STRUCTURE OF CERTAIN POLYNOMIAL HULLS
H. Alexander

1. INTRODUCTION

Let X be a compact subset of C" with X its polynomially convex hull. Condi-
tions on X are known which ensure that X\ X is a (possibly empty) complex analytic
subvariety of C’\X of pure dimension one. The case for X being a smooth curve
was treated by Stolzenberg [11] and for X a connected set of finite linear measure,
by the author [1]. The basic ideas in the subject were introduced by Wermer [12]
and Bishop [4]. Whenever the set X\ X is an analytic set of pure dimension one, it
has locally finite “area”. This is because pure k-dimensional subvarieties of C"
have locally finite #2K measure [10], where &S is s-dimensional Hausdorff
measure. Our first result is a converse. It is also contained in the work of N.
Sibony ([9], Theorem 17, p. 158). We have included a proof as a steppingstone for
the generalization in Theorem 2 below.

THEOREM 1. Let X be a compact subset of C*. If #°X\X) < o, then X\ X
is an analytic subvariety of C*\X of dimension one. Move genevally, if a point of

X\X has a neighbovhood of finite % measuve, then X is locally a pure one-
dimensional variety in a neighbovhood of the point.

When the hypothesis of this theorem fails, it may occur that 5(\X can be a
countable union of varieties, without being a subvariety of C"\X. For example, let
A be a countable compact subset of € which is #o¢ discrete in its relative topology.
Put X =T X A C C?, where T is the unit circle. Then X\X =U X A (where U is
the open unit disc) falls locally to be a variety at each point (z, «)

which « is a cluster point of A. Notice that the set X\X has o-finite &2 meas-

ure. (We will take this to mean that X\X is a countable union of compact subsets
each of which is of f1n1te H° measure.) The next result describes the structure of
a hull with o-finite % measure.

THEOREM 2. Let X be a compact subset of C™ such that X\ X has o -finite
¢ measuve. Then there exist a countable ovdinal yu (possibly an integev) and a

Jamily of compact sets K, with X C K, C f(, defined for each orvdinal 1 < a <y,
such that

(i) Ky =X and K, =X%;
(ii) Ka?Kﬁfor 1<a <B<y;
(iii) The set Wy = Koy \ Ky 11 is a velatively open dense subset of Koy \X for
1<a<p;

(iv) Wy is a nonempty pure one-dimensional analytic subvaviety of C*\Kyy,
Jor 1 <a <u;
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(v) X\X = U {Wgy: 1 <a< 1} is a countable disjoint union of local varieties;

(vi) If V is any branch (= analytic component) of some Wq , then V C (VN X)
and, in particular, branches of the Wa are never relatively compact in X\ X.

Theorem 1 raises the question of when #2(X) < . We conjecture, for an arbi-
trary compact subset X of C", that

(*) 2<x)< - {a'(0)}°.

For absolutely area minimizing minimal surfaces (i.e., when X is a real one-
dimensional #! manifold in IR™ and X is the minimal surface of smallest area
having X as boundary), (*) is the known [2] “isoperimetric inequality”. When X is a
finite union of smooth curves, then X\ X is an analytic 1-variety with boundary con-
tained in X; by a result of Federer [6], 5(\X is absolutely area minimizing, and so
(*) is valid in this case. For an arbitrary X, the conjecture would imply that

o 2(X) < © whenever #!(X) < o and so X\ X would be analytic by Theorem 1.
Whether or not this is the case is unknown unless X is contained in a connected set
of finite &1 measure; see [1]. For example, it is not known whether or not a totally
disconnected set E in C™ with s !(E) < « must be polynomially convex. The con-
vexity does follow whenever E\E is analytic (and consequently empty), but, as indi-
cated above, this is known only when E lies in a connected set of finite linear meas-
ure, which is not always the case, even if E is countable.

2. PROOF OF THEOREM 1

Let p e 5(\X be chosen to have a neighborhood % in C" such that
A 2(% N X) <o, According to a result of Bishop ([5], Lemma 8), we may assume,
after a complex affine change of coordinates, that p is the origin and that

wnXn {z: z; =0} is totally disconnected. Thus there is an (n - 1)-dimensional
neighborhood .# of the origin in the hyperplane {z: z] = 0} suchthat .# is a rela-

tively compact subset of % and 0.4 is d1s101nt from X. Therefore, there is a

6 > 0 such that U5 X 94 is disjoint from X and A = Ug X A satisfies ACa,
where Ug = {\ € C: [A| < 6}. Then the boundary Y of A n X in X is contained in
{z {zl f = 6} By the local maximum modulus principle, Y =X NA. We shall call
A a good neighborhood of p.

Let N(1) be the number of points in ANXn z'l {1} for A € Ug. Because
#%(A NX) <o, NQ) is integrable with respect to planar Lebesgue measure on Ug
(see [7], [1]); 1t follows that N()) is finite a.e. on Ug. By decreasing 6 if neces-
sary, we may assume, without loss of generality, that there exist a set E C 90Uy of
positive linear measure and an integer s such that N(A) = s for A € E. By a result
of Bishop ([4], p. 497; ¢£. [1]), Y N A =X N A is an analytic subvariety of A of pure
dimension one. This cqmpletes the proof of Theorem 1.

3. PROOF OF THEOREM 2

Recall that X\ X = U {Ck: 1 <k <=}, where the C; are compact with
WZ(Ck) < o0,
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LEMMA 1. Let L be a compact set with X C L C X. Define

o(L) = {p € L\X: some neighborhood of p in L has finite # % measure} .

Then 6(L) is a velatively open dense subset of L\X.
Pyoof. Let N be an arbitrary open relatively compact subset of L\X. Then

N = U (N N Cy). The Baire category theorem applied to the locally compact space
N implies that some N N C; contains an open subset of Nj; this open set is contained
in 6(L). Thus, 0(L) is dense in L.

Remark. When X - L C X, then L\ 6(L) is compact and X C L\ (L) - L.
Next we define Ko inductively for all ordinals. Put K; =X. Suppose K, is

defined for all @ < . In defining K,, there are two possibilities: () If Ky =X
for some a < vy, put K =X; (b) If Ka :J X for all a <1y, then there are two sub-

cases: (bl) If ¥ has a predecessor « (z e., y=a+1), put K, =Ky \ 0(Kg) (C Ka);
(b2) If v is a limit ordinal, put K, = N {Kqy: a <7}
Observe that if a < and Ky # X, then Ky ? Kg. Let

g = minimum {a: K, = X}.

We shall show below that g is a countable ordinal. Henceforth, we shall only con-
sider Ky with @ < p. It is clear that (i) and (ii) are valid. Define Wy = 6(Kgy) for
a < p. Lemma 1 implies (iii).

To verify (iv), we shall prove by induction the following more general statement
P(a), for 1< a < p:
(a) Wo = Ky \Kq +1 is a nonempty subvariety of €C"\Kgy+; of

P(a) dimension one.
(b) Ko \ X satisfies the local maximum modulus principle.

Remark. We shall say that a closed subset L of C"\ X satisfies th local max-
imum modulus principle (LMMP) if, for an open subset @ of €™ with  C C"\X,
we have N L C (0% N L)"; i.e., for x € % N L and f a polynomial,

1) | < ltllgany -

. LEMMA 2. If w1 " LC (021 N L)" for every open subset 2| of C" with
U, € C"\X for which 3%, is veal analytic, then L satisfies the LMMP.

Proof. Given an arbitrary % and a polynomial f, we argue by contradiction and
suppose that [|f]5 0 > [tllomnr - Let E={x e @ n L: |fx)]| = [[flany}-
Then E is compact and disjoint from 9% N L. Choose an open set % ; such that
Eca, < %, C % with 9%, real analytic. By hypothesis, we have

[l < ”f”a?/ AL-"

This is a contradiction, as 92y N L C % \E.
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As for #(1), (a) is Theorem 1 and (b) is the usual LMMP due to Rossi [8]. Now
we assume £ (B) for 8§ < a < pu and prove Z(a).

We consider two cases in verifying #(a) (b): (bl) Suppose @ is a limit ordinal.
Then Kﬁ | Ky as B8 1 a. Since the LMMP holds for Kg for B < a, we get the LMMP
for Kg in the limit. Case (b2): Suppose @ =0 + 1. Then Ky = Wy U Ky . Let &
be open in C" such that % N X is empty and 8% is real analytic. We must verify
that # NK, € (e N Ka)A . Fix x in % N K, and suppose, by way of contradic-
tion, that x ¢ (3% N Ku)”. By #(0) (b), x e N Ky C (3% N K;)™. But
0% N Ky = (@2 N Ky) UY, where Y = 3 N W is locally a real analytic curve,
since, by #(0) (a), W is a variety. There exists a finite union I' of subarcs of Y
such that 3% N Ky =L U T, where L D 0% N Ky and x ¢ L. (“fatten” 9% N Ky to
get L). By a theorem of Stolzenberg [11], (3 N Ky)~ = (L. UT)" is an analytic
variety of dimension one near x. Hence, K; has finite % measure in a neighbor-
hood of x; i.e., x ¢ K511 =Ky . This is a contradiction.

Next we prove £ (a) (a) using (@) (b). Fix x € Wy . Since there is by defini-
tion a neighborhood of x in K, which has finite 2 measure, we can apply the
construction of a “good neighborhood” in Theorem 1 so that, after an affine change
of coordinates, we may assume the following (in the notation of the proof of Theorem
1): x is the origin; there exist a neighborhood . of the origin in €*~! and 6 > 0
such that, if A =Ug X A4, then A N K, € Wy and Ky N 9A C aUg X A; there exists
a set E C 0Ug of positive linear measure such that zil {1} N Y is finite for each
X € E, where Y =Ky N 9A. Then, as above, we get that Y N A isa subvariety V
of A of dimension one and, by #(a) (b), YD Kqg N A=W, NA,

Let V* be the set of regular points of V at which z;| is regular; i.e., locally
one-to-one. Then V* is obtained from V by deleting a discrete subset. We claim
that V* N Ky is a (relatively) closed and open subset of V*. It is closed because
Ky is compact. To prove openness, fix x € V¥ N Ky . There exists a neighborhood
N of x in V* such that z1 maps N biholomorphically onto a disc

{xecC:|n-al <354}

By the LMMP on Ky, x € (N N Ka)'\. As any proper closed subset of the “circle”
oN is polynomially convex, we conclude that K, 2 aN. By repeating this argument
for all 6 with 0 <6 < &, we see that K, D N. This is the desired openness. Now,
as Kg N A =Wy N A has no isolated points, we conclude that Wy N A equals the
union of those analytic components C of V for which CN V* N Ky is nonempty.
This proves (iv).

For (v), take x € X\ X; we shall show that x € W, for some 7. Let
Q={B:x ¢ Kg }. Then Q is nonempty, as 1 € Q. Therefore, Q has a least ele-

ment a. We claim that « is not a limit ordinal. Otherwise, Ky = ﬂ {KB: B<at
and x € Kg for g < a imply x € Ky, contradicting the fact that @ € Q. Hence,
a =7 +1 for some 7. Then x € K, as 7 < a. Consequently,

x eKr\Kg = K \Kryp = W,

as desired.

From (v), we deduce that p is countable; for X\X is a disjoint union of Wy
for ¢ < p and each W, has positive % measure, while X\ X has o-finite 2
measure, by assumption.
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Finally we verify (vi). Let V be an analytic component of some W, . We first
show

LEMMA 3. V\X satisfies the LMMP.

Proof. Let % be an open subset of C" with % C C™\ X. We must show that
vna c(Vn 8021) . By Lemma 2, we may assume that 8% is real analytic. Argu-

ing by contradiction, we suppose that there is an x € V N % with x ¢ (V N aJ?/)A
Now V N % is a subvariety V' of % \ Ky +; with “boundary” contained in

(VNoaa)u (Kyy N%). By the LMMP for Kypp, Kyl N % € (Kgyp N au)
Hence, by the maximum principle, for each x € V', x € [(V N a#) U (Kyy1 No%)] .
Let L be a minimal compact set with VN a# C L C (V U Ky ;) N 8% such that

x € L. Then L\V is nonempty and L\V CKgyy4 \X = U {W y>a+ 1}. The set
Q={y:y>a+1 and L\V) N W, is nonempty} has a m1n1ma1 element 0. As a
consequence, L\VC Ky . As W, is relatively open in Ky, it follows that

(L\V) 1 W, contains a relatively open subset of L\V. Therefore, in a neighbor-
hood of some point of W, L is (locally) an open real analytic Jordan arc T'. Let

L; = L\T. By minimality, il does not contain x. By Stolzenberg’s theorem [11],
L\(L; uT)=(L;UT) \(L; UT) is an analytic subvariety of €*\(L; U I') con-
taining x.

Let A be an irreducible analytic component of L\ (L1 U I') containing x. Since
A\ A c Ll UT and x ¢ Ll, it follows that A contains an open subset of T' as a

relatively open subset of A\ A. From this we deduce that Wg N A contains a non-
empty open subset of A.

Since 5(\Ka+1 is a neighborhood of x in f(, X €A g:_f(, and

X\K,,, = U {wg:p<al,

the above argument implies that Wg (1 A contains a nonempty open subset of A for
some B < a.

Now write A = U {ANW;:1<7<p} and note that ANW; =Us U Dy,
where U is openin A and D, is countable. Then D = U D, is countable and so

A\D is connected. But A\D = U U; is a disjoint union and we know that Uy and
UB are nonempty, with 8 < o < o. This contradicts the connectedness of A\D.

Now (v1) follows by applying the LMMP to a sequence of % with J?—I—n NX=¢g
and %, NV 1 V\X.

Remark 1. Can we say that 5(\X is a countable, not necessarily disjoint, union
of subvarieties of C™\X? The answer is no! Put

V) = {(z, w) e C%: |W| <1, ftw > 0, and z=e"1/W} .

Then V) is a subvariety of U%\V,, where V, = {(z, w) € U%:w=0}. Let

X = V) N 3U?% and note that X contains the circle {(z, w): w =0, |z| =1}, that
X\X =V U V2, and that V2 C V. In the notation of Theorem 2: y = 3, W, =V,
W, = - V2. It is not true that X\X is a union of subvarieties of C2\X. For if

V C X\ X were a subvariety of C2\X containing a point of Vj, then V would
contain all of V;; hence, as V is closed in CZ\X, V would contain
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vV, N(C2\X) D> V,; de., V= X\X. But this set is clearly not locally a variety at
points of V.

Remark 2. Our results carry over to a somewhat different context considered
by Basener [3]. Let A be a uniform algebra with maximal ideal space M and Shilov
boundary X. Let f € A and let % be a component of C\ f(X) such that f-1{a} is
countable for each X € %, where we view f as a continuous function on M. For a
closed subset L of f-1(#), define

0(L) = {x € L: for some neighborhood N of x in L,
£-1{3} N N is finite for each x € %} .

Basener showed that W) = 6(f-1(#)) is a relatively open dense subvariety of
£-1(%). Arguing as in Theorem 2, one shows that K, = £-1(%)\ W; satisfies the
LMMP. Again by Basener’s argument, W, = 6(K;) is a relatively open dense sub-
variety of K, . Proceeding inductively in this way, one gets a description of £-1(a)
analogous to that of X\ X in Theorem 2. In particular, f-1(#%) is a countable dis-
joint union of local varieties. The example of Remark 1 can be adapted to this set-
ting to show that f-!1(4/) is not always a countable union of subvarieties of f-1(#).
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