A SIMPLIFIED TREATMENT OF THE STRUCTURE OF
SEMIGROUPS OF PARTIAL ISOMETRIES

Mary R. Embry, Alan L. Lambert, and Lawrence J. Wallen

Preliminarvies. One-parameter semigroups of partial isometries were studied
in [3] and [4], where a complete structure theorem was obtained for the nilpotent
case. In this note, we offer a new and simplified treatment; moreover we are able
to dispense with the assumption that the semigroup is nilpotent. We begin with a
brief review of our original approach.

Let S; (0 <t < =) be a strongly continuous one-parameter semigroup of partial
isometries on a separable Hilbert space H. We call S nilpotent if Sto = 0 for some

ty; we call the smallest such t, the index of S;, and we denote it by i(St). If K isa
separable Hilbert space and « > 0, we denote by L2(K, a) the Hilbert space of
measurable K-valued functions on [0, a] with square-integrable K-norm. For

f € L2(K, a), define

0 if x<t,
Rtf(X) =
f(x - t) if t<x<a,

with the understanding that Ry = 0 if t > a@. Then R is a nilpotent semigroup of
partial isometries, and i(Ry) = «. We say that S; is a truncated shift if it is uni-
tarily equivalent to some R; semigroup. For each operator A, we denote by ran A
and ker A the range and null-space, respectively, of A. The statement B <> C
means that B and C commute.

In [3], the following theorem was proved.

THEOREM A. If S; is a semigroup of partial isometries and i(St) = @, then the
Jollowing statements arve equivalent:

(a) St is a truncated shift,
(b) the von Neumann algebra generated by the S, (0 <t < a) is a factor,
(c) for each t (0 <t < a), ran St =ker Sy _¢.

The difficult step turned out to be the implication (b) = (c¢). This was effected
by a laborious argument based on the structure of the discrete case given in [1], and
involving a fairly delicate limiting argument in passing to the continuous case.
Using Theorem A and the reduction theory for von Neumann algebras, we proved in
[4] that each nilpotent St is the direct integral of truncated shifts. In the treatment
given below, we avoid the difficult transition from the discrete to the continuous.
The argument is almost (but not quite) self-contained. The punch line of the proof is
a novel characterization of truncated shifts, which is embodied in the Lemma at the
end of the proof. The argument used in the Lemma is disjoint from that used in the
rest of the paper, so that the reader can have the denouement at the outset.

THEOREM. Let S be a semigroup of partial isometries on H. Then
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H=Ho®H; @H, ®H;3,

where each Hj reduces St and Si l H; is invertible, S; l H; is purely isometric,
St | Hs3 is puvely coisomelric, and Hg has a divect integral decomposition relative to
which S¢ decomposes into truncated shifis.

Proof of the Theovem. For 0 <t <, let E; and F; be the projections on the

initial and final spaces of S¢, and set K; and C; equalto 1 - E; and 1 - Fy, re-
spectively. Then

(1) E, <> F, forall t and u,
0 if t>u,

(2) S,K, =
Ku_tSt if t < u,

(3) StCy = CiyuSt.

The relation (1) follows from Lemma 2 of [1]. The proof of (2) is like that of Lemma
3 of [1], but we give it anyway. If t > u, then
S.E, = S,S*S, =S, ,S,S¥S_ =S,_,S, = 5,,

t t-uMurutu t-u*~u

while if t <u,
S¢Ey = S¢S¥SE_tSy-tSt = FtEy Sy = By (FiSy = B S;.

The relation (2) follows immediately from these relations, and (3) comes from
similar computations.

The families of projections E; and F; are strongly continuous and decreasing.
Set E =1im E; and F = lim F, the limits being taken in the strong operator topol-
ogy as t — . From the proof of (2) given above, it follows immediately that
S¢ <> E, so that ran E is a reducing subspace for S; and so that S; restricted to
ran E is isometric. Likewise, ran F reduces S;, and S; on ran F is coisometric.
We write

Hy =ranENranF, H, =ranE(@Oran F, H; =ran FOran E.

Set Hy = H®(H; @ H, ® H3). Then lim E{ = lim F; =0 on Hy. For the remainder
of the proof, set Hy = H; we may then suppose that lim K; = lim C; = 1. Hence, K,
and C, describe (continuous) resolutions of the identity.

Now define strongly continuous semigroups Lg and Mg (s > 0) by

o0 o0

L, = (E‘O e SYdK, and Mg 50 e *4dC,.

By (2), for each t > 0,

cO

(4) S;Lg = (‘S.t

Similarly, (3) gives the equations

I

e Su dKu_t)St e StL_S,.
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(o0}
( S e dCu+t) St
0

[>e]
est(SO e-sudC, = SO e-SudCu)St = estM_§,,

because C,;S; =0 for u<t.

)]
B
=
[©)]
il

(5)

Since Lg <> Mg, the family Ng = L Mg forms a strongly continuous semi-
group, and by virtue of (4) and (5) we see that S, <—> N for all s,t> 0. Bya

[ce]

theorem of Sz.-Nagy [2, p. 588], we can write Ng = S e-sudG,, since 0 <N < 1.
0
Note also that L., M, S;, K, and C; all commute with G,.

Let I be a finite interval [a, b], and set H' = ran G(I). Then H' reduces L.,
M;, 8¢, K¢, and C;. If A is an operator leaving H' invariant, set A'=A |H'.
Now

Ly > LMy = Ny > e S and M, > ePs,

so that dK], = dC,, = 0 for u > b (that is, the spectral measures K' and C' are sup-
ported in [0, b]).

Now define

b b b
(6) A = S‘ udK;,, B = j udC,, R = 5 udG).
0 0 0

Since e sA e sB = LI ML = NL = e-SR it follows that A + B = R. Moreover, since
dK;, = 0 for u> b, it follows that S; is nilpotent and i(S;) <b. All of this shows that

we can write H as the direct sum of subspaces, each of which reduces S;, and such
that the restriction of S; to each is nilpotent. To obtain the theorem, we may assume
that S; is nilpotent to begin with, say of index b. We also drop the “prime?” notation
introduced above.

We now take a direct integral decomposition that diagonalizes the bounded opera-
tor R. That is, we write

H= | ®HE A0 ana R = S@cb(h)du(h),

where ¢(d) is a scalar multiple of the identity on H(A), and where 0 < ¢(1) <b.
Since S, is nilpotent, we can write

se= | @80 dut,

where each Si(\) is a semigroup of partial isometries on H(A) with i(S{(A)) <b (see
Theorem 2 of [4]). Moreover, for each t > 0, the fields A — K,(A) and A — C,(A) are
measurable, and since i(S(A)) <b, we see that for each A, d K,(x) =0 for t >b. We
can then write
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(7) K = [@xMaue) adc, = [@cma,
since K;(A\) =1 - S¥(0)S;(x) and C,() =1 - S,(A) Sf(\). Now define

8) AQ) = SudKu(A) and B = S wdCy(n) .

Since
A(A) = strong-lim 2 u; AKui(h) for each X (IAuiI — 0)
and

S ® (E uj AKui(h)) du() = 2iu; AK,. — A,

we see that A = S(—B A(\)dp(2) and likewise B = S @ B(A)du (). Since A +B =R,

we get the relation
(9) AQ) +BQ) = o)) d.c.(u).

The theorem is now a consequence of the following result.

LEMMA. Let S; be a nilpotent semigroup of partial isometries. Set
Ag = SudKu and By = S udC,.

If Ag+Bg =£l, then S, is a truncated shift and i(Sg) = &.
Proof. Since Ag >0 and By > 0, we see that dK, =dC,, =0 for u > §. Hence
i(S,) =n < &. But then
ran Sy C ker Sp_ for 0 <t< 7.
In other words
Ky t+Cy > 1.
If 0<t<n,then Kg ¢ > Ky ¢ and therefore K¢ .y +(CJE n <t <L ¢, then

>1. If
C¢ =1 and therefore K¢_¢ + Ct > 1. Hence, for all t (0 <t < &), we have the
relation

(10) Kgy+Cp > 1.

Integrating by parts, we obtain the relations

13 &
(11) (Agx, x) 5‘0 td(Kix, x) = &(Kg X, X) - 50 (K¢ x, x)dt

3
£ ||x|)? - SO (Kt ¢, %) dt
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and

£
(12) (Box, x) = £ ||x]|? - S (Cex, x)dt.
0
Adding (11) and (12), we see that
(13) SE‘ (Kgy + Cx, x)dt = & [|x]|%.
0

But then (10) implies that for all t (0 <t < §),
Ké:_t +Ct =1
and therefore
ran 5 = ker Sg_¢ .

It now follows from the implication (c) = (a) of Theorem A (see p. 748 of [3]) that
S; is a truncated shift of index £. This concludes the proof of the theorem.
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