COMPACT FAMILIES OF UNIVALENT FUNCTIONS
Eric P. Kronstadt

Let D be a proper domain in the complex plane C, H(D) the space of holomor-
phic functions on D, and Hy(D) the subset of univalent functions in H(D). We endow
H(D) with the topology of uniform convergence on compact sets. If
L=(£;, £2, *--, £,) is an n-tuple of continuous, linearly independent, linear
functionals on H(D), and Q = (q;, q2, ***, q,) € C", define

F(, L, Q) = {t e H(D): L) = Q}.

In [1], Hengartner and Schober proved

THEOREM A. If & = (D, (£, £,), (a1, 42)) is nonempty, and (L, £,)
satisfies
(*) 01(1) 2,(g) # £,(1) ¢4(g), for every g € H (D),

then & is compact. Moveover, if D has a “strongly dense boundary” and F is non-
empty and compact, then (*) holds.

This paper is concerned with generalizing Theorem A to the case of more than
two linear functionals.

Clearly, if (*) held for one pair of the n linear functionals £;, £, -+, £,, then
¥ (D, L, Q) would be compact whenever it were nonempty. On the other hand, as the
following example shows, % may be compact even if (¥) fails for each pair of the n
linear functionals.

Example. Let D be the unit disk A = {z: |z| <1}; let ¢,(f) = £"(0) +£'(0),
2,(f) = £(0), £3(f) =£"(0); and let q; = 1, qz =q3 = 0. If I(z) =z, then I € # (4, L, Q);
so ¥ (A, L, Q) is nonempty. Clearly,

F(b, L, Q = {f € Hy(a): £(0) =0, £(0) = 1} N {f € H(A): £"(0) =0} .
The first set on the right-hand side is well known to be compact, and the second is
closed. Therefore, % (A, L, Q) is nonempty and compact. On the other hand, if

h(z) =z - z2/2, then h € H,(A), and

0

2,(1) 2,(h) = £,(1) £,(h)

0,(1) 251 = 25(1) £,(1)

i
I

0,(1) 25(0) = £5(1) 2,(1) .

Thus, (*) fails for each pair of the three linear functionals.

The generalization of Theorem A we wish to explore arises from the following
observation. Let Ker(L) denote the kernel of L.
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PROPOSITION 1. If L =(;, £,), then (*) is equivalent to
(**) Ker(L) N (H,(D) U {1}) = &.

Pyoof. Clearly, (*) implies (**). Conversely, suppose (*) fails to hold; i.e.,
2;(1) £,(g) = £2(1) £;(g) for some g in H,(D). Thenif 1 ¢ Ker(L), either
g - £;(g)/2,(1) € Ker(L) N Hy(D) if £;(1) # 0,
or

g - £,(g)/L,(1) € Ker(L) N H (D) if £,(1) # 0.

Hence, (**) fails to hold.

We conjecture that for ¥ = #(D, L, Q) nonempty, ¥ is compact if and only if
(**) holds. We prove half of this conjecture.

THEOREM. If & = (D, L, Q) is nonemply and (**) is satlisfied, then F is
compact.

In order to prove the theorem, we need the following simple lemma.

LEMMA 1. Suppose L satisfies (¥*). Then for each f in H, (D), L(f) and L(1)
ave linearly independent.

Proof. If the lemma were false, there would be a function f in H,(D) and a
complex constant @ for which f - & € H,(D) N Ker(L).

Proof of theorem. Fix z; in D. We will find constants m, Mg, and M; such
that # is the intersection of the compact set

{f e H(D): |f(z0)| < Mo, m < [f'(z0)| <M}

and the closed set {f € H(D): L(f) = Q}.
Observe first that the set S = {f € Hy(D): f(zy) =0, f'(zy) = 1} is compact, and

£y, £5, +=+, £, are continuous. Therefore, for some constant M, and for every h
in S,
(1) | ;)] <M, j=1,2 -, n.

Now let f € #. Then £(z) =ay+ a) h(z), where h € S, ag = f(zp), and
a; =1f'(zg). Applying 2; , we have

(2) q_] = 'Q_](f) = ap QJ(I) + a’l ﬂ‘](h), ] = 1, 2, tee, N,

Since # is nonempty, it follows from Lemma 1 that Q and L(1) are linearly
independent. Consequently, there is a polydisk in C", centered at Q, disjoint from
the one-dimensional subspace spanned by L(1). In other words, there is a positive

constant r(, depending only on Q and L(1), such that

(3) max ICIj - aﬂj(1)| > rgy, forevery o€ C.
J

From (1), (2) and (3), we deduce rO/[a1| < M. Therefore,

lall = lf'(zo)l > m =r,/M,
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Next suppose for each positive integer k, there is a function f, in ¥ such that
|fi(zg)| > k. Then, as before, f,(z) = aglk) +a;(k) hy(z), where h,(z) € S,
ao(k) = fk(Zo) and al(k) = fk(ZO) Now

- _Q
(4) L(hk) = al(k) - al(k)

Since S is compact, there is a subsequence hy(;) which converges to hg € S. On
this subsequence, the left-hand side of (4) converges to L(hg). Consequently, the
right-hand side of (4) must converge, and since ]al(k)l — oo, the limit must have the
form a L(1). Hence, L(hy) and L(1) are linearly dependent, contradicting Lemma 1.
Therefore, there is a constant M; such that |f'(zg)| <M, for all f in &,

Finally, suppose for each positive integer k, |f,(z¢)| >k, for some f) in .
Then, as before,

fi(z) = ag(k) +a;(k) hy(z),
q; = ﬁj(fk) = a—o(k) ﬁj(l) + al(k) ﬂj(hk)’

where hy € 8, ag(k) = fi(z¢), and a;(k) = fi(z¢). Since 1 ¢ Ker(L), £;(1) # 0 for
some j, 1 <j<n. For that fixed j,

lg;| > k|40 - [a,00)] |5 ] > k|g5(D)] - MM, .

The right-hand side of the above inequality tends to « as k increases, but the
left-hand side remains constant. From this contradiction, we conclude that there
exists a constant M, such that |f(zo)| <My, for all f in #.

It is not clear whether (**) is a necessary condition for compactness when
n > 2. We note that if 1 € Ker(L), then #(D, L, Q) is noncompact whenever it is
nonempty. Therefore, the necessity of (**) follows from the statement: “If there is
a function in H,(D) N Ker(L), then for every Q in C", #(D, L, Q) is either empty
or noncompact”. We are able to prove two weaker versions of this statement.

PROPOSITION 2. Let D be simply connected. If there is a function in
H (D) N Ker(L) whose vange is not dense in C, then, for every Q in C*, ¥(D, L, Q)
is nonempty and noncompact.

PROPOSITION 3. Let D be simply connected, let n =3, and assume
1 ¢ Ker(L). If theve is a function in H,(D) N Ker(L) whose range omits a line seg-
ment, then, for every Q off some (real) hypevsurface in R® = €3, #(D, L, Q) is
nonempty and noncompact.

The proofs of both propositions are based on the following two observations.
First, if f € H(D), and we define f € H(D X D) by f(z, w) = (f(z) - f(w))/(z - w), then
f € H,(D) if and only if f(z, w) is never 0. In some ways, f behaves like a deriva-
t1ve of f; indeed, (z, z) = f'(z), f is constant if and onlyif f = 0, T= 1, and
t o glz, w) =Tlglz), gw)) gz, ).

The second observation is the following:

LEMMA 2. Suppose D is simply connected, and T is an avc in C\ D. Then

theve ave points ay, ap, ***, a, on T such that {L(1/(z - aj))};l:l is a basis for
cn.
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Proof. We generalize an argument of Hengartner and Schober. If £ is a contin-
uous linear functional on H(D), it can be represented by a measure . whose support
is a compact set E C D; that is,

o) = S f(s) du(s), for f e H(D).
E

(See Corollary 4.3 of [2].) One can assume E is simply connected. Let

Fylz) = 5 (¢ - z)"1du(¢). Then Fg e HC\ E), and Fyp = 0 on C \ E if and only if
E

2= 0 on H(D). (See Corollary 4.4 of [2].) We will say a compact set E is a support

of £ if it supports a measure representing £.

Let E be a simply connected compact subset of D containing supports of
Ly, Ly, =0y £, I Fﬂ (z) = 0 on T, then Fﬁ =0 on C\ E. Consequently, £; = 0
on H(D), contradicting the assumption of 11near independence of £;, £,, ---, £,
Therefore, Fg (a;) # 0, for some a; on T. If f,(z) = 1/(z - a)), then f, € q (D)

and £,(f;) = Fﬂl(al) # 0.

Now suppose we have found a;, ap, -+, a on I' (k <n) such that if
f; (z) =1/(z - a) then the k X k matrix A, = (¢ (f )) is nonsingular. Since the rows

of Ay are 11nearly independent, there are constants Qy, «-+, & such that
(5) O1 (£ Z)a (), for j=1, -, k.
We claim
k
(6) 2 a. FQ (z) -FQ (z);‘éO on I'.
i=1

Otherwise, if £ = EIE:I o5 €; - €x+1, then £ would be a continuous linear functional
on H(D) with support in E, and Fy would be given by the left-hand side of (6). If

=0 on I, then Fy = 0 on C \ E, and consequently ¢ = 0 on H(D), again contra-
dicting the linear independence of £;, ---, £,.

Therefore, there is a point a; ; on I' such that the function

fi+1(2) = 1/(z - ag4y)
satisfies
k k
(7) 21; a;,Fy (ak+1) ng 1(ak+1) 'El @ 4;(fyq1) - Gegy(fiqy) # 0.
i= i=

If Ap,y isthe (k+1)x (k+1) matrix (£(f;)), the determinant of Ay, is un-
changed if each of the first k rows is multlphed by the corresponding @; and sub-
tracted from the last row. From (5) and (7), it is clear that
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K
Det Ay, = +(Det Ak)(:/ o; 0(feqy) - ﬁk+1(fk+1)) # 0.

i=1

By induction, we can choose aj, ---, a, on I' such that if fi(z) = 1/(z - a;j), then the
n X n matrix A, = (£;(f;)) is nonsingular. This proves the lemma.

Proof of Proposition 2. We are given f in Ker(L) n H (D), and D* = {(D) is not
dense in C. If we let L*: H(D*) — €™ be the linear transformation L*(g) = L(g o f),
we see that #(D, L, Q) is compact and/or nonempty if and only if #(D*, L*, Q) is.
Also, D* is simply connected and not dense in C, and the identity function I is in
Ker(L*). Let £ be an open subset of C \ D*, let T" be a closed arc in £, and let
aj, *=-, a, be points on I' obtained by applying the above lemma to L* and D*.

Fix Q in C*. Then Q= L*(F), where F(z) = 2Jj.) b;/(z - aj), for suitably
chosen constants by, -+, by. Let 0 be the distance from I to D*, and let
f5(z) = 1/(z - aj). Then ¢ > 0, and

1
|z - a;| |w - a]

I?j(zg W)! =

S_]:E: i=1,2, -, n.
o
Consequently, |F(z, w)| < nM/o2 for every (z, w) in D* x D*, where
M = max(|by|, -+, |bn|). Now if N> 1 and Gy = (NnM/o 2)z + F(z), then for every
point (z, w) in D* x D*, [E}N(z, w)[ > nM(N - 1)/0%. Thus, Gy € H, (D). Since
I € Ker(L*), L*Gyn) = L*(F) = Q. Hence, {GN}N=2 is an infinite sequence in
F (D*, L*, Q) with no converging subsequence. Therefore #(D*, L*, Q), and con-
sequently #(D, L, Q), is nonempty and noncompact.

Proof of Proposition 3. By hypothesis, L(1) # 0. As in the proof of the above
proposition, we may assume D omits a line segment I, and the identity I is in
Ker(L). Let a;, a,, and a3 be points on I' obtained by applying Lemma 2 to a
proper subinterval of I', so that none of the three points is an endpoint of I'. The
vector L(1) and two of the vectors L(1/(z - aj)), say L(1/(z - a,)) and
L(1/(z - a,)), form a basis for C3. Let % be the real hypersurface in R® = €3
defined by

R = {a(L(Z -1a1) —pL(z_laZ))+yL(1): o,y €C, p € IR, pZO}.

We will show that if Q ¢ %, then (D, L, Q) is nonempty and noncompact.

For a€ C, r>0,and 0< 6 <2, let Ala, 1) ={z € C: |z - a|] <r},
Ala, r, 0) ={a+seilf: -2r <s<2r}, and Ula, r, 6) = z + (reif)2/(z - a). Then
U(a, r, 6) maps the complement (A(a, r))¢ conformally onto (A(a, r, 6))€. Now

) (reie)z
(z-a)(w-a)’

Ula, 1, 6) (2, w) = 1

so U(a, r, 6) maps (A(a, 1))° X (A(a, r))° into A(1, 1). Consequently, if
V(a, r, 6)(z) =U(a, r, )1 (z), then

V(a, r, 6)(z, w) =|:1 - (reie)z jl-l
» T VI (V(a, T, 0)(z) - a) (V(a, T, 6) (W) - a) | °
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and V(a, r, 6) maps (A(a, r, 6))° X (A(a, r, 6))¢ into the half-plane
{z: % (z) > 1/2}. Also, outside A(a, 2r), the function V(a, r, 6) has Laurent
expansion

Return now to the points a; and a on I'. If Q ¢ &, then

Q = L(a/(z - a;) +B/(z - az) + )

for some a, B, vy € C, where 8 # 0 and /B lies off the negative real axis. If 0 is
the angle of inclination of the line segment T, let V;(z) = V(a;, r, 6)(z) and

V,(z) = V(a,, r, 6)(z), where r is chosen very small. More precisely, r should be
chosen so small that the Laurent expansions of V; and V, are valid on the supports
of measures representing L, so that

L(V;) = -r2[e210 1,(1/(z - a;)) +0(r)], j=1,2.

(Recall that L(I) = 0.) Consequently, we can take r so small that L(V;), L(V;), and
L(1) are linearly independent, and Q = L{a'V, +8'V, +v') for some a', 8', y' € C,
where B8' # 0 and a'/B' is nonnegative. Finally, we choose r so small that

V,, V, € H(C\ I'), and

(8) |Vi(z) - ai| < 2r = le(z) - ajl > 2r,

for i, j=1,2, i # j. (To see that this is possible, note that the level curves
|Vi(z) - a;] =rc (c > 1) are ellipses centered at a;, whose major axes coincide
with I' and have length 2r(c + 1/c).)

Now let F(z) = a'V(z) +8'V,(z) +y'. Then L(F) = Q, but F need not be uni-
valent. Consider

F(z, w) = a'V,(z, w) +8'V,(z, w),
~ _ r2e2it L
where VJ-(z, w) —I: 1- (Vj(z) - aj) (Vj(w) - aj):l , j=1, 2.

If z and w are both near a;;i.e., if |Vi(z) - a;| <2r and |Vi(w) - a;| < 2r,
then |Vp(z) - ap| > 2r and |Va(w) - az| > 2r. Thus, |B'Va(z, w)| < (4/3)|8'|, and
therefore F(z, w) lies in the half-plane £; defined by

Q= {zn@z/|a']) > (1/2)]a'] - (4/3)|8'|}.

Similarly, if z and w are both near a,;i.e., if |V,(z) - a,| < 2r and
|V,(w) - a,| <2r, then F(z, w) lies in the half-plane Q, defined by

Q, = {z: (@ z/|8']) > (1/2)]8'] - 4/3)|e"'|}.

In all other cases, either IVj(z) - aj| > 2r or !Vj(w) - ajl > 2r, for each j =1, 2.
But z, w € D implies IVj(z) - aj] >r and IVj(w) -ELJ-I >r for j=1, 2. Conse-
quently, if z and w are not both near the same aj, F(z, w) lies in the disk

Qo= {z: |z| <2(|]a'| +|8'])}. Hence, F(IDXD)C Qo U Q; U ;.
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Let a' = |a'| el and B' = |B8'| ei¥, where 0 < ¢, ¢ < 27. Then
0< ]qb - 1,!/|/2 < 7, and, since a'/B' is nonnegative, |¢ - z,b]/z # 7/2. Let

SeC("—'——'Iqb;lpl)

¥ 0< [¢ - ywl|/2 <u/2, let Ay = -Nell®+¥)/2  Then aya'/|a'] = -Net¥-9)/2 oo
___.—a_T - _ ¥ - ¢ .1‘. t _é. '

m(ANlall)—Ncos( 5 )<2|a| 5 18'].

Hence, Ay ¢ ©; . Similarly,

t 4 ! 1 1] 4 1 1
N> max (2(]or| + 18], [ale| - 216l |, [&16] - Lerl]).

gl(xN_B__ = _Ncos(iﬁi'_‘k) <Lip -2 e,
' 2 2 3
|8']
and Ay ¢ Q,. The choice of N guarantees that Ay ¢ Q. If, on the other hand,
7/2 < lqb - 1//|/2 <, let Ay = Nel(¢+¥)/2 , and apply a similar argument to show that
AN ¢ Q00U Q1 U Q5.

Finally, let Fp(z) = -Anz + F(z). Then Fn(z, w) = -Ayn + F(z, w). Since
F(DXD)C QoU ©) U, and AN ¢ R0 U € U 22, it follows that 0 ¢ Fn(D x D),
and therefore Fp € Hy(D). But since L(I) = 0, L(Fy) = L(F) = Q. Hence,

Fn € #(D, L, Q). Letting N — =, we get a sequence in #(D, L, Q) with no converg-
ing subsequence; hence, #(D, L, Q) is nonempty and noncompact.

Remarks. (1) It is clear from the proof that the surface % depends on the
choice of a; and a;. Presumably a different choice for a; and a, might result in a
new surface #', and then (D, L, Q) would be nonempty and noncompact for all
Q¢ # N ®'. It seems plausible that by taking several choices of a; and a, we
could prove that #(D, L, Q) is nonempty and noncompact for every Q in €C3. More-
over, even if we do not vary a; and a,, the restriction that Q ¢ # is made so that
o /B is nonnegative, and consequently, if we choose r sufficiently small, «'/B' is
nonnegative. It is possible that even if Q is on £, an appropriate choice of r would
still leave a'/B' nonnegative. It is also possible that different choices of r for a,
and a, would keep o'/B' nonnegative. Unfortunately, examples exist where none of
these arguments work.

(2) The example of a triple of functionals £, ¢,, 3 for which (*) fails for
each pair seems somewhat contrived since (*) clearly holds for ¢, and the linear
functional £; - £5. This observation leads to another possible generalization of (*):

(%) There are two linearly independent vectors in C*, (o}, -+, a,) and

(B1, ***, Bn), such that condition (*) is satisfied by the two linear func-

i 20y o 0. and 2rsoq Bids

tionals j=1 95 ¢; an 5=1 B 4.
Both conditions (*¥*) and (¥**) are statements about the range R of L on
H,(D) U {nonzero constants}. Condition (**) says that 0 ¢ R, and it is possible to
show, using Proposition 1, that condition (***) holds if and only if R does not inter-
sect an (n - 2)-dimensional subspace of C".

Condition (***) is clearly stronger than condition (**), so it is a sufficient con-
dition for #(D, L, Q) to be compact whenever it is nonempty. (This can be proved
directly from Theorem A.) We have been unable to find an example in which
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# (D, L, Q) is compact and nonempty, and (¥**) fails. However, we are, of course,
unable to show (***) is necessary for (D, L, Q) to be compact.

We are indebted to G. Schober, whose many useful remarks helped to simplify
and clarify some of the arguments in this paper.
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