A NEW DEFINITION FOR QUASISYMMETRIC FUNCTIONS
Kenneth P. Goldberg

1. INTRODUCTION

A continuous, strictly increasing function u mapping the line (-0, =) onto itself
is said to be pg-quasisymmetric (or pg - QS for short) if 1 < pg <= and p, is the
infimum of all p satisfying the condition

1 ux +1t) - ux)
(1) 0 < S u@W-ux-p =P <

for all x and all t > 0. The number pg = p(u) is called the quasisymmetric dilata-
tion of u on (-, ©),

L. V. Ahlfors and A. Beurling proved in 1956 [1] that an autohomomorphism u
of the real line can be extended to a quasiconformal autohomomorphism f of the
upper half-plane if and only if u is quasisymmetric. Furthermore, if K(f) is the
quasiconformal dilatation of f, then

K(f) > 1+ (0.2284) log p(u)
for each quasiconformal extension f of u, and there exists an extension f for which

K(f) < [pw)]*.

A good bound on p(u) is therefore of great importance in any investigation of the
quasiconformal extensions of u to the upper half-plane.

We begin by showing that (1) is really a generalized convexity-concavity condi-
tion, and that we can weaken the assumptions in the definition of quasisymmetry
significantly without altering the class of such functions.

We then use this to prove that the class of quasisymmetric functions is closed
under the formation of sums, appropriate products, compositions, and inverses.
These properties have previously been established by means of similar properties of
quasiconformal mappings, but our proofs use only the new definition of quasisym-
metry and some elementary real analysis.

Finally, we use the new definition to obtain sharp bounds for the quasisymmetric
dilatation of sums, products, compositions and inverses of quasisymmetric functions
on (0, «).

2. A NEW DEFINITION

As we pointed out in the introduction, a homeomorphism u of (-, «) onto itself
can be extended to a QC map of the upper half-plane onto itself if and only if u is
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50 KENNETH P. GOLDBERG

QS according to (1). The following theorem gives an alternate formulation of quasi-
symmetry, which is equivalent to (1) but better suited to the estimates we want to
make in this paper.

THEOREM 1. Let u be a nonconstant function defined on an intevval (a, b)
with -o <a<b <o, Thern u is QS on (a, b) if and only if

(i) u és linear
or

(ii) there is some » (1/2 < 1< 1) such that
(2) AuCxy) + (1 - Nulxy) < u(F22) < (1 - Dulxy) +aubeo)

Jor all Xy and X, with a <x; <x, <b.

Definition 1. If u is a nonlinear QS function on (a, b), we define the midpoint
dilatation A(u) of u to be the infimum of all numbers A for which (2) holds. The
relation (2) is called the midpoint condition. The relationship between A(u) and
p(u) is

3) p) = P2 A = P2

Proof of Theorem 1. (i) Let u be QS on (a, b). If u is linear, then there is
nothing left to prove; therefore assume that u is nonlinear. Since the condition
p =1 in (1) together with the continuity of u would imply linearity, we must have
the inequality py > 1. Hence we know that

u(x +t) - ulx)
u(x)-u(x-t)Spo

1
(4) o <

for all x and t satisfying the condition a <x - t <x <x+t <b, where
pgo = p(u) > 1. Multiplying (4) by the positive expression u(x) - u(x - t) and solving
for u(x), we see that

Po ulx - t) +

1
T+ pg T+ oy ulx +t) .

u(x+t) < ulx) < u(x - t) +

1 0
1+pg, 1+p
This double inequality becomes (2) if we set X1=X-1t, Xp=x+t, and
Au) = po /(1 + pg), so that 1/2 < Afu) < 1.

(ii) If the function u is nonconstant and linear, then it is obviously QS. Hence
let us assume that u satisfies (2) with Ay =2a(u) and 1/2 <y < 1. It must be
shown that

(a) u is continuous on (a, b),

(b) u is strictly increasing on (a, b),

(c) u satisfies (1) for some p (1 < p < ).

Proof of (a). By (2) it is clear that if a < x; < x, <D, then the inequality

o ulxy) + (1 - xp)ulxy) < agulxy) + (1 - xg)ulxy)
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implies that (2xg - 1) u(x;) < (2rg - 1) u(x;), or equivalently, since 1/2 <rg < 1,
that u(x;) < u(x,). Hence we know that u is nondecreasing. Now let x( be a point
of (a, b). We shall show that u is continuous at xq, and this will prove (a). Since u
is nondecreasing, it must have a finite left-hand limit at x; therefore let

limx—»x(; u(x) = M < . If ¢ > 0, then we can find some &, (a <X, <x,) for which

M - £ <u(xg) <M, and the monotonicity of u would imply that

XO+X0

M—8<u( ><M

as well. Now, using (2) with x; =%, and X, = X, and solving for u(xg), we find that
o=t (1oL )m- 1 (feifg) ( - L)
M-¢ =50 M-g)+ {1 X0 M -¢) < o U 3 + {1 o u(Xo) < u(xg)

Ao
1-?\0

<

_1_)\011 g .

1 (XOJ”?O Ao
)

- 1 0 _
1—7\0u(xo)-<—r7&—0M-l-ho(M_8)_M+

Letting ¢ tend to 0, we see that u(xo) =M=lm__ __ u(x). Similarly, it can be

shown that u(x,) = lim__ _+ u(x). Therefore u is continuous at X -
0

Proof of (b). In (a) we showed that u is nondecreasing. It remains to prove
that u is strictly increasing on (a, b); assume therefore that there are points x;
and x, with a <x; <x, <b and u(x;) = u(x,) = M. Since u is nondecreasing, this
would imply that u(x) = M identically on [x;, x,]. By assumption, u is not constant.
Hence there exists an x3 € (a, b) for which u(x3) #+ M. Without loss of generality,
we can assume that x, < x5 . Then, by the monotonicity of u, we see that
u(x;) = M < u(xs).

Define the set
(5) S = {x] x; < x <x3 with u(®) > ulx,) = M}.

Clearly, x5 € S, so that S is not empty. In addition, x, is a lower bound for S, by

(5). Thus S must have a greatest lower bound (g.1.b.) X with x, <%. If u(x) > M,

then by continuity there exists an € > 0 such that u(x) > M on (X - €, X). But this

contradicts the assumption that X is the g.1.b. of S. Hence u(X) = M, and therefore
u(x) = M identically on [x;, X]. Pick € > 0 so small that u(Xx +&) > M and

u(X - €¢) = M. This is possible, because X isthe g.1.b. of S. Then, by (2), using

the points x - €, X, X + €, we obtain the inequalities

Apu - ) +(1-2p)uER+e) <u®R < (1-2r9)ux-¢)+rgux+e).
The left inequality implies that
u®) > rpuEx-e)+(1-2)uE+€) >AoM+(1-29)M = M.

But this obviously contradicts the condition u(x) = M. That is, there cannot exist any
x; <X, with u(x;) = u(x;). Hence u must be strictly increasing on (a, b).

Proof of (c). 1t is sufficient to observe that all the steps in the proof of (i) are
reversible.
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Remark. In view of the statement of Theorem 1, it is reasonable to ask whether
we can omit condition (i) by simply changing condition (ii) to allow 1/2 < 2o < 1.
Obviously, if u is QS and linear, then (2) holds with Ag = 1/2. The converse, how-
ever, is not true. It is possible for a nonconstant function to satisfy (2) with
Ao = 1/2 without being QS on (a, b). To show this, we shall exhibit an example.

In [2, p. 150], a function f is constructed, by means of a Hamel basis
X], X3, *, X5 o+ (@ € ), with the property f(x +y) = f(x) +i(y) for all x, y.
Taking x =y, we obtain the equation f(2x) = 2f(x), which leads to f(x) = f(2x)/2 or

f(x/2) = f(x)/2. Thus, for all x and vy,

(251) - 1(303) - () +(3) - Jw wd o

But this is simply (2) with Ay = 1/2. As was indicated in [2, p. 150], f can be defined
arbitrarily on the Hamel basis. Since a Hamel basis has an infinite number of ele-
ments, we can choose three elements x;, X, , x3 from this particular basis. As-
sume without loss of generality that in the usual ordering of the reals, x; <x, <Xx3,
and define f(x;) =0, f(x3) =1, f(x3) =0, and f = 0 for all the other elements in this
basis. Let u ={f. Then u satisfies (2) with Ay = 1/2, because f does. The function
u is not constant, since u(x;) # u(xz). Yet u cannot be QS, because it is not even
monotonic, since x; < xp < x3 with u(x;) < u(x;) and u(x;) > u(x3). Hence condi-
tion (i) cannot be omitted in the statement of Theorem 1.

3. UPPER AND LOWER BOUNDS

In order to obtain upper and lower bounds for a QS function u on the interior of
an interval in terms of the values of the function at the endpoints, we define the fol-
lowing two functions P(A) and p() on [0, 1]. If

91 6> 6

A = -—1-+—2-.+...+

n
+ .+ (6;=00r 1)
) '

P
is the binary expansion of A € [0, 1], then

n-1

PO) =Py M) =2o[0) +Xg 02+ hg Ng, 03+ " Fhp g, g Oyt ]

(6)

where Ao (1/2 <2p < 1) is the midpoint dilatation of u (see Definition 1) and
A1 =1-2xg. When there is no chance of confusion, we shall use P and p in place of

PAO and pho .
To see that the function P(A) is not itself QS, take x = 1/2 and t = 1/2" (n an
integer greater than 1) in (1) with u = P. Then (6) implies that

(7) P(x +1) - P(x) _ (}_g)n‘z
P(x) - P(x - t) A '

Since Mg /A > 1, it is clear that the right-hand side of (7) goes to © as n — «©,
Hence P(\) is not QS. A similar proof shows that p(x) is not QS.



A NEW DEFINITION FOR QUASISYMMETRIC FUNCTIONS 53

THEOREM 2. Let u be a QS function on (a, b), and let x1, x2 € (a, b). Then,
for each ) € [0, 1],

ul(1 - A)x; +axz] < [1- PMW)]ulx)) + PO ulxy),
(8)
ul(1 - M) x; +2ax,] > [1- p)]ulx;) + pA) ulxy) .

Proof. In a paper by R. Salem [4], P and p are shown to be continuous, strictly
increasing functions mapping the segment [0, 1] onto itself. If v is QS with
v(0) = 0 and v(1) = 1, then by (2) and the geometric construction of P and p in [4],
we see that p(A) < v(x) < P(x) for all A € [0, 1] with a finite binary expansion. But
the set of these numbers is dense in [0, 1]. Hence, by the continuity of v, P, and p,
p(x) < v(x) < P(\) for all A € [0, 1].

If we now take any QS function u and set

) = ul(1 - A)x; +2ax;] - ulxy) ,

u(x;) - ulx;)

then v is QS with v(0) = 0, v(1) = 1. Hence

ul(l - A)xq +2axz] - ulxy)
u(Xz) - U(X1)

p() < V() = < PO,

Solving for u[(1 - X)x; + Ax;], we obtain the desired bounds.
THEOREM 3. P(t) + p(1 - t) = 1 identically on [0, 1].

Proof. Define f(t) = P(t) + p(1 - t) on [0, 1]. Since P and p are both continuous
[4], so is f. We shall show by induction on n that f(t) = 1 when t is of the form
t=m/2" (n=0,1,2,-- and m =0, 1, ---, 2. Since the set of all such t is dense
in [0, 1], the continuity of f will then imply f(t) = 1 identically on [0, 1].

(i) Let n=0. Then m can be either 0 or 1, and
f(0) = P(O)+p(1 -0 =0+1=1, f£(1) =PQ)+p(1-1)=1.

(ii) Let n=1. Then m can be either 0, 1, or 2. But the cases m = 0 and
m = 2 are covered by (i), while m =1 gives

£(1/2) = P(1/2) +p(1 - (1/2)) = xg+r; = 1.
N
(iii) Assume f(t) =1 for all t of the form t = m/2NO , and let ty = m/2 0*! ,
Np+1
where 0 <m < 2N0+1 . Ifm=0o0or m=2 0¥ , then t =0 or 1, respectively.
These cases have been treated in (i).

N
Let m be an even number. Then m = 2k, where 1 <k <2 9 - 1, and therefore

Ng+1 Nptl

N
t = m/2 = 2k/2 =Kk/2 0,

By the induction hypothesis, this would imply f(t) = f(k/ZNO) = 1.

Let m be an odd number. Then m - 1 and m + 1 are both even. Hence

N
m - 1=2k; and m +1 =2k, for some k; and k, with 0 <k; <k, <2 o,

fore

There-
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Nn+1 m-1 m + 1
0 =
f(m/2 ) f(( 2N0+1 N0+1)/2)
_ m-1 m+1 m-1 m+1
- P((2N0+1 N0+1)/2>+p( (2N0+1 N0+1)/2)

([, /2") + (k, /279)1/2) +p([(1 - k; /2 ©) + (1 - k, /2" ©)]/2)

£(t)

(9)

A Pk, /2N0) + 29 Plk; /2N0)] + Ay p(1 - kg /zNO) +20p(1 -k /2N0)]

1

A 1k /270y 10, £k, /2o
Hence, by the induction hypothesis, (9) reduces to A; +2y = 1. The induction proof
is completed.

COROLLARY 3. P~1(1/2) +p~1(1/2) = 1.

Proof. Since P(0) =0, P(1) =1, and P is continuous, there must be some
t; € (0, 1) with P(t;) = 1/2 or, equivalently, t; = P~1(1/2). Similarly, the conditions
p{0) = 0, and p(1) = 1 together with the continuity of p imply the existence of a
t, € (0, 1) with t, = p~1(1/2). By Theorem 3, 1/2 = P(t;) =1 - p(1 - t;). Hence
p(l-t)=1/2= p(tz) Since p is strictly increasing, the relation p(1 - t;) = p(t,)
1mphes that 1 - t; =t,, in other words, t; +1t; = 1. Substituting the values
t,= P-1(1/2) and t, = p~1(1/2), we see that P-1(1/2) + p-1(1/2) = 1.

CLOSURE PROPERTIES

4. THE SUM OF QS FUNCTIONS

THEOREM 4. Let u;, up, ', u, be QS functions on (a, b) with QS dilata-

n
tions p,, py, -+, py, vespectively. Then the function v defined as v(x) = Ei:l u; (x)
is also QS on (a, b), and

p(v) < max{p;] 1<i<n}.

This result is shavrp.

Proof. The proof is by induction on n. Let the midpoint dilatation of u; be
represented by the symbol A{1) (i =1, -+, n).

(i) Assume n =2, and let ¢ = max {1{1), A(2)}, Then, for x;, x, € (a, b) it
follows from (2) that

(F772) = (F572) e (P572)
v l——)=wul——7— ) twel——

< [ - AWy ) + AW u )]+ 11 - 2B up(xg) +1 B uy(x,)]
< [(1 - e)u(x)) +euy(xx)] + [(1 - e)uplxy) + cup(xy)]

= (1 - c)v(x)) +cvix,).
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Similarly,

(x1+x2) (x1+x2) (X1+X2)
A% D) —U.l ——2—— +L12 ——2—

> W u(xg) + (1 - A u (x)]+ AE) uyx)) + (1 - A2 u,(x,)]

> cv(x)) +(1-c)v(xy).

Hence
Xl + X

__2> < (1-e)vix)) +evixy,).

cv(xy) +(1 - ¢)vixy) Sv( 5

By Theorem 1, v is QS on (a, b), while Definition 1 shows that
Av) < e = max{p(l) (@)}

Since p(u) =A(u)/(1 - A(u)) is an increasing function of A(u), this is equivalent to the

inequality p(v) < max{p, p,}
N

0
(i) Assume the theorem is true for n = N, and let ¢ = Ei—l u;. Then

v="¥+ UN L But uNOJrl is assumed to be QS, and ¥ is QS by the induction hy-
pothesis, with p(¥) < max {pil 1<i< NO}. Hence, by part (i), v=¥ + UN,+] is
also QS on (a, b), with

p(v) < max {p(@), py 41} < max{p;| 1<i<Np+1}.

To prove that this result is sharp, choose a finite sequence of numbers
P1s P2y oy Py (1<p <o+ <p). Ifwelet a;=1log,(1+p;) (i=1, -, n), then by

[1, p. 133], the function u;(x) = x%1 for x € [0, ) is QS on [0, ) with dilatation

plu,) =20‘{i—1=pi (i=1, -, n).

By the first part of this proof, the function

(O8] (43

v®) = 2 uyx) = x%1 4 +x%n

DVE

is QS on [0, =), and p(v) < max{pil 1<i<n} = p, - If we now choose t =x in (1)
for u = v, however, then

vix +1) - v(x) _ v(2x) - v(x) _ v(2x) _
vix) -vix-t) v -v(0) ~ v

and

oov(2x) - v(x) .. v(2x) _ o0pn _
hmm— lim V(X)—l—z -1=p,.

X — 0 X—00
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Hence, by (1) and the definition of p(v), we must have the inequality p(v) > p, as
well. That is, p(v) = p, = max{pi| 1<i<n}.

An obvious analogue of Theorem 4 is the assertion that
p(v) > min{p;| 1 <i<n}.

This statement, however, is false even in the simple case n = 2, as the following
corollary shows.

COROLLARY 4. Theve exist functions u; and up, QS on (-, «), such that
plu; +uy) < min {p1, p2}.

Proof. For each Ao (1/2 <Xxg < 1) and A; =1 - g, define G and G, on [0, 1]
as

220 X it 0<x<1/2,
ﬁl(x) =

(2-2)x+(2x - 1) if 1/2<x<1,

2\ X if 0<x<1/2,
ﬁz(X) =

(2-23)x+@x -1) if 1/2<x<1.

It is easy to see that (1) is satisfied for both u; and u, on [0, 1] with p =2xg /A1,
and that #(x) = {;(x) + Gx(x) = 2x for all x € [0, 1]. Next, let us define functions uj
and u, on (-, ») by

u,(x) = ﬁi(x) for 0 <x<1, ui(x +2) = uy(x) +2 (i=1,2).

Then, by Theorem 5 of [3, p. 239}, u; and u, are both QS on (-«, «). Also,

200 =1,
u;(3/4) - ui(1/2) A
ui(1/2) - w(1/4) )

‘xa if i=2.

Therefore p; = p(uy) >Xg/A1 and py = p(uy) >2Ag/A;. But it follows from the con-
struction of v that v(x) = u;(x) +u(x) = 2x identically on (-, =), so that p(v) = 1.
Hence p(v) =1 <xAg/x; <min{py, p2}.

5. THE PRODUCT OF QS FUNCTIONS

THEOREM 5. Lef uj, uz, '+, u, be QS functions on (a, b) with ui(a) = 0 for
n
each i. Then the function v defined as v(x) = Hi:l u;(x) is also QS on (a, b), and
n

plv) < 11 (1+py)-1.

i=1

This vesult is sharp.

Proof. The proof is by induction on n.
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(i) Assume n=2, andlet ¢ =1 - (1 - A{1))(1 - A(2)). Then, for any
Xy, X € (a, b), we see from (2) that

(X1+X2> (X1+X2) (xl-l-xz)
v D) = u 2 Uz 9

< [ - AWy u(x ) + A () ]I - A2 uy(xp) + a2 uy(x,)]

= (1 -2 (1 - APy u(x ) uptxy) + (1 - AR w(x ) uplx,)
a1 (1 - By uyxy) upx ) A AR u(x) up(x))

< (-1 (1 - @y vix)) + (1 - Al vixy)
+ A (1 - @)y y(x,) + 212D y(x,)

= (1-20) (1 - M@ vxy) + (1 - (1 -2 (1 - A2 vixy)

= (1 - c)v(x,)) +evixy).

Similarly,
X+ X X, +x X, +x .
V( 1 2)=“1( l 2)‘12( l 2)>CV(X1)+(1-c)v(x2).
2 2 9 =
Hence
X1+XZ

cv(x1)+(1—c)v(x2)_<_v( ) < (1-e)vixy) +ev(x,).

2
By Theorem 1, v is QS on (a, b), while A(v) < c. Changing to the QS dilatation, we
see that p(v) <(p; + D (p, +1) - 1.
No
(ii) Assume the theorem true for n =Ny, andlet ¥ = II,_| u,. Then
V=V 'uNO+1 . But UNg+1 is assumed to be @S, and V is QS by the induction hy-

. i - No X o .
pothesis, with p(¥) < Hi:l (p; +1) - 1. Hence, by part (i), v = Vouyng 4 1S also QS
on (a, b), with
N0+1
p(v) < (o) + 1) oygsy + 1) = 1= p@ oy + D +py 1 < I o+ 1) - 1.

i=1

Equality holds when ui(x) = x91i (i=1, .-+, n) on [0, «), for each choice of
@y, -+, @, all greater than or equal to 1. By [1, p. 133], this choice of the u; gives
the equation

2

II (p; +1)-1= II2%-1=29 Oli-1=p(xzﬁ/ai)=p(v).

i=1 i=1
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6. THE INVERSE OF A QS FUNCTION

THEOREM 6. Let u be a QS function from (a, b) onto (¢, d) with midpoint
dilatation Ao = A(u). Then u-l is a QS function of (c, d) onto (a, b) whose QS
dilatation satisfies the inequality

-1
Pxo(l/z)

plu-l) < ———,

PAO(I/Z)
wheve p and P denote the Salem functions in (6). Theve is equality when
u(x) = x1/n on [0, «), for any integer n > 1.

Proof. Let y;, y3 € (c, d), with y; <y3, and let y, = (y; +y3)/2. Let

x;=u-ly;) (j=1, 2, 3), and let X = P-1(1/2) =1 - p-1(1/2). Then

ul(1 -N)x; +2x3] < (1 - PQ) ulx;) + PR ulxs) = (u(xy) +ulx3))/2 = y,,
by Theorem 2. Since u is increasing, this gives the inequality

x, > (1-23)x; +2x3.

Similarly,

ufax; +(1 - ) x3] = u((1 - (1 -21)x; +(1-21)x3)

> (1 - p(1 - 2)ulxy) +p(1 - N ulxs) = (ulx)) +ulx3))/2 = y,.
By the monotonicity of u, this implies that x, <Ax; +(1 - X)x3. Hence
(1-Nulyp+@-1-)ulys) <ullyy) <@-@-)uy)+0-NDullys)),

and by Theorem 1, u-! must be QS on (¢, d), with A(u-1) <1 -Xx =p-1(1/2). By
Definition 1, this becomes, in terms of the QS dilatation,

-1
-1 <P_£1_/_2_)__
plu-1) < 112

Equality holds when u(x) = x1/n on [0, »), for any integer n > 1. By [1, p. 133],
p(u) = 1/(21/n - 1), Hence, by Definition 1, AMu) = 1/21/2, From (6) it is clear that

p(1-(1/2™) = 1- (@)™ = 1-(1/2!/H" = 1-1/2 = 1/2,
or p'l(l/z) =1-1/2". For this choice of u, the inverse ul is given by the
formula u-1(y) = yn, and it is again easy to see that p(u-1) = 2n - 1. Hence
_1-1/2 __pl1/2) _pt/2)

-1y = on _ = =
plu?) =27 -1 1/2" 1-p /2y P l1/2)°

For computations, the following bound for p(u-1) is probably easier to use than
the bound in Theorem 6.

COROLLARY 6. Undev the conditions of Theorem 6,

log 2
1y < g gToB(FI7PTN _ g

p(u
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Proof. Let Ao =X\u) and P =P, . Since P(1/2") =x; for each n> 0, and
since P(1/20) = P(1) = 1> 1/2, there exists an integer k such that

(10) P(1/2Kh) = Akt < 1/2 <k = P(1/25).
Since P is strictly increasing, (10) is equivalent to the relation

1/2Kt < p-l(1/2) < 172K,
which implies that

(11) 1-1/2k < 1-P1(1/2) = p~1(1/2) < 1 - 172K,
Solving (10) for k, we find that

< log 2 _ log 2
= log(1/xg)  log(1+ 1/p(u))

<k+1,

and thus

log 2
Zk < 210g(l+1/p(u)) )

Hence, by Theorem 6 and (11), we find the desired bound

- log 2
p(u-l < P 11(1/2) 1 - 1{(21{"'1 = 2k+1 -1 = 2.2k -1 < 2.210g(l+1/p(u)) - 1.
= pl(1/2) = 1728 =
) 7. THE COMPOSITION OF QS FUNCTIONS
THEOREM 7. Lef uy, up, *+, u, be QS functions such that the domain of each

Uy ¢S contained in the range of the preceding u; . Then the composed function u
defined as u(x) =u, o u o..-0ou;(x) is also QS, and

P_(1/2)
p(u) __<_ 1 - Pnil/z) H

where P = P)\(un) o PMuml) 0 .. 0 Ph(ul) . This result is shavp.

n-1

Proof. The proof is by induction on n.

(i) Assume n =2, and let x;, X, € (a, b), where (a, b) is the domain of u, .
Let ¢ = PMUZ)(A(uI)). Then, by Theorems 1 and 2,

+ +
4 (Xl 2 = ) - U2 (ul(filz—xz)) < up((1 - Xuy)) uy(xg) +alu))u; (%))
S (1- Ph(uz)(h(ul))) U(Xl) + Ph(uz)(k(ul)) u(xz) =(1-2¢) u(xl) + cu(xZ) .

Similarly,
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X, + X X1+ X
u( 12 2)=“2(u1( 12 2))
> [1- Pa(u,) (1 - Mup))]ulx;) + p;\(uz)(l - AMuy)) u(x,)

= P)t(uz)(k(ul))u(xl) +[1 - m(uz)(k(ul))]u(xz) = cu(x;) +(1 - c)ulx,).

Hence
Xl -+ XZ
culxy) + (1 - e)ubxy) < u Z522) < (1- cubxy) +culxy).

By Theorem 1, u is QS on (a, b) and
M) < € = Py () = Py )(Paa,)(1/2) = Pa(1/2).
If we change to the QS dilatation, this becomes
P,(1/2)
plu) < T-5,0/9)

(ii) Assume the theorem true for n = Ny, and let 4 = UN, OUN,-1© oy,
Then u = UNy+1 © i. But UNy+L is assumed to be QS, and U is QS by the induction

hypothesis, with A(G) < Py (1/2). Hence, by part (i), u =u o1 is also QS, and
< Pny, Ng+1

M) = Ay 4 08 < Pra |, Pa@1/2) = Py ) 0@) = Py, (1/2).
"0 0

By Definition 1, this is equivalent to the inequality

PN0+1(1/2)
P(U) S 1 - PN0+1(1/2) .

Equality holds when u;(x) = x*i (i=1,2, -+, n) on [0, »), for any choice of

aj, oz, **, an withall o; > 1. Obviously u(x) = XHai on [0, ), so that [1, p.
133] gives
p(ui) _ zai -1

ao
= =1-1/2"1 hi.
T+ p(a) Ko / for each i

Haei

It is now trivial to show by induction that P_(1/2) =1 - 1/2 . Hence

1- 1/2Ho‘i P,(1/2)

Mo 1-P(1/2)
2 1

p(u) = 2HO[i -1=

1/

Remavk. It would be interesting, in Theorem 7, to see how p(u) depends on the
individual dilatations p(ui). For simplicity, we restrict the investigation to the case
n = 2.
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If n =2, then by Theorem 7

P,(1/2) Py (u,) (A (uy))
(12) plu) = pluz © up) < 7= P,(1/2) 1- Py (u, A (w))

Since 1/2 <A(u;) < 1, there exists an integer k > 1 with
1-1/2% <a(u)) < 1- 172K
Solving for k and using Definition 1, we find that

log (1 + p(uy))
— log 2

<k+1.

Thus
Py (uy)Mu1)) < Py )1 - 1/251) = 1 - (1 - Aup))H!

and using this in (12), we obtain the bound

10g(2+2p(u1))
(13) p(uz o ul) S (1 +p(u2))k+1 -1 S (1 +p(u2)) log 2 _1.

Now suppose the function u; is fixed, and let a = log (2 + 2p(u;))/log 2. Then
2 < a < e, and (13) shows that

(14) pluy o up) < (1+plu ) - 1.
A simple expansion of the right-hand side in (14) shows that
(15) p(up o uy) < p(uz)® +O[p(uz)®-1] as pluz) approaches « .

Suppose now that u, is fixed instead of u; . Then, using (13) and the identity
Alog B = BlogA with A =1+ p(uy) and B = 2 + 2p(u;), we obtain the relation

log (2+Zp(u1 )) log (l+p(u2))
(16)  pluy o uy) < (1+pluy)) 1082 -1 =(2+2p(u;) log2 - 1.

Let B = log(1 + p(u,))/log 2. Then 1 < B < e, and (16) implies that
(17) pluy o up) < (2 +2p(u)))P - 1.
A simple expansion of the right-hand side in (17) shows that
pluy o uy) < (2p(u)))P +O[p(u1)3'l] as p(u;) approaches « .
The inequalities (14) and (17) show that if u; (or up) is fixed, then p(uz o u) is

bounded by a power function of p(u;) (or p(u;)) as p(uz) (or p(u;)) tends to infinity,
the power depending on the finite constant p(u;) (or p(uz)).
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