\overline{V} \cap X)$  and, in particular, branches of the  $W_{\alpha}$  are never relatively compact in  $\hat{X} \setminus X$ .

Theorem 1 raises the question of when  $\mathscr{H}^2(\hat{X}) < \infty$ . We conjecture, for an arbitrary compact subset X of  $\mathbb{C}^n$ , that

$$\mathscr{H}^{2}(\hat{\mathbf{X}}) \leq \frac{1}{4\pi} \left\{ \mathscr{H}^{1}(\mathbf{X}) \right\}^{2}.$$

For absolutely area minimizing minimal surfaces (i.e., when X is a real one-dimensional  $\mathscr{C}^1$  manifold in  $\mathbb{R}^n$  and  $\hat{\mathbf{X}}$  is the minimal surface of smallest area having X as boundary), (\*) is the known [2] "isoperimetric inequality". When X is a finite union of smooth curves, then  $\hat{\mathbf{X}} \setminus \mathbf{X}$  is an analytic 1-variety with boundary contained in X; by a result of Federer [6],  $\hat{\mathbf{X}} \setminus \mathbf{X}$  is absolutely area minimizing, and so (\*) is valid in this case. For an arbitrary X, the conjecture would imply that  $\mathscr{H}^2(\hat{\mathbf{X}}) < \infty$  whenever  $\mathscr{H}^1(\mathbf{X}) < \infty$ , and so  $\hat{\mathbf{X}} \setminus \mathbf{X}$  would be analytic by Theorem 1. Whether or not this is the case is unknown unless X is contained in a *connected* set of finite  $\mathscr{H}^1$  measure; see [1]. For example, it is not known whether or not a totally disconnected set E in  $\mathbb{C}^n$  with  $\mathscr{H}^1(\mathbf{E}) < \infty$  must be polynomially convex. The convexity does follow whenever  $\hat{\mathbf{E}} \setminus \mathbf{E}$  is analytic (and consequently empty), but, as indicated above, this is known only when E lies in a connected set of finite linear measure, which is not always the case, even if E is countable.

## 2. PROOF OF THEOREM 1

Let  $p \in \hat{X} \setminus X$  be chosen to have a neighborhood  $\mathscr{U}$  in  $\mathbb{C}^n$  such that  $\mathscr{H}^2(\mathscr{U} \cap \hat{X}) < \infty$ . According to a result of Bishop ([5], Lemma 8), we may assume, after a complex affine change of coordinates, that p is the origin and that  $\mathscr{U} \cap \hat{X} \cap \{z: z_1 = 0\}$  is totally disconnected. Thus there is an (n-1)-dimensional neighborhood  $\mathscr{N}$  of the origin in the hyperplane  $\{z: z_1 = 0\}$  such that  $\mathscr{N}$  is a relatively compact subset of  $\mathscr{U}$  and  $\partial \mathscr{N}$  is disjoint from  $\hat{X}$ . Therefore, there is a  $\delta > 0$  such that  $\overline{U}_\delta \times \partial \mathscr{N}$  is disjoint from  $\hat{X}$  and  $\Delta = U_\delta \times \mathscr{N}$  satisfies  $\overline{\Delta} \subseteq \mathscr{U}$ , where  $U_\delta = \{\lambda \in \mathbb{C} : |\lambda| < \delta\}$ . Then the boundary Y of  $\overline{\Delta} \cap \hat{X}$  in  $\hat{X}$  is contained in  $\{z: |z_1| = \delta\}$ . By the local maximum modulus principle,  $\hat{Y} = \hat{X} \cap \overline{\Delta}$ . We shall call  $\Delta$  a good neighborhood of p.

Let  $N(\lambda)$  be the number of points in  $\overline{\Delta} \cap \hat{X} \cap z_1^{-1} \{\lambda\}$  for  $\lambda \in \overline{U}_{\delta}$ . Because  $\mathscr{H}^2(\overline{\Delta} \cap \hat{X}) \leq \infty$ ,  $N(\lambda)$  is integrable with respect to planar Lebesgue measure on  $\overline{U}_{\delta}$  (see [7], [1]); it follows that  $N(\lambda)$  is finite a.e. on  $\overline{U}_{\delta}$ . By decreasing  $\delta$  if necessary, we may assume, without loss of generality, that there exist a set  $E \subseteq \partial U_{\delta}$  of positive linear measure and an integer s such that  $N(\lambda) = s$  for  $\lambda \in E$ . By a result of Bishop ([4], p. 497; cf. [1]),  $\hat{Y} \cap \Delta = \hat{X} \cap \Delta$  is an analytic subvariety of  $\Delta$  of pure dimension one. This completes the proof of Theorem 1.

#### 3. PROOF OF THEOREM 2

Recall that  $\mathbf{\hat{X}}\setminus X$  =  $\bigcup$   $\{C_k:~1\leq k<\infty\},$  where the  $C_k$  are compact with  $\mathscr{H}^2(C_k)<\infty.$ 

LEMMA 1. Let L be a compact set with  $X \subseteq L \subseteq \hat{X}$ . Define

 $\theta(L) = \{ p \in L \setminus X : some \ neighborhood \ of \ p \ in \ L \ has \ finite \ \mathcal{H}^2 \ measure \}.$ 

Then  $\theta(L)$  is a relatively open dense subset of  $L \setminus X$ .

*Proof.* Let N be an arbitrary open relatively compact subset of L\X. Then  $N = \bigcup (N \cap C_k)$ . The Baire category theorem applied to the locally compact space N implies that some  $N \cap C_j$  contains an open subset of N; this open set is contained in  $\theta(L)$ . Thus,  $\theta(L)$  is dense in L.

*Remark.* When  $X \subsetneq L \subseteq \hat{X}$ , then  $L \setminus \theta(L)$  is compact and  $X \subseteq L \setminus \theta(L) \subsetneq L$ .

Next we define  $K_{\alpha}$  inductively for all ordinals. Put  $K_1 = \hat{X}$ . Suppose  $K_{\alpha}$  is defined for all  $\alpha < \gamma$ . In defining  $K_{\gamma}$ , there are two possibilities: (a) If  $K_{\alpha} = X$  for some  $\alpha < \gamma$ , put  $K_{\gamma} = X$ ; (b) If  $K_{\alpha} \supseteq X$  for all  $\alpha < \gamma$ , then there are two subcases: (b1) If  $\gamma$  has a predecessor  $\alpha$  (i.e.,  $\gamma = \alpha + 1$ ), put  $K_{\gamma} = K_{\alpha} \setminus \theta(K_{\alpha})$  ( $\subseteq K_{\alpha}$ ); (b2) If  $\gamma$  is a limit ordinal, put  $K_{\gamma} = \bigcap \{K_{\alpha} : \alpha < \gamma\}$ .

Observe that if  $\alpha < \beta$  and  $K_{\alpha} \neq X$ , then  $K_{\alpha} \supsetneq K_{\beta}$ . Let

$$\mu = \min \{\alpha : K_{\alpha} = X\}.$$

We shall show below that  $\mu$  is a countable ordinal. Henceforth, we shall only consider  $K_{\alpha}$  with  $\alpha \leq \mu$ . It is clear that (i) and (ii) are valid. Define  $W_{\alpha} = \theta(K_{\alpha})$  for  $\alpha < \mu$ . Lemma 1 implies (iii).

To verify (iv), we shall prove by induction the following more general statement  $\mathscr{P}(\alpha)$ , for  $1 < \alpha < \mu$ :

$$\mathscr{P}(\alpha) \begin{cases} \text{(a) } W_{\alpha} \equiv K_{\alpha} \setminus K_{\alpha+1} \text{ is a nonempty subvariety of } \mathbb{C}^n \setminus K_{\alpha+1} \text{ of } \\ \text{dimension one.} \\ \text{(b) } K_{\alpha} \setminus X \text{ satisfies the local maximum modulus principle.} \end{cases}$$

*Remark.* We shall say that a closed subset L of  $\mathbb{C}^n \setminus X$  satisfies the *local maximum modulus principle* (LMMP) if, for an open subset  $\mathscr{U}$  of  $\mathbb{C}^n$  with  $\overline{\mathscr{U}} \subseteq \mathbb{C}^n \setminus X$ , we have  $\mathscr{U} \cap L \subseteq (\partial \mathscr{U} \cap L)^{\hat{}}$ ; *i.e.*, for  $x \in \mathscr{U} \cap L$  and f a polynomial,

$$|f(x)| \leq ||f||_{\partial \mathcal{M} \cap I_{\bullet}}$$
.

LEMMA 2. If  $\mathscr{U}_1 \cap L \subseteq (\partial \mathscr{U}_1 \cap L)^{\hat{}}$  for every open subset  $\mathscr{U}_1$  of  $\mathbb{C}^n$  with  $\overline{\mathscr{U}}_1 \subseteq \mathbb{C}^n \setminus X$  for which  $\partial \mathscr{U}_1$  is real analytic, then L satisfies the LMMP.

*Proof.* Given an arbitrary  $\mathscr U$  and a polynomial f, we argue by contradiction and suppose that  $\|f\|_{\mathscr U\cap L}>\|f\|_{\partial\mathscr U\cap L}$ . Let  $E=\{x\in\mathscr U\cap L\colon |f(x)|=\|f\|_{\mathscr U\cap L}\}$ . Then E is compact and disjoint from  $\partial\mathscr U\cap L$ . Choose an open set  $\mathscr U_1$  such that  $E\subseteq\mathscr U_1\subseteq\overline{\mathscr U}_1\subseteq\mathscr U$  with  $\partial\mathscr U_1$  real analytic. By hypothesis, we have

$$\|f\|_{E} \leq \|f\|_{\partial \mathcal{U}_{1} \cap L}.$$

This is a contradiction, as  $\partial \mathcal{U}_1 \cap L \subseteq \mathcal{U} \setminus E$ .

As for  $\mathcal{P}(1)$ , (a) is Theorem 1 and (b) is the usual LMMP due to Rossi [8]. Now we assume  $\mathcal{P}(\beta)$  for  $\beta < \alpha < \mu$  and prove  $\mathcal{P}(\alpha)$ .

We consider two cases in verifying  $\mathscr{P}(\alpha)$  (b): (b1) Suppose  $\alpha$  is a limit ordinal. Then  $K_{\beta} \downarrow K_{\alpha}$  as  $\beta \uparrow \alpha$ . Since the LMMP holds for  $K_{\beta}$  for  $\beta < \alpha$ , we get the LMMP for  $K_{\alpha}$  in the limit. Case (b2): Suppose  $\alpha = \sigma + 1$ . Then  $K_{\sigma} = W_{\sigma} \cup K_{\alpha}$ . Let  $\mathscr{U}$  be open in  $\mathbb{C}^n$  such that  $\overline{\mathscr{U}} \cap X$  is empty and  $\partial \mathscr{U}$  is real analytic. We must verify that  $\mathscr{U} \cap K_{\alpha} \subseteq (\partial \mathscr{U} \cap K_{\alpha})^{\hat{}}$ . Fix x in  $\mathscr{U} \cap K_{\alpha}$  and suppose, by way of contradiction, that  $x \notin (\partial \mathscr{U} \cap K_{\alpha})^{\hat{}}$ . By  $\mathscr{P}(\sigma)$  (b),  $x \in \mathscr{U} \cap K_{\sigma} \subseteq (\partial \mathscr{U} \cap K_{\sigma})^{\hat{}}$ . But  $\partial \mathscr{U} \cap K_{\sigma} = (\partial \mathscr{U} \cap K_{\alpha}) \cup Y$ , where  $Y \equiv \partial \mathscr{U} \cap W_{\sigma}$  is locally a real analytic curve, since, by  $\mathscr{P}(\sigma)$  (a),  $W_{\sigma}$  is a variety. There exists a finite union  $\Gamma$  of subarcs of Y such that  $\partial \mathscr{U} \cap K_{\sigma} = L \cup \Gamma$ , where  $L \supseteq \partial \mathscr{U} \cap K_{\alpha}$  and  $x \notin \hat{L}$  ("fatten"  $\partial \mathscr{U} \cap K_{\alpha}$  to get L). By a theorem of Stolzenberg [11],  $(\partial \mathscr{U} \cap K_{\sigma})^{\hat{}} = (\hat{L} \cup \Gamma)^{\hat{}}$  is an analytic variety of dimension one near x. Hence,  $K_{\sigma}$  has finite  $\mathscr{U}^2$  measure in a neighborhood of x; i.e.,  $x \notin K_{\sigma+1} = K_{\sigma}$ . This is a contradiction.

Next we prove  $\mathscr{P}(\alpha)$  (a) using  $\mathscr{P}(\alpha)$  (b). Fix  $x \in W_{\alpha}$ . Since there is by definition a neighborhood of x in  $K_{\alpha}$  which has finite  $\mathscr{H}^2$  measure, we can apply the construction of a "good neighborhood" in Theorem 1 so that, after an affine change of coordinates, we may assume the following (in the notation of the proof of Theorem 1): x is the origin; there exist a neighborhood  $\mathscr{N}$  of the origin in  $\mathbb{C}^{n-1}$  and  $\delta>0$  such that, if  $\Delta=U_{\delta}\times\mathscr{N}$ , then  $\overline{\Delta}\cap K_{\alpha}\subseteq W_{\alpha}$  and  $K_{\alpha}\cap\partial\Delta\subseteq\partial U_{\delta}\times\mathscr{N}$ ; there exists a set  $E\subseteq\partial U_{\delta}$  of positive linear measure such that  $z_1^{-1}$   $\{\lambda\}\cap Y$  is finite for each  $\lambda\in E$ , where  $Y=K_{\alpha}\cap\partial\Delta$ . Then, as above, we get that  $\hat{Y}\cap\Delta$  is a subvariety V of  $\Delta$  of dimension one and, by  $\mathscr{P}(\alpha)$  (b),  $\hat{Y}\supseteq K_{\alpha}\cap\overline{\Delta}=W_{\alpha}\cap\overline{\Delta}$ .

Let  $V^*$  be the set of regular points of V at which  $z_1$  is regular; *i.e.*, locally one-to-one. Then  $V^*$  is obtained from V by deleting a discrete subset. We claim that  $V^* \cap K_{\alpha}$  is a (relatively) closed and open subset of  $V^*$ . It is closed because  $K_{\alpha}$  is compact. To prove openness, fix  $x \in V^* \cap K_{\alpha}$ . There exists a neighborhood V of V such that V maps V biholomorphically onto a disc

$$\{\lambda \in \mathbb{C}: |\lambda - \alpha| < \delta_0\}.$$

By the LMMP on  $K_{\alpha}$ ,  $x \in (\partial N \cap K_{\alpha})^{\hat{}}$ . As any proper closed subset of the "circle"  $\partial N$  is polynomially convex, we conclude that  $K_{\alpha} \supseteq \partial N$ . By repeating this argument for all  $\delta$  with  $0 < \delta < \delta_0$ , we see that  $K_{\alpha} \supseteq N$ . This is the desired openness. Now, as  $K_{\alpha} \cap \Delta = W_{\alpha} \cap \Delta$  has no isolated points, we conclude that  $W_{\alpha} \cap \Delta$  equals the union of those analytic components C of V for which  $C \cap V^* \cap K_{\alpha}$  is nonempty. This proves (iv).

For (v), take  $x \in \hat{X} \setminus X$ ; we shall show that  $x \in W_{\mathcal{T}}$  for some  $\tau$ . Let  $Q = \{\beta \colon x \not\in K_{\beta}\}$ . Then Q is nonempty, as  $\mu \in Q$ . Therefore, Q has a least element  $\alpha$ . We claim that  $\alpha$  is not a limit ordinal. Otherwise,  $K_{\alpha} = \bigcap \{K_{\beta} \colon \beta < \alpha\}$  and  $x \in K_{\beta}$  for  $\beta < \alpha$  imply  $x \in K_{\alpha}$ , contradicting the fact that  $\alpha \in Q$ . Hence,  $\alpha = \tau + 1$  for some  $\tau$ . Then  $x \in K_{\mathcal{T}}$ , as  $\tau < \alpha$ . Consequently,

$$x \in K_{\tau} \setminus K_{\alpha} = K_{\tau} \setminus K_{\tau+1} \equiv W_{\tau}$$
,

as desired.

From (v), we deduce that  $\mu$  is countable; for  $\hat{X} \setminus X$  is a disjoint union of  $W_{\alpha}$  for  $\alpha < \mu$  and each  $W_{\alpha}$  has positive  $\mathscr{H}^2$  measure, while  $\hat{X} \setminus X$  has  $\sigma$ -finite  $\mathscr{H}^2$  measure, by assumption.

Finally we verify (vi). Let V be an analytic component of some  $\mathbf{W}_{\alpha}$  . We first show

LEMMA 3.  $\overline{V} \setminus X$  satisfies the LMMP.

Proof. Let  $\mathscr W$  be an open subset of  $\mathbb C^n$  with  $\overline{\mathscr W}\subseteq\mathbb C^n\setminus X$ . We must show that  $\overline{V}\cap\mathscr W\subseteq (\overline{V}\cap\partial\mathscr W)$ . By Lemma 2, we may assume that  $\partial\mathscr W$  is real analytic. Arguing by contradiction, we suppose that there is an  $x\in V\cap\mathscr W$  with  $x\notin (\overline{V}\cap\partial\mathscr W)$ . Now  $V\cap\mathscr W$  is a subvariety V' of  $\mathscr W\setminus K_{\alpha+1}$  with "boundary" contained in  $(\overline{V}\cap\partial\mathscr W)\cup (K_{\alpha+1}\cap\overline{\mathscr W})$ . By the LMMP for  $K_{\alpha+1}$ ,  $K_{\alpha+1}\cap\overline{\mathscr W}\subseteq (K_{\alpha+1}\cap\partial\mathscr W)$ . Hence, by the maximum principle, for each  $x\in V'$ ,  $x\in [(\overline{V}\cap\partial\mathscr W)\cup (K_{\alpha+1}\cap\partial\mathscr W)]$ . Let L be a minimal compact set with  $\overline{V}\cap\partial\mathscr W\subseteq L\subseteq (\overline{V}\cup K_{\alpha+1})\cap\partial\mathscr W$  such that  $x\in \hat L$ . Then  $L\setminus \overline V$  is nonempty and  $L\setminus \overline V\subseteq K_{\alpha+1}\setminus X=\bigcup \{W_\gamma\colon \gamma\geq \alpha+1\}$ . The set  $Q=\{\gamma\colon \gamma\geq \alpha+1 \text{ and } (L\setminus \overline V)\cap W_\gamma \text{ is nonempty}\}$  has a minimal element  $\sigma$ . As a consequence,  $L\setminus \overline V\subseteq K_\sigma$ . As  $W_\sigma$  is relatively open in  $K_\sigma$ , it follows that  $(L\setminus \overline V)\cap W_\sigma$  contains a relatively open subset of  $L\setminus \overline V$ . Therefore, in a neighborhood of some point of  $W_\sigma$ , L is (locally) an open real analytic Jordan arc  $\Gamma$ . Let  $L_1=L\setminus \Gamma$ . By minimality,  $\hat L_1$  does not contain x. By Stolzenberg's theorem [11],  $\hat L\setminus (\hat L_1\cup \Gamma)=(\hat L_1\cup \Gamma)^*\setminus (\hat L_1\cup \Gamma)$  is an analytic subvariety of  $\mathbb C^n\setminus (\hat L_1\cup \Gamma)$  containing x.

Let A be an irreducible analytic component of  $\hat{L}\setminus(\hat{L}_1\cup\Gamma)$  containing x. Since  $\overline{A}\setminus A\subseteq \hat{L}_1\cup\Gamma$  and  $x\not\in\hat{L}_1$ , it follows that  $\overline{A}$  contains an open subset of  $\Gamma$  as a relatively open subset of  $\overline{A}\setminus A$ . From this we deduce that  $W_\sigma\cap A$  contains a nonempty open subset of A.

Since  $\hat{X} \setminus K_{\alpha+1}$  is a neighborhood of x in  $\hat{X}$ ,  $x \in A \subseteq \hat{X}$ , and

$$\hat{\mathbf{x}} \setminus \mathbf{K}_{\alpha+1} = \mathbf{U} \{ \mathbf{W}_{\beta} : \beta \leq \alpha \}$$
,

the above argument implies that  $W_{\beta} \cap A$  contains a nonempty open subset of A for some  $\beta \leq \alpha$ .

Now write  $A = \bigcup \left\{A \cap W_{\tau} \colon 1 \leq \tau < \mu \right\}$  and note that  $A \cap W_{\tau} = U_{\tau} \cup D_{\tau}$ , where  $U_{\tau}$  is open in A and  $D_{\tau}$  is countable. Then  $D = \bigcup D_{\tau}$  is countable and so  $A \setminus D$  is connected. But  $A \setminus D = \bigcup U_{\tau}$  is a disjoint union and we know that  $U_{\sigma}$  and  $U_{\beta}$  are nonempty, with  $\beta \leq \alpha < \sigma$ . This contradicts the connectedness of  $A \setminus D$ .

Now (vi) follows by applying the LMMP to a sequence of  $\mathscr{U}_n$  with  $\overline{\mathscr{U}}_n \cap X = \emptyset$  and  $\mathscr{U}_n \cap \overline{V} \uparrow \overline{V} \setminus X$ .

Remark 1. Can we say that  $\hat{X} \setminus X$  is a countable, not necessarily disjoint, union of subvarieties of  $\mathbb{C}^n \setminus X$ ? The answer is no! Put

$$V_1 = \{(z, w) \in \mathbb{C}^2 : |w| < 1, \Re w > 0, \text{ and } z = e^{-1/w} \}$$
.

Then  $V_1$  is a subvariety of  $U^2\setminus V_2$ , where  $V_2=\{(z,w)\in U^2\colon w=0\}$ . Let  $X=\overline{V}_1\cap\partial U^2$  and note that X contains the circle  $\{(z,w)\colon w=0,\ |z|=1\}$ , that  $\hat{X}\setminus X=V_1\cup V_2$ , and that  $V_2\subseteq \overline{V}_1$ . In the notation of Theorem 2:  $\mu=3$ ,  $W_1=V_1$ ,  $W_2=V_2$ . It is not true that  $\hat{X}\setminus X$  is a union of subvarieties of  $\mathbb{C}^2\setminus X$ . For if  $V\subseteq \hat{X}\setminus X$  were a subvariety of  $\mathbb{C}^2\setminus X$  containing a point of  $V_1$ , then V would contain all of  $V_1$ ; hence, as V is closed in  $\mathbb{C}^2\setminus X$ , V would contain

 $\overline{V}_1 \cap (\mathbb{C}^2 \setminus X) \supseteq V_2$ ; *i.e.*,  $V = \widehat{X} \setminus X$ . But this set is clearly not locally a variety at points of  $V_2$ .

Remark 2. Our results carry over to a somewhat different context considered by Basener [3]. Let A be a uniform algebra with maximal ideal space M and Shilov boundary X. Let  $f \in A$  and let  $\mathscr U$  be a component of  $\mathbb C \setminus f(X)$  such that  $f^{-1}\{\lambda\}$  is countable for each  $\lambda \in \mathscr U$ , where we view f as a continuous function on M. For a closed subset L of  $f^{-1}(\mathscr U)$ , define

 $\theta(L) = \{x \in L: \text{ for some neighborhood N of x in L,}$ 

$$f^{-1}\left\{\lambda\right\}\,\cap\,N$$
 is finite for each  $\lambda\,\in\,\mathscr{U}\,\big\}$  .

Basener showed that  $W_1 \equiv \theta(f^{-1}(\mathscr{U}))$  is a relatively open dense subvariety of  $f^{-1}(\mathscr{U})$ . Arguing as in Theorem 2, one shows that  $K_2 \equiv f^{-1}(\mathscr{U}) \setminus W_1$  satisfies the LMMP. Again by Basener's argument,  $W_2 \equiv \theta(K_2)$  is a relatively open dense subvariety of  $K_2$ . Proceeding inductively in this way, one gets a description of  $f^{-1}(\mathscr{U})$  analogous to that of  $\hat{X} \setminus X$  in Theorem 2. In particular,  $f^{-1}(\mathscr{U})$  is a countable disjoint union of local varieties. The example of Remark 1 can be adapted to this setting to show that  $f^{-1}(\mathscr{U})$  is not always a countable union of subvarieties of  $f^{-1}(\mathscr{U})$ .

#### REFERENCES

- 1. H. Alexander, Polynomial approximation and hulls in sets of finite linear measure in  $\mathbb{C}^n$ . Amer. J. Math. 93 (1971), 65-74.
- 2. H. Alexander, D. Hoffman and R. Osserman, Area estimates for submanifolds of Euclidean space. Symposia Mathematica 14 (1974), 445-455.
- 3. R. F. Basener, A condition for analytic structure. Proc. Amer. Math. Soc. 36 (1972), 156-160.
- 4. E. Bishop, Holomorphic completions, analytic continuation, and the interpolation of semi-norms. Ann. Math. (2) 78 (1963), 468-500.
- 5. ——, Conditions for the analyticity of certain sets. Michigan Math. J. 11 (1964), 289-304.
- 6. H. Federer, Some theorems on integral currents. Trans. Amer. Math. Soc. 117 (1965), 43-67.
- 7. ——, Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer Verlag, New York, 1969.
- 8. H. Rossi, The local maximum modulus principle. Ann. Math. (2) 72 (1960), 1-11.
- 9. N. Sibony, Multidimensional analytic structure in the spectrum of a uniform algebra. Appeared in Spaces of analytic functions, Kristiansand, Norway, 1975. Lecture Notes in Mathematics 512, Springer Verlag, New York, 1976.
- 10. G. Stolzenberg, *Volumes*, *limits*, and extensions of analytic varieties. Lecture Notes in Mathematics 19. Springer Verlag, New York, 1966.
- 11. ———, Uniform approximation on smooth curves. Acta Math. 115 (1966), 185-198.
- 12. J. Wermer, The hull of a curve in  $\mathbb{C}^n$ . Ann. Math. (2) 68 (1958), 550-561.

Department of Mathematics
University of Illinois at Chicago Circle
Box 4348
Chicago, Illinois 60680