LOCALLY COMPACT CONVERGENCE SPACES
D. C. Kent and G. D. Richardson

INTRODUCTION

Since local compactness plays a central role in topology and analysis, it is na-
tural to investigate this concept in the more general realm of convergence spaces.
Recent results (see for example Theorem 3.2 and 3.6 of [5]) indicate that local com-
pactness will be of increasing importance in the study of convergence spaces.

In this paper, we show that the topological spaces known as k-spaces (see [1],
[2], and [9]) are precisely the topological modifications of the locally compact con-
vergence spaces. We establish, as a special case of a more general theorem on
products of convergence spaces, that the product of a k-space with a locally com-
pact is a k-space. In response to a question by A. Arhangel’skii and S. P. Franklin
[1], we construct a locally compact convergence space Xg whose topological modi-
fication is a k-space of arbitrarily large ordinal index. We use the same example
to extend the results of [8] by showing, among other things, that a function space
C.(X) can have an arbitrarily long decomposition series when X is a locally convex
topological linear space.

1. PRELIMINARIES

The reader is asked to refer to [6] for definitions, notation, and terminology
pertaining to convergence spaces. As in [6], the term space will always mean
“convergence space,” and the term “ultrafilter” will be abbreviated to “u.f.”. Un-
like [6], the present paper will not make the assumption that all spaces are Haus-
dorff spaces.

Some additional definitions and terminology are needed for our present investi-
gation. Let X be a space. If A C X and ¢ is an ordinal number, then we denote by

clé’( A the oth iteration of the closure of A; this is defined to be cly c1(>’(‘1 A if

o - 1 exists, and U {clg( A:p <o} if o isa limit ordinal. The smallest ordinal
o such that cl‘})f;rl A= cl‘%l( A for all A C X is called the length of the decomposition
series of X, and we denote it by (p(X).

A pseudo-topological space is a space with the property that § — x whenever
each u.f. finer than § converges to x. For any space X, let pX be the space de-
fined on the same underlying set as follows: § — x in pX if and only if & — x in
X for each u.f. 8 > §. The space pX is the finest pseudo-topological space
coarser than X, and it is called the pseudo-topological modification of X. Note that
X and pX have the same u.f. convergence.

A space is said to be prefopological if the X-neighborhood filter 7 x(x) at x
(obtained by intersecting all filters that converge to x) converges to x for all
x € X. Any set in 7 yx(x) is called an X-neighborhood of x. The prelopological
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modificalion of X, denoted by 7X, is characterized by the fact that X and #X have
the same neighborhood filters at each point. Note that X < pX < X; all three
spaces have the same closure operator.

As in [6], we denote by AX the topological modification of X; AX is character-
ized by the fact that X and AX have exactly the same closed sets.

‘ We conclude this section with two lemmas that will be useful later; Lemma 1.2
is established in [8].

LEMMA 1.1. Let § be a filter on the set X, and let {$ a} denote the set of
all u.f.’s finer than . Fov each a, choose F, € 8. Then theve is a finite sub-

set {ay, -+, a,} such that U{Fai: i=1, -, nt e H.

Proof. If the assertion were false, then the collection of all sets of the form
H - (U {Fa,: i=1, -, n}), for H € 9, would constitute a filter base # with the
1

property that no u.f. containing &% could be finer than 9, a contradiction. MW

LEMMA 1.2. Let X be a pretopological space, x € X. Then ¥ 5, (x) has a

filter base of sets of the form U{Vn: n € N}, where Vo € ¥ x(x), and V, is de-
Jined recursively as a union of X-neighborhoods of points z in V,__; .

2. LOCALLY COMPACT SPACES

A space X is said to be locally compact if each convergent filter contains a
compact set. In Proposition 2.1 of [6], it is shown that a regular, locally compact
Hausdorff space is T-regular; in such a space, each convergent filter has a filter
base of closed, compact sets. Some results pertaining to the category of locally
compact Hausdorff convergence spaces may be found in Section 3 of [7].

PROPOSITION 2.1. A space X is locally compact if and only if each convergent
u.f. contains a compact set. Consequently, X is locally compact if and only if pX is
locally compact.

Proof. Suppose that each convergent u.f. contains a compact subset, and let 9
be any filter converging to X in X. Let {% a} be the set of all u.f.’s finer than
$ . From each u.f. &y, choose a compact subset F,. By Lemma 1.1, § contains
a compact subset. Thus X is locally compact. The second assertion follows im-
mediately from the first, since X and pX have the same u.f. convergence. B

For each space X, define X® to be the set X with the following convergence
structure: ¥ — x in X" if and only if & — x in X and § contains an X-compact
subset. The space X" is called the locally compact modification of X; it is the
coarsest locally compact space finer than X. The next result is an immediate con-
sequence of the preceding proposition.

COROLLARY 2.2. If X is a pseudo-topological space, then X" is pseudo-
topological.

PROPOSITION 2.3. If X is either a topological Hausdovff space ov a vegular
space, then X* is regular.

Proof. Let X be a topological Hausdorff space. If § @ x in X and 3§ contains
a compact set A, then cly §, when restricted to A, converges to x, since A is a
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compact T,-topological space. Consequently, cly § — x in X, A € clx &, and
clx § thus X"-converges to x. Since clx~ 8 > clx 3, it follows that X* is regu-
lar. A similar argument establishes the result when X is a regular space. H

We define two new terms that will be useful in our study of k-spaces. A space
X will be called a A-Hausdorff space if AX is a Hausdorff space. (This concept is
weaker than the notion “w-Hausdorff space” used in [5].) A locally compact space X
is said to be of Type T if X is a A-Hausdorff space and X = (\X)".

PROPOSITION 2.4. A locally compact A-Hausdovff space X is of Type T if
and only if X is rvegulay and pseudo-topological and has exactly the same compact
subsets as does AX.

Proof. Let X be a locally compact space of Type T. It follows from Corollary
2.2 and Proposition 2.3 that X is regular and pseudo-topological. Furthermore, it
is a simple matter to verify that Y and Y* always have the same compact subsets.

Conversely, assume the conditions are satisfied. Since X is locally compact,
X>(X)". Let § —x in (A\X)", and let & be any u.f. finer than §. By definition,
& contains a AX-compact set A, and ¥ — x in AX. Since A € 8 and X isa A-
Hausdorff space, 8 — x in X. But X is pseudo-topological, and therefore § — x
in X. ®

The decomposition series of a compact, regular Hausdorff space has length at
most 1 (see [4, Corollary 2.4]). On the other hand, Example 2.10 of [4] shows that it
is possible to construct a locally compact, regular Hausdorff space with an arbi-
trarily long decomposition series; the space used in this example is not, however,
of Type T (indeed, it is not a A-Hausdorff space). In Section 5 of this paper, we
construct a locally compact space X, of Type T (which has some other nice prop-
erties to be mentioned later) with an arbitrarily long decomposition series. The
existence of such an example has ramifications in the theory of k-spaces and also in
the study of the function space C_.(X) (see Section 6).

3. k-SPACES

A k-space is a topological space X with the property that a subset A is closed
whenever A N K is closed in the subspace K, for each compact subset K of X.

THEOREM 3.1. The following statements about a topological space X ave
equivalent.

(1) X is a k-space.
(2) X =a(X").
(3) X =\Y jor some locally compact space Y.

Proof. (1) = (2). It is sufficient to show that each X*-closed subset is X-
closed. Let A be an X"-closed set, K a compact subset of X. If § is an u.f. that
contains K and X-converges to x € K, then § also X”-converges to X, and, since
A is X%-closed, x € K N A. Thus, by hypothesis, A is closed in X.

(3) = (1). Let A be a subset of X with the property that A N K is closed in K
for each compact subset K of X. Let § be an u.f. containing A and converging to
X in Y. Since Y is locally compact, ¥ contains a compact subset B of Y. Let
C=BU {x}; then C is also AY-compact, and therefore, by assumption, A N C is
closedin C. Thus x € A N C. It follows that A is closed in Y, and consequently in
AY =X. 1
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COROLLARY 3.2. A topological Hausdorff space is a k-space if and only if it
is the topological modification of a locally compact space of Type T.

Corresponding to each pair of spaces X and Y, we shall assume that the product
space X XY has the structure of pointwise convergence; that is, § — (%, y) in
XXY ifandonlyif Py3 —x in X and P, § —y in Y, where P; and P, are the
respective projection maps. We omit the routine proof of the next proposition.

PROPOSITION 3.3. For any spaces X and Y, (XXY)* =X"XY".

If, in Proposition 3.3, one replaces “locally compact modifications” by “topo-
logical modifications,” then the assertion is no longer true. A pair of spaces X and
Y are said to be fopologically coherent if A(X X Y) =AX X AY. This concept was in-
troduced in Section 1 of [4], but it has not been studied extensively.

THEOREM 3.4. Let X and Y be k-spaces. Then X XY is a k-space if and
only if X* and Y* are topologically coherent.

Proof. f X XY is a k-space, then, by Theorem 3.1,
MXXY) = XXY =AX"XY".

But A(X X Y)* =A(X* X Y"), by Proposition 3.3, and therefore X* and Y" are topo-
logically coherent. Conversely, if A(X" X Y*) =AX"* X AY", then the same reasoning
leads to the conclusion that A(X X Y)* = X XY, so that X XY is a k-space, by
Theorem 3.1. W

Let X be a Hausdorff k-space, and let k(X) denote the length of the decompo-
sition series of X*; we shall refer to k(X) as the ovdinal index of X. This concept
was introduced in [1], and it is an easy matter to verify that the definition of «(X)
given in [1] coincides with the one given here. The next theorem answers a question
posed in [1]; we postpone the proof to Section 5.

THEOREM 3.5. For each ordinal number 0, theve is a Hausdovff k-space X
such that k(X) > o.

4, A PRODUCT THEOREM

It is not a simple matter to find conditions under which two spaces X and Y are
topologically coherent; a weak sufficient condition is given in Theorem 1.8 of [4]. A
more useful sufficient condition for topological coherence is obtained in this section.

Recall that, for each space X, we denote by 7X, AX, and 7 (x) the pretopologi-
cal modification, the topological modification, and the X-neighborhood filter at x.

Throughout this section, we assume that X and Y are spaces and that
Z =X XY is the product space.

PROPOSITION 4.1. If Y is a locally compact, regular pretopological Hausdovff
space, then N2 <AX X Y.

Proof. Let (x,y) € Z, and let V be a AZ-open neighborhood of (x, y). Choose
a compact set D € 7 y(y) suchthat {x} xDCV. Let 8 > x in X, andlet {H}
be the collection of all filters on Y that converge to a point in D. If 5:)5 — z in D,
then (x, z) € V, and, since V is open, there are sets Gg € 8 and Hﬁ € Hg such that
Gg X Hg C V. The collection & = {H,} of members of {9 o} obtained in this way
is a covering system for D (that is, each filter converging to a point in D contains
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a member of ®). Since D is compact, it follows from Proposition 1.2 in [4% that a
finite subcollection {Hal, <+, Hy } of & covers D. Let {Gal, =+, Gg_} be the
n

collection of the corresponding sets Gy, and let Gy = Gal N-.-NGgyg . Then
n
Gog XD C V, where Gg € §.

Now let {@50 | o € I} be the collection of all filters on X suchthat &5 — X in
X. By the argument in the preceding paragraph, there is G5 € ®; such that

Gy xDCV. Let Vo= U{G,| 0 € I}; then Vo € » x(x) and Vo x D C V. Con-
tinuing this process, we find that by Lemma 1.2, U {v,|In>0} xDcV, where
U {an n > 0} € ¥ 5x(x). Hence V ¢ 7 3 x(x) X 7 y(y), and the proof is com-
plete. ®

THEOREM 4.2. If X is a space and Y is a locally compact topological Haus-
dovff space, then X and Y ave topologically coherent.

Proof. Since AZ > AX X \Y is true in general, and since Y =AY because Y is
topological, the proof follows from Proposition 4.1. ®

COROLLARY 4.3 (D. E. Cohen [2]). The product of a k-space with a locally
compact topological Hausdovff space is a k-space.

Proof. Apply Theorems 3.4 and 4.2. ®

5. AN EXAMPLE

Given an ordinal number ¢, we shall construct a locally compact space X, of
Type T such that £(X) > 0; AX( is a completely regular k-space of ordinal index
at least 0. The existence of such a space provides a proof of Theorem 3.5.

For simplicity, assume that o is an infinite limit ordinal. Let
A ={a:a =0 or a is a limit ordinal, o <o }.

If 0<p<o, define y,=sup{a € A: @ <p}, and define Ay ={a e Ary,<a<o}.
Let N be the set of all finite ordinals. For each p < o, let Qp be the set of all
functions from A, into N. The base set for the space Xy consists of distinct ele-
ments of the form xﬁ(s), where 0 <p <o, ke N, and s € Q.

For each o € A, the ath layer B® of X, is defined to be the set
{xﬁ(s): Vp=a, keN, se Qp}. The ath layer is partitioned into boxes of the
form B%(s) = {xﬁ(s): Yp=a, ke N}, where s € Q,. Eachbox B®(s) can be vis-
ualized as an infinite matrix whose mth row (m € N) is

setm(g) = {x‘lerm(s): k e N}

and whose kth column (k € N) is given by C¥(s) = {x¥*™(s): m € N}. Figure 1is
a diagram of X for the case where ¢ = 2w.

If p € A and p # 0, we define

L‘f{(s) = {xﬁ(s)} U {xﬁ(s'): 74 <p, s'(a)=k for all a e A,u - Ap,

s(a) = s'(a) for all @ € Ap} .
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x3(0, 0) x9(0, 0) - x3(1, 0) xY(1, 0) - xJ(0, 1) x9(0, 1)
x}(0, 0) xi(0, 0) - x)(1, 00 xi(1, 00 - x00, 1) x1(0, 1)
x%(0) x7(0) .- xg(1)
xg*1(0) x¢*o) - xg ()
Figure 1

The set Lfl)((s), called the ovdinal line of xff((s), is obtained by choosing exactly one

column from exactly one box in each layer B® such that o < p and @ € A. The
construction is accomplished in such a way that if p and u are limit ordinals with

p < u,andif k and m are in N, and s € Qp and s' € QH , then either

Lp( ) € LE(s") or Lp(s) N LE(s') = . We can well-order the elements of each
ordinal 11ne Lk(s), using the natural order on the ordinal superscripts; note that
xfl)((s) is the greatest element of Lﬁf{(s) relative to this ordering, and that Lfl’((s) is
order isomorphic to the set of all ordinals not greater than p.

Given a box B%(s) C Xo and an ordinal m € N, let the mth row S M(5) pe
partitioned into denumerably many denumerable sets. That is, let

s*™(s) = U{s?"™(9): j e N},

where each SJ-aJ’m(s) is denumerable and the sets Sjaer(s) are pairwise disjoint.

We now define a pretopological structure on X, by designating the neighborhood
filter Y/XO(xff{(s)) at each point xﬁ){(s). A point x’f{(s) is called a point of Type 1 if

p is not a limit ordinal. If xﬁ(s) is a point of Type 1 and p = 0, define ¥ Xo(xg(s))
to be the fixed u. f. (xg(s))" If p>0 and p - 1 exists, then » Xo(xﬁ(s)) is defined
to be (xﬁ(s))' N .\jg)"l(s), where g)Jp'l(s) is the filter generated by

{sP-1(s) - F: F is a finite subset of X,} .

If p is a limit ordinal, then xﬁ(s) is said to be a point of Type 2. If xﬁ(s) is a point
of Type 2, then ¥ Xo(xﬁ (s)) is defined to be the filter generated by sets of the form
{K,:a € L'O(s) a<x'0(s)} where K, = {y € L’O(s)' a<y <xp (s)}.

If xp(s) is a point of Type 2, then a set of the form K, will be called a basic
Xy~ nezghborhood of xp(s) If xﬁ(s) 1s a point of Type 1, then for p = 0, {xo(s)} is

the only basic X,-neighborhood of xk(s) for p # 0, sets of the form Sﬁ l(s) -
(F finite) are designated as basic Xp-neighborhoods of xp(s) It is easy to see that
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all of the basic X(-neighborhoods are compact; in the case of the points of Type 2,
we can regard the sets K, as closed intervals on an ordinal line with the order
topology. It is also clear from our construction that X, is a Hausdorff space (note

that sets of the form Sﬁ(s) and L‘E(s') can intersect in at most one point). Conse-
quently, X, is a regular, locally compact pretopological Hausdorff space.

For each ordinal p < o, let SP = U {SP(s): s € Qp} From the construction of
Xg, we see that

o U{s:0<p<a} if o is finite,

0
cl s¥ =
X0

U{sP:0<p<al if a is infinite.
In particular, cl%o S0 = X,. Thus JZD(XO) >o0.

Next we show that AX; is a zero-dimensional topological space. It is well
known that AX is a T;-space whenever X is a T -space. Since X is a Hausdorff
space, it will follow that AX; is a Hausdorff space and is completely regular, and,

consequently, that XO is a A-Hausdorff space. Let xP (s) € Xg; by a basic AX(-
neighborhood of xk(s) we mean one constructed in accordance with Lemma 1.2,
where basic Xj-neighborhoods are used at each stage of the iterative construction
process. Let W be such a basic AXp-neighborhood of xﬁ(s); then W is open, by
Lemma 1.2. We shall show that W is X-closed (hence, also AXg-closed), and this
will establish that AX is zero-dimensional. Let § be a free u.f. on X that con-

verges to xﬁ(s') in X, and contains W. If x%(s') is a point of Type 1, then § must
contain S‘E'l(s‘). Therefore, S‘E “l(s') - F (F finite) must be a subset of W, and
this can occur only if x‘é‘(s') is itself in W. If x‘é(s') is of Type 2, then a closed
interval K C Lﬁ (s') must be a subset W, and, again, this can occur only if

xi(s') € W. Thus W is both open and closed in 1Xj.

We have so far established that AX; is a completely regular Hausdorff k-
space. To show that k(AXg) > o, it is sufficient, by Proposition 2.4, to show that
Xp and AX( have the same compact sets. Let C be an infinite AXy-compact set.

We assert that C is a subset of a finite union of sets of the form Lg(s) and Sﬁ(s');

since such a finite union is Xy-compact, it will follow that C is also X-compact.
If C were not a subset of such a finite union, then there would exist an infinite sub-
set Cl of C with the property that no two members of C; are in the same ordinal

line Lk(s) and no two members of C; are in the same set of the form S (s).

Since we can obtain the AXg-neighborhoods of each point by taking unions of sets of
the form Lg(s) - F, and Sﬁ(s') - F,, where F; and F, are finite sets, it would be

possible to construct a AXp-neighborhood of any point in Xy disjoint from C;.
This implies that no u.f. containing C; can AXy-converge, contrary to the assump-
tion that C is AX,-compact. We have thus established all of the original assertions
about X3 and AX.
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6. THE FUNCTION SPACE C.(X)

Let X be a space, and let C.(X) be the set of all real-valued continuous func-
tions on X with the continuous-convergence structure (& — f in C.(X) if and only if
®(F) — f(x) in R whenever § — x in X). If X is a space with the property that the
natural map from X into C.(C.(X)) is an embedding, then X is said to be c-em-
bedded. A characterization of c-embedded spaces is obtained in [5].

It is shown in [8] that even if X is a topological space with certain nice proper-
ties, C.(X) can have an infinitely long decomposition series; the reverse situation is
also shown to be possible. The proof of these and related results is based on an ex-
ample given in Section 3 of [8], which turns out to be the special case of our example
Xp of Section 5 obtained by taking ¢ = w. The properties of the space Xy of Section
5 are precisely those needed to extend the results of [8] pertaining to “infinitely long
decomposition series” to statements about “arbitrarily long decomposition series.”
We summarize these observations in the following theorem.

THEOREM 6.1. Let 0 be an ordinal number. (1) Theve is a locally compact,
c-embedded space X with {p(X) > o such that C.(X) is a topological space.
(2) There is a locally convex topological linear space X for which Lp(C.(X)) > 0.
(3) Theve is a locally convex linear (convevgence) space X such that {p(X) > 0.

Acknowledgment. We recently learned that V. Kannan [3] obtained an earlier
solution to the problem posed by Archangel’skii and Franklin. Indeed, Kannan shows
that for each ordinal number «, there is a k-space whose ordinal index is exactly
a. We thank the referee for calling this result to our attention.
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