CERTAIN ALGEBRAIC FUNCTIONS AND EXTREME POINTS OF S

Louis Brickman

Let S be the usual set of holomorphic, univalent, normalized (f(0) = 0, f'(0) = 1) functions on the unit disk $\Delta = \{z \in \mathbb{C}: |z| < 1\}$. In [2] it was shown that if $f \in S$ and the set $\mathbb{C} \setminus f(\Delta)$ contains two points of equal modulus, then f is a convex combination of two other members of S. A simple topological argument leads to the further conclusion that if f is an extreme point of S (see [3, p. 439]), then $\mathbb{C} \setminus f(\Delta)$ is an arc tending to infinity with increasing modulus. (Interesting variations of this result are obtained by W. Hengartner and G. Schober in [4].) In the present note we obtain a generalization of the two-point theorem of [2]. In this generalization we assume that $\mathbb{C} \setminus f(\Delta)$ contains a finite set of points of a certain description, and we conclude that f can be written as a nontrivial convex combination of finitely many members of S. In particular, f is not an extreme point of \overline{co} S (the closure of the convex hull of S). Consequently, the extreme points g of \overline{co} S have the property that the arc $\mathbb{C} \setminus g(\Delta)$ contains no set F of the type described in the theorem below. (The theorem is applicable because, by [3, p. 440], extreme points of \overline{co} S must belong to S.)

THEOREM. Let $P(z)=\prod_{j=1}^n~(z-\alpha_j),$ where $n\geq 2$ and where the α_j are distinct complex numbers. Let

$$Q(z) = \sum_{j=1}^{n} \frac{\lambda_j P(z)}{z - \alpha_j},$$

where the λ_j are nonzero complex numbers, all having the same argument. Finally, let E be the set of complex numbers w such that P - wQ has a multiple zero. Then E consists of 2n - 2 points at most, and any $f \in S$ such that $\mathbb{C} \setminus f(\Delta) \supset E$ admits an equation of the form $f = \sum_{j=1}^n t_j f_j \left(\sum_{j=1}^n t_j = 1, \ t_j > 0, \ f_j \in S, \ f_j \neq f \right)$.

Proof. We begin by noting that Q is a polynomial of degree n - 1 and that $Q(\alpha_j) = \lambda_j \, P'(\alpha_j)$ $(1 \le j \le n)$, so that Q = P', in the special case where $\lambda_j = 1$ for each j. In particular, we observe that P and Q have no common zeros. Now suppose $w \in E$ and z is a multiple zero of P - wQ. Then P(z) - wQ(z) = 0, Q(z) \neq 0, and w = P(z)/Q(z). Also, P'(z) - wQ'(z) = 0, and hence (QP' - PQ')(z) = 0. Since QP' - PQ' is a nontrivial polynomial of degree at most 2n - 2, there are at most 2n - 2 such numbers z, and since w = P(z)/Q(z), it follows that there are at most 2n - 2 such w.

If |w| is sufficiently small, P - wQ has distinct zeros $\phi_j(w)$ $(1 \le j \le n)$ (the branches of the algebraic function defined by the equation P(z) - wQ(z) = 0). We number these root functions in the natural way so that $\phi_j(0) = \alpha_j$ $(1 \le j \le n)$. Each ϕ_j is analytic, and each admits unrestricted analytic continuation in $\mathbb{C} \setminus E$ [1, p. 294]. But $f(\Delta)$ is a simply connected subregion of $\mathbb{C} \setminus E$. Therefore it follows from the monodromy theorem that ϕ_j is analytic and single-valued in $f(\Delta)$ $(1 \le j \le n)$.

Received June 16, 1975.

Michigan Math. J. 22 (1975).

Furthermore, each ϕ_j is univalent, for if $w \in f(\Delta)$ and $\phi_j(w) = z$, then P(z) - wQ(z) = 0, and therefore w = P(z)/Q(z).

Now, for $w \in f(\Delta)$,

$$\sum_{j=1}^{n} \phi_{j}(w) = \sum_{j=1}^{n} \alpha_{j} + w \sum_{j=1}^{n} \lambda_{j} = \sum_{j=1}^{n} \phi_{j}(0) + \lambda w,$$

where $\lambda = \sum_{j=1}^{n} \lambda_{j}$. Therefore, solving for w, we are led to the equations

$$w = \sum_{j=1}^{n} \frac{\phi'_{j}(0)}{\lambda} \psi_{j}(w), \qquad \psi_{j}(w) = \frac{\phi_{j}(w) - \phi_{j}(0)}{\phi'_{j}(0)} \qquad (w \in f(\Delta)).$$

For $1 \leq j \leq n$, the function ψ_j is univalent in $f(\Delta)$ and normalized at 0; that is, $\psi_j(0) = 0$ and $\psi_j'(0) = 1$. Our representation of the identity function in $f(\Delta)$ as a linear combination of the ψ_j is actually a convex combination. Indeed, differentiation of the equation $P(\phi_j(w)) - wQ(\phi_j(w)) = 0$ shows that $P'(\phi_j(0))\phi_j'(0) - Q(\phi_j(0)) = 0$, or $\phi_j'(0) = Q(\alpha_j)/P'(\alpha_j) = \lambda_j$. Consequently, $\sum_{j=1}^n \phi_j'(0)/\lambda = 1$, and since the numbers λ_j have equal argument, each term $\phi_j'(0)/\lambda$ is real and positive. Finally, the convex combination is nontrivial. In fact, if $\psi_j(w) = w$ identically for some j, then

$$P(\phi_{j}(0) + \phi_{j}'(0)w) = P(\phi_{j}(w)) = wQ(\phi_{j}(w)) = wQ(\phi_{j}(0) + \phi_{j}'(0)w).$$

Hence $P(z)=\frac{z-\phi_j(0)}{\phi_j'(0)}$ Q(z) for all z, and this contradicts the fact that P and Q have no zeros in common. Thus the equation

$$f = \sum_{j=1}^{n} \frac{\lambda_{j}}{\lambda} \psi_{j} \circ f$$

gives a decomposition of f of the required form.

Remark. To show that this theorem contains the result in [2] described earlier, we choose n=2. Then elementary calculations show that the discriminant of P-wQ is

$$(\lambda_1 + \lambda_2)^2 w^2 + 2(\lambda_1 - \lambda_2)(\alpha_1 - \alpha_2)w + (\alpha_1 - \alpha_2)^2$$
,

and that this vanishes for $w = (\alpha_1 - \alpha_2)/(\sqrt{\lambda_2} \pm i\sqrt{\lambda_1})^2$. Thus E consists of two points of equal modulus. Conversely, it is clear that if $|w_1| = |w_2|$ and $w_1 \neq w_2$, then P and Q can be chosen so that $E = \{w_1, w_2\}$. The result of [2] now follows. The author hopes that either he or someone else can extract the information in the theorem corresponding to n > 2.

REFERENCES

- 1. L. V. Ahlfors, Complex analysis: An introduction to the theory of analytic functions of one complex variable. Second Edition. McGraw-Hill, New York, 1966.
- 2. L. Brickman, Extreme points of the set of univalent functions. Bull. Amer. Math. Soc. 76 (1970), 372-374.
- 3. N. Dunford and J. T. Schwartz, *Linear Operators*. Part I. General Theory. Interscience, New York, 1958.
- 4. W. Hengartner and G. Schober, Extreme points for some classes of univalent functions. Trans. Amer. Math. Soc. 185 (1973), 265-270.

State University of New York at Albany Albany, N. Y. 12222