CERTAIN ALGEBRAIC FUNCTIONS AND
EXTREME POINTS OF S

Louis Brickman

Let S be the usual set of holomorphic, univalent, normalized (£(0) = 0, £'(0) = 1)
functions on the unit disk A = {z € €: |z| <1}. In [2] it was shown that if f € S and
the set € \ f(A) contains two points of equal modulus, then f is a convex combination
of two other members of S. A simple topological argument leads to the further con-
clusion that if f is un extreme point of S (see [3, p. 439]), then C \ £(A) is an arc
tending to infinity with increasing modulus. (Interesting variations of this result are
obtained by W. Hengartner and G. Schober in [4].) In the present note we obtain a
generalization of the two-point theorem of [2]. In this generalization we assume that
C \ f(A) contains a finite set of points of a certain description, and we conclude that
f can be written as a nontrivial convex combination of finitely many members of S.
In particular, f is not an extreme point of ¢0 S (the closure of the convex hull of S).
Consequently, the extreme points g of €0 S have the property that the arc € \ g(A)
contains no set E of the type described in the theorem below. (The theorem is ap-
plicable because, by [3, p. 440], extreme points of €0 S must belong to S.)

n
THEOREM. Let P(z) = HJ-=1 (z - aj), where n > 2 and wheve the o5 ave dis-
tinct complex numbers. Let

?\j P(Z)
Z - @ ’

Qlz) = 2
j=1

wheve the X; ave nonzevo complex numbers, all having the same avgument. Finally,
let E be the set of complex numbevs w such that P - wQ has a multiple zevo, Then
E consists of 2n - 2 points at most, and any f € S such that C \ £(A) D E admits an
equation of the form f = E;‘zl t f; (Z)?:l t=1,4>0, €8, f# f).

Proof. We begin by noting that Q is a polynomial of degree n - 1 and that
Q(aj3) =23 P'(a;) (1 <j<n), sothat @ = P', in the special case where Aj = 1 for
each j. In particular, we observe that P and Q have no common zeros. Now sup-
pose w € E and z is a multiple zero of P - wQ. Then P(z) - wQ(z) =0, Q(z) # 0,
and w = P(z)/Q(z). Also, P'(z) - wQ'(z) = 0, and hence (QP' - PQ')(z) = 0. Since
QP' - PQ' is a nontrivial polynomial of degree at most 2n - 2, there are at most
2n - 2 such numbers z, and since w = P(z)/Q(z), it follows that there are at
most 2n - 2 such w.

If |w| is sufficiently small, P - wQ has distinct zeros ¢;j(w) (1 <j <n) (the
branches of the algebraic function defined by the equation P(z; - wQ(z) = 0). We
number these root functions in the natural way so that ¢;(0) = @5 (1 <j <n). Each
¢; is analytic, and each admits unrestricted analytic continuation in € \ E [1, p.
294]. But f(A) is a simply connected subregion of € \ E. Therefore it follows from
the monodromy theorem that ¢; is analytic and single-valued in £(4) (1 <j <n).
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Furthermore, each ¢; is univalent, for if w € f(A) and $; .(w) =z, then
P(z) - wQ(z) = 0, and therefore w = P(z)/Q(z).

Now, for w € f(4),

27 ¢;(w) = 27 o +w 2 A = 27 ¢;(0) + 2w,
j=1 j=1 =1 7 =l

n
where A = E-:l s,

j ; Therefore, solving for w, we are led to the equations

2. #5(0) $;(w) - ¢;(0)
WD S, ) = S (e ().
j=1 j

For 1<j<n, the function ¢j is univalent in f(A) and normalized at 0; that is,
(0) =0 and ¥; :(0) = 1. Our representation of the identity function in f(A) as a
11near comblnatlon of the ¥; is actually a convex combination. Indeed, differentia-
tion of the equation P(¢;(w)) - wQ(¢5(w)) = 0 shows that P'(¢;(0))¢;(0) - Q(¢5(0)) = 0,
or ¢J(O) = Qo )/P'(oz ) = 2. Consequently, 23—1 ¢ :(0)/n = 1, and since the numbers
A; have equal argument each term ¢:(0)/n is real and positive. Finally, the convex

comb1nat1on is nontrivial. In fact, if :,DJ (w) =w identically for some j, then
P(9;(0) + ¢;(00w) = P(gj(w)) = wQls;(w)) = wQ(g;(0) + ¢;(0)w) .

Z - ¢J‘(0)
$;(0)

have no zeros in common. Thus the equation

Hence P(z) = Q(z) for all z, and this contradicts the fact that P and Q

n
=Ny
. ?t
j=1

gives a decomposition of f of the required form.

Remark. To show that this theorem contains the result in [2] described earlier,
we choose n = 2. Then elementary calculations show that the discriminant of P - wQ
is

2 2 2
Ay +2)° W +200 ) - A e - ap)w (o - o,),

and that this vanishes for w = (@ - a,)/(VA, +ivx)2. Thus E consists of two
points of equal modulus. Conversely, it is clear that if lwl | = ]wzl and wi # W),
then P and Q can be chosen so that E = {w;, w,}. The result of [2] now follows.
The author hopes that either he or someone else can extract the information in the
theorem corresponding to n > 2.
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