IMPROPER EMBEDDINGS AND UNKNOTTINGS
OF PL MANIFOLDS

Ivan Ivansié

1. INTRODUCTION

We work throughout in the PL (piecewise linear) category, and we consider the
following problem. Let M and Q be a PL n-manifold and a PL g-manifold, re-
spectively, with M # @, and suppose that g: M — Q is a map such that g| aM is an
improper PL embedding, in other words, that g-1(int Q) N 8M # . Under what ad-
ditional conditions can we assert that there exists a PL embedding f: M — Q such
that f|aM = g | aM?

In Section 3, we prove the piping lemma; it enables us to modify singularities,
and this yields a better dimensional relationship between the dimensions of M and
Q. In Section 4 we prove (for the metastable range of dimensions) that if M and Q
are sufficiently connected, then any g satisfying the condition above is homotopic
rel oM to a PL embedding (Theorem 1). Also, we prove an appropriate unknotting
statement, rel oM. In the proof of Theorem 1, we use the relative general-position
approximation theorem to show that the given map g is homotopic rel oM to a
general-position PL map. Performing piping, we modify the character of the singu-
larities. We then combine the cone technique of R. Penrose, J. H. C. Whitehead, and
E. C. Zeeman |_6J with C. P. Rourke’s theorem on cone- unknottmg of spheres in balls
[7, p. 305] in order to remove all singularities at once. Theorem 2 in Section 5
specializes Theorem 1 to Euclidean spaces, and it follows immediately from Theo-
rem 1. In Section 5, we present some other consequences and results. Finally, in
Section 6 we consider disconnected bounded PL manifolds (it being understood that
each component is bounded), and in Theorem 4 we prove that if 9M, is inessential in
the complement of dM;, and vice versa, and if M; and M, have sufficiently high
connectivity, then any PL embedding of dM extends to a PL embedding of M. We
show that the condition is not necessary.

Let us point out that the main difference between our embedding theorems and
known embedding theorems for bounded manifolds (see [2] and [6]) is that we keep
the boundary fixed. In our proofs, we start with a map that is an improper PL em-
bedding on oM, and we construct a PL embedding of M, which turns out to be an
extension of the embedding of oM.

2. NOTATION AND DEFINITIONS

By E", B", and S™ we denote Euclidean n-space, the PL n-ball, and the PL
n-sphere, respectively. Furthermore, we denote the interior of a manifold M by
int M, and the boundary of M by oM. We say that M is bounded if aM # @, and that
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M is closed if M is compact and M = @. The manifold M is open without bound-
ary if M is noncompact and M = @, and M is open and bounded if M is noncom-
pact and oM # @. A manifold is usually understood to be connected as a topological
space, unless the contrary is specified.

If a polyhedron X collapses to the subpolyhedron Y, we write X VY, and we say
that Y is a spine of X.

Let K and L be PL subspaces of the PL manifold M, and let n = dim M.
Then K and L are in general position if dim(K N L) < dim K+dim L - n.

Corresponding to a map f: P — Q, we define the sets
S, = {x ¢ P| £-1(x) has at least r points }

and S.(f) = cl S.(f). The set S,(f) is called the singular set of the map f.

If P and Q are PL spaces, P is compact and f is a PL map, then S.(f)
isa PL subspace of P, and S.(f) is a closed PL subspace of P with
dim S,(f) = dim SL(f).

If P and Q are PL spaces of dimension p and q, respectively, we say that a
map f: P — Q is in general position provided

1) f is a PL map,
2) for all r, dim S;.(f) <rp +(1 - r)q,
3) S,(f) = @ (that is, f is not degenerate).

A point x € P is a branch point of f if no neighborhood of x is embedded by f. We
denote by B(f) the bdranch set (also called the branch locus or the set of branch
points) of f.

Let f: M™ — N¥ be an embedding of one manifold in another. The embedding f
is proper if £-1(aNK) = 9M™, and semiproper if £-1(aNK) C aM™. If we use no ad-
jective, we do not assume that the embedding is either proper or semiproper.
Analogously, we talk about proper and semiproper maps. Furthermore, if
f: @ — Nk is an embedding of a cone Q in a manifold Nk, we say that f is proper if
£-1(oNk) is the base of Q, and semiproper if £-1(aNX) is contained in the base of Q.
A proper subcone (or simply a subcone) R of Q is the cone in Q on a subset of the
base of Q, and a semiproper or partial subcone is the cone in Q on any subset

of Q.

The set of spaces
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will be called the standavd tviple of the type (m, n, q). It consists of an m-ball and
an n-ball, each properly embedded in a g-ball. If M and N are PL submanifolds
of Q and x ¢ M N N, we say that M and N are {ransverse at x if there exists a
closed neighborhood B of x in Q such that {B "M, B N N, B} is PL homeo-
morphic to the standard triple of the type (m, n, q).

Let f: M — Q be a semiproper, nondegenerate PL map such that f| oM is a
PL embedding. A point x € M is a nice double point of f if f-1f(x) consists of

two points x and x' with neighborhoods U and U' such that f| U and | U' are
embeddings and f(U) and f(U') are transverse in Q at f(x). We denote by H(f) the
set S,(f) minus the set of nice double points.
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3. THE PIPING LEMMA

In this section, we prove the “piping” lemma, which enables us to modify singu-
larities.

LEMMA 1. If f: M — Q is a continuous map, M and Q being PL manifolds (M
compact, dim M < dim Q), and £ | dM is a PL embedding, then f ~ g (rel M) for
some PL, nondegenevate, and semipropey map g such that

dim H(g) < 2n-q-1 and  dim(Sz(g) NoM) < 2n-q-1.

We can obtain this lemma by applying directly the techniques of general-position
approximation theory (see for example J. F. P. Hudson [2, Chapter IV ], especially
the inductive step in the proofs of Lemmas 4.6 and 4.7). Our lemma is almost the
same as Hudson’s Lemma 2.3 in [1, p. 18]. Because we do not begin with a proper
PL map, we allow the possibility that S,(g) N aM # @; however, in our case these
singularities are either branch points or they come from identifications of boundary
points of M with some interior points of M.

LEMMA 2. LetM be a compact PL n-manifold with 3M + @, and let Q be a
PL q-manifold (q > n+3). Let f: M — Q be a continuous map such that f] oM is a
PL embedding and

fl(intQ NaM =R = @b.

Then f ~ g' (rel dM) for some PL generval-position map g' such that g' is semi-
proper, and with the property that Sy(g') has a (2n - q - 1)-dimensional spine, say
P, and g'S,(g") \ g'(P).

Before proving the lemma, we present a brief geometric description of the idea
of the proof. We do it by means of two figures, which are inadequate to the real
situation but illustrate the procedure suggestively. Both figures present the config-
uration in the ambient manifold; the domain is not drawn. In Figure 1, we have
drawn a transversal intersection of two sheets, a piece of the boundary g(oeM), a PL
segment g(L) connecting the nice intersection point g(a) with a point of g(dM), and a
small regular neighborhood Dy, = g(By,) of g(a) inside the horizontal sheet. The n-
ball Dy, can be considered as a cone over its boundary. If we choose a new vertex of
this cone outside of g(M) (say above g(L)) and make a cone from this point over

Figure 1. Figure 2.
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oDy , we get a configuration similar to this in Figure 2. The effect of this step is
that we change the intersection between these two sheets, or, roughly speaking, we
punch a hole in the intersection part of the sheets. This amounts to punching two
holes in the singular set. If we redefine g on By, = g-1(Dy) in an obvious way, we
obtain a new map whose singular set has the additional properties states in the
lemma.

Proof of Lemma 2. First we apply Lemma 1 to obtain a map g with the prop-
erties described in Lemma 1. If it happens that dim S,(g) < 2n - q - 1, the proof is
finished. Therefore, suppose that dim S,(g) = 2n - q. Consider subdivisions of M
and Q such that g: M — Q is simplicial, and such that S,(g) and g(S,(g)) are sub-
complexes of M and Q. By the properties of g, the sets H(g) and B(g) are con-
tained in the (2n - q - 1)-skeleton of S,(g), and therefore each interior point of a
top-dimensional simplex of S,(g) is a nice double point. Furthermore,

dim(RN S2(g)) <2n-q-1<(n-1)-3,

and since dim R = n - 1, this intersection is nowhere dense in R. Denote by

(A} , A%), e, (al , AZ) the pairs of (2n - q)-dimensional simplexes identified by g,
so that g(Al) = g(AZ?). Notice that int A} Cint M (j=1,2; i=1,2, -+, r), and that
R - Sp(g) # @ for each component of R. We now carry out a sequence of modifica-
tions that will give the desired effect. We describe one step.

Choose a; € int A1 and b; € int A2 so that g(a;) = g(b;) for i=1,2, -, r.
(For example, we can choose the barycenters of the simplexes AJ) Connect each
point a; by a polygonal arc L; with some point ¢; € R in such a way that

L; NnSx(g) = a3 (i=1,2,'",r) and LiﬂLk=® (i+k).

Furthermore, each g(L;) is also a polygonal arc. It connects the point g(a;) = g(b,)
with g(c;), and g(L;) N g(Ly) = @ for i # k. Subdivide M and Q again so that g is
simplicial and each L; is a subcomplex. Then the points a;, b;, c¢;, g(a;) = g(b;),
and g(c;) are vertices of the above triangulations of M and Q. Let By;, Br;, and
B; be simplicial neighborhoods of b;, L;, and g(L;), respectively, in the second
barycentric subdivisions of these triangulations. To simplify the notation, we drop
the subscript i for the remainder of the proof. Using Whitehead’s regular-
neighborhood theorem, we see that

(1) By, and By, are n-balls, and B is a gq-ball;

(2) g(aBy) < 8B and g(int By) C int B; that is, By, is properly embedded in B,
and By, N oM = @

(3) g(Fry; By) € 0B and g(int B;) C int B; that is, By, is semiproperly em-
bedded into B,

(4) B, = 9By, - int(Fry; By) is an (n - 1)-ball, since it is a regular neighbor-
hood of the point ¢ in oM.

By the Alexander-Newman theorem, we see that the set Fry; By = 0By, - int B is
an (n - 1)-ball, and that by (3) it is embedded into 9B. Furthermore, the intersec-
tion By, N Sx(g) = Cp, is a (2n - g)-ball as the second derived neighborhood of b in

, which is properly embedded in By, ; analogously, By, N Sz(g) = C1, is a (2n - q)-
ball, as the second derived neighborhood of the point a in Al  which is properly em-
bedded in Bi,, and g(Cy) = g(C1). Since a is an interior point of Al and a € int M,
we see that 0Cy, C int Fryy By,. Write
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D, = g(B,), Dy =gB;), D-=g(C)=g(C;), F=gFry,B).

Because g is a general-position map and a is a nice double point, we can conclude
that

(5) D =g(Cy) =g(Cy) = B N g(Sz(g)) is a (2n - q)-ball properly embedded in B,
and :

D=D,NDy, aD=89"1=53D naD; C intF.

Now we are ready to perform the inductive step. Consider F C 2B as an
(n - 1)-ball embedded in the (q - 1)-sphere 9B. Since F is link-collapsible on its
boundary, we can consider a relative regular neighborhood of F mod oF in 2B
(Hudson and Zeeman [3]). Denote by A this neighborhood, which is a (q - 1)-ball in
0B, and observe that F is properly embedded in it. Furthermore, cl(0B - A) is
also a (q - 1)-ball, by the Alexander-Newman theorem. Since g - n > 3, we see that
(@ - 1) - (n-1)> 3, and by Zeeman’s unknotting theorem for proper ball pairs, the
pair (A, F) is an unknotted proper ball pair. Therefore there exists a PL homeo-
morphism

ho: (A, F) — (AP-1 x gad-n An-l)

onto the standard proper ball pair (An-1 x 3A9-n  An-1) of type (q - 1, n - 1). The
restriction hg | dA maps dA = 9(0B - int A) PL homeomorphically onto

a(An-1 x 9A9-1), Since AR-1 % 5Ad-D isa (q - 1)-convex linear cell, we consider
the (q - 1)-linear space E9-! gspanned by it. Let u be a point on the straight line
E! ﬁ)erpendicular to E2-1 that intersects E9-! in the barycenter bA”-1 of

AP c AP 4, 5A9 M | Tet u * (AP-! % 9AQ-D) be the cone with vertex u over
An-1 % 3A9-D which is a q-ball. The subcone u * 3(An-1 % 9A9-1) isa (q - 1)-
ball. Now, the PL homeomorphism hy | 0A extends to a PL. homeomorphism

hj: 8B - int A — u * 9(AP™! % pAd™)

since 9B - int A as a (q - 1)-ball can be interpreted as a cone over its boundary.
Together, hy and h; define the PL. homeomorphism

hy = hg Uhj: 8B — AP 1 % 9A9™ Uy % 3(A" 1 % 5A2™™) = j(u + (AP % pad™)
By the same argument, h, extends to a PL homeomorphism
h: B — ux (A% % 5A9™ D),

Consider a point v on the perpendicular straight line El between bA™"! and wu.
The cone v * AP-1 i5an n-ball (a rectilinear n-simplex), and v * An-l jgq prop-
erly embedded cone in the g-ball u * (A™-! ¥ A2-D) having A™-! ag its base. Be-
cause of (4), Fry, By, is a face of the n-ball B; , and B; can be interpreted as a
cone over its face Fry,;B; . Furthermore, the composition hg restricted to
Fr,; B, gives a PL homeomorphism

hg | Fry; By: Fry By, — APl c an-l a9

onto the simplex A™~! , and it extends to a PL embedding

h3: B, — v x A1
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onto the n-simplex v * An-1 | gince Bp, can be interpreted as a cone over Fryy By, .
Now, the map

hy = h"lh;: B, —» B

is another semiproper embedding of B;, into B (the first is g I B1,), or if we con-
sider Bp, as a cone over Fryp; By, it is another proper embedding of this cone into
the ball B that agrees with g on the base; in other words,

hy | Fry Br, = g| Fry By,
since for x € Fry; B; we have the relation
hy(x) = h-lhg(x) = gx).

This will enable us to use Lickorish’s unknotting theorem for properly embedded
cones.

On the other hand, the composition hg restricted to 9B, embeds it into the
(q - 1)-sphere 3(u * (A"l x 9A9-1)) in such a way that

hg(8By) N A1 = hg(aCy,) = h(sD) C int A™"L,

Since By is a cone over its boundary 0By, we can use its cone structure to extend
the map hg 1 0By, in an appropriate way. In order to do this, we choose a vertex w
on the perpendicular straight line El between v and u. Denote the extension by
hs ; then hg: By, — u * (A"~1 % 9A9-™) is a proper embedding of the n-ball By, . No-
tice that

hg(By) N v * A" = w x (hg(aCp)) N v * AP-!
collapses onto its base hg(aCy). Since
hg(dCy) = hg(3Cy) C int AL,

the polyhedron w * (hg(3Cy)) N v * A" ! ig a truncated cone over hg(aCy,), and
therefore it is PL homeomorphic to hg(2Cy) X I. This implies collapsibility to the
base hg(aCyp); that is, (hs)-1(h5(By) N v * An-1) collapses to 9Cy , and analogously
(h3)"1(h5(B) N v * AP~ 1) collapses to 8Cq,.

Now our modification of the map is almost obvious. We shall keep g fixed out-
side int By, and modify it in int By, using the construction above, which will ensure
that the new part of the singular set inside By collapses to 0Cy, and the new part of
the singular set inside Bp, collapses to 9Cy,. Let H; be an ambient isotopy of B
that keeps the boundary 8B fixed and such that g | By, = H; hy . (Such an isotopy
exists, by Lickorish’s unknotting theorem [5, p. 70] for properly embedded cones.)
Define a map g': M — E9 by the formula

g(x) for x € M - int By,
g'(x) =
H;h lhg(x) for x e int By.

Finally, let g': M — Q be the map obtained after r steps. The map g' has the de-
sired properties. From the construction of g' it is obvious that we have changed g
only inside int M, and therefore g is homotopic to g' (rel 9M). Furthermore, in
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each step S,(g') N By, is PL homeomorphic to 9Cy, X I, and analogously S(g') N By,
is PL homeomorphic to 9C; X I, so that

S,(g') N (BL,U B;) \ 9C,, U3Cy,.

Since AZ - int Cp is PL homeomorphic to dAZ x I, by the regular-neighborhood an-
nulus theorem (Hudson [2]), we deduce that it collapses to 3A%. Analogously,

Al - int Cy, collapses to 9Al. Similarly, S»(g') has a (2n - g - 1)-dimensional
spine that is in fact a (2n - q - 1)-skeleton, say P, of S,(g). From the construction
it is obvious that g'(Sx(g')) \ g'(P). Since we perform a finite number of punchings,
each time inside a g-ball in Q, every new map is homotopic to the previous, keeping
oM fixed. This proves the lemma.

4. IMPROPER EMBEDDINGS IN THE METASTABLE RANGE

THEOREM 1. Let M be a compact, (2n - q - 1)-connected PL n-manifold with
oM # @, and let Q be a (2n - q)-connected PL q-manifold (q >n + 3). Let
f: M — Q be a continuous map such that £ 1 oM is a PL embedding and

T lintQ NoM =R = @&.

If q > 3n/2, then £ ~ 1' (rel 0M), where ' is a semiproper PL embedding.

Fuvthermorve, let fo,1: M — Q be a pair of embeddings as above such that
fg ~ f; (rel 8M), M is (2n - q)-connected, and Q is (2n - q + 1)-connected
(q>n+3). If q> 3n/2+1, then fy and £, ave isotopic keeping OM fixed.

Proof of the embedding part. By Lemma 2, f ~ g (rel dM), where g is a PL
map such that
g(int M) C int Q, dim Sy(g) < 2n-q,
S2(g) v P, g(Sa(g)) \ g(P), dimP <2n-gq-1.

We now combine the Penrose-Whitehead-Zeeman cone technique with Rourke’s
cone-unknotting theorem for spheres in balls. Since M is (2n - q - 1)-connected,
the inclusion map i: P — M is inessential. Therefore it extends to a continuous map
it C — M of a cone C over P. By a general-position argument, we can consider
i: C — M as a semiproper PL embedding, since

2(2n-q)-n=3n-2q <O0.

Denoting i(C) by C again, we get the result that X =C U S,(g) N\ C \ 0 is a col-
lapsible polyhedron.

In Q, we can embed a cone D semiproperly over Y = g(X), by the same argu-
ment, since Q is (2n - q)-connected and

2@n-q+1)-q<3n-29q-1<0.
Furthermore, we can ensure that D N g(M) = Y. Fulfillment of this condition is not

an immediate consequence of the general-position argument, because, on account of
the relation
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2n-q+1l+n-q=3n-2q+1< 0,

we get zero-dimensional intersections. Fortunately, we can remove intersections by
piping them over points in R. (See a description of this procedure in the remark fol-
lowing this proof.)

We choose subdivisions of M and Q with respect to which g is simplicial and C
and D are subcomplexes, and we denote by A and B the simplicial neighborhoods of
C and D, respectively, in the second barycentric subdivisions of these triangula-
tions. Then

(1) A is an n-ball and B is a q-ball,

(2) 9A is embedded into B by g, since g | dM is an embedding,
(3) g7 1(B) = A,

(4) gl (M - int A) is an embedding.

The condition q > 3n/2 ensures the applicability of Rourke’s theorem [7, p. 305]
on the cone unknotting of an (n - 1)-sphere in a gq-ball, which says that any embed-
ding of S™ in BX is cone-unknotted if k > 3(n + 1)/2. Since cone-unknottability im-
plies spannability, we conclude that g(2A) is spanned by an n-ball A; € B. Since A
and A; are cones over their boundaries, we can extend the mapping g[ 0A: 0A — A,
to a PL homeomorphism ¢: A — A;, and define a new map f': M — Q by

g(x) for x e M - int A,
f'(x) =
o(x) for x € int A.

We see that f' is an embedding, since we have introduced no new selfintersections
and removed all the old ones. Furthermore, f{' | oM =1 | oM, since dM has been kept
fixed at each step. Since we have changed the map g inside an n-ball, keeping it
fixed outside the interior of this ball, with values in a g-ball, we get the relation

f ~ f' (rel 9M), and obviously f'(int M) C int Q. This proves the embedding part of
the theorem. The theorem is dimensionally the best possible. In order to see this,
we can use Rourke’s example [7, p. 325] of an embedding of S5 in BY that is not
spannable by a 6-ball in B?. Obviously, this embedding of S> in B? can not be ex-
tended to an embedding of BO.

Remark 1. If q > 2n, we do not need the condition concerning codimension 3 in
Theorem 1, since we can pipe eventual O-dimensional singularities over R. For
n > 3, Lemma 2 immediately gives us an embedding. The case n =1 is obvious,
and in the case n = 2 we can pipe the singularities, using the procedure described
by Penrose, Whitehead, and Zeeman [6]. For the sake of completeness, we describe
this procedure briefly. We start in the same way as in the proof of Lemma 2, get-
ting By, By, and B with the same properties (1) to (4). Now proceed as follows:
Consider the second barycentric subdivision of B. Denote by A the second derived
neighborhood of g(Bi,) in B. Using again Whitehead’s regular-neighborhood theo-
rem, we see that A is a 2n-ball and that A intersects B in a common face F,
which is the second derived neighborhood of g(Fry, B;) in 9B. Consider
C = cl(B - A), which is again a 2n-ball, by the Alexander-Newman theorem. Since
B and C are cones over dB and 9C, we can extend g‘ 9By, to an embedding
y: By, — C. Now we define g': M — Q2" by the formula
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g(x) for x € M - int By,
g'(x) =
v(x) for x € int By .

The map g' is obviously a well-defined PL map, the points a and b are now non-
singular points with respect to the map g', and no new singular points have been in-
troduced. After a finite number of such steps, we obtain a PL map {': M — Q,
which is obviously an embedding; moreover, f' | oM = f | dM. This completes the
extension part of the proof in the case q > 2n.

Proof of the isotopy part. In order to prove the isotopy part, we shall construct
a concordance.

Let f: M X I — Q X I be defined by the equation f(x, t) = ({;(x), t), where f; is the
assumed homotopy between f3 and f; . We notice that f[ o(M x 1) is a PL embed-
ding. Moreover, we have the relations

(1) f|Mx0 =1, HMx0) cQxO0,

(2) f|Mx1=1£, fMx1) cQx1,

(3) f|aM xI=f |oMxid = fp|aM xid = f; | aM x id,
(4) {RXI) C int(QX1).

Because of (4), Lemma 2 applies, and we get the mapping g: M xI — Q X I, where
f~ g (relda(M x 1)), and g(int(M x I)) C int(Q X I), with S(g) \ P and

dim P < 2n - q. We can now proceed as in the part of the proof about the embedding,
getting a concordance between f; and f; . We omit the repetition of this argument.
In order to prove the last statement about isotopy, we apply Hudson’s Concordance
Theorem [10, Theorem 9.8, p. 197]. This completes the proof of the theorem.

5. SOME COROLLARIES AND OTHER RESULTS

THEOREM 2. Lef M be a compact, k-connected, bounded PL n-manifold
(n>2k+2and n-Kk>4). Then every PL embedding g: oM — E2n-k-1 extends to
a PL embedding of M. Fuytheymore, M unknots (rel 9M) in E2n-k

Proof. The assumption n - k > 4 implies the condition concerning codimension
3, and the assumption n > 2k + 2 implies the inequality 4n > 2k + 3n + 2, that is,
2n - k - 1> 3n/2. Since 9E? = @, we see that R = M, and therefore Theorem 2 is
a special case of Theorem 1. The proof of the unknotting part is obvious.

Concerning the existence of an embedding, we may state the next obvious corol-
lary.

COROLLARY 1. If M satisfies the conditions in Theovem 2 and d3M can be
embedded into E2"-k-1 then M can also be embedded into E2n-k-1

Comparing this corollary with Theorem 1.2, case (a) of Penrose, Whitehead, and
Zeeman, we see that in their theorem we can drop the assumption that oM X I is
embedded into E2n-k-1,

COROLLARY 2. Let M be a compact, 1-connected, bounded PL n-manifold
(n >5). Then M can be embedded into E2™~2 gnd unknotied (rel oM) in E2n-1

Proof. That M can be embedded into E2P-2 is a consequence of Corollary 1;
for by the theorem of Penrose, Whitehead, and Zeeman, adM can be embedded into
E2n-2  The unknotting part is a corollary of Theorem 2.
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COROLLARY 3. Let M be a compact k-connected PL n-manifold (n > 2k + 2,
n - k > 4) such that each component of dM is (k - 1)-connected. Then M can be
embedded in EZn-k-1

Proof. Each component of M is a (k - 1)-connected, closed PL (n - 1)-mani-
fold, and since 2(n - 1) - (k - 1) = 2n - k - 1, it can be embedded in E2n-k-1 by the
theorem of Penrose, Whitehead, and Zeeman [6, Theorem 1.1]. Now we start with
any embedding of oM and apply Corollary 1.

We notice that the statement above gives the Penrose-Whitehead Theorem [6,
Theorem (1.2), case (a)], the only difference being that we do not obtain che case
n =2k + 2.

We present two more sufficient conditions, applicable beyond the metastable
range, for the extensibility of an embedding g: oM — E9 to an embedding of the
whole manifold. The first condition employs further restrictions on the connectivi-
ties of M and oM, while the second replaces the condition on connectivity of aM by
a restriction on the embedding g.

The following theorem was proved by several authors. For the proof, see Hud-
son [2, p. 181].

THEOREM 3 [Dancis, Edwards, Horvati¢, Hudson, Tindell, Wall]. If M is a
compact PL n-manifold with oM = ¢ and the paiv (M, 0M) is k-connected
(k <n - 4), then M can be embedded in E>™X-1 gud unknotted in E?"-K .

PROPOSITION 1. Let M be a compact PL n-manifold with connected, non-
empty boundary. Let M and oM both be k-connected (k <n - 4). Then every PL
embedding g: oM — E2n-k-1 can be extended to a PL embedding of M.

Proof. Using the homotopy exact sequence of the pair (M, 9M), we see that the
pair is also k-connected. Therefore Theorem 3 applies and ensures the embeddabil-
ity of M in E2n-k-1_ Fyrthermore, 83M is a compact, closed (n - 1)-manifold, and
by assumption, it is k-connected. Since

k<n-4=(@m-1)-3,

Irwin’s embedding-unknotting theorem (see Zeeman [8, Chapter 8, Corollary 2]) im-
plies that 9M can be embedded in E2"-K-2 and unknotted in E27-%k-1  Therefore
we can begin with a prescribed embedding g: oM — E2n-k-1 apd any embedding

h: M — Eén-k-1 By Irwin’s unknotting theorem, there exists an ambient isotopy
between h | oM and g. Finally, the map

f=H hM— En-k-1

is simultaneously a PL embedding and an extension of g. This completes the proof.

PROPOSITION 2. Lef M be a compact, (2n - q)-connected PL n-manifold
(n<q- 3), and let g: oM — E be a PL embedding. If g extends to a PL embed-
ding of a cone C(0M) over oM, then g extends to a PL embedding of M.

Proof. Let K be a subdivision of M such that g: 9K — E9 is simplicial and 9K
is a full subcomplex of K. Consider the diagram
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oM

s

M ——> C(aM) —~ E? |
1

where i and j are the inclusion maps, g is the preassigned embedding of ¢M, and
g is the preassigned extension of g on C(6M). Since 9K is full in K, we define ¢

as follows. Let ¢| oM = j; that is, let ¢ | oM be an inclusion. If v is a vertex in

int M, let ¢(v) be the vertex of C(dM), and extend ¢ linearly. The composition
g1 ¢: M — E? is a PL map such that g; ¢ | @M = g. Since g, is an embedding and ¢
is surjective, it follows that

g2 $(M) = 21 C(oM) ;

that is, the image by g ¢ is an embedded cone C(dM); it is a collapsible polyhedron,
and simultaneously it is link-collapsible onto its base g(dM). Therefore the relative
regular neighborhood of g¢(M) mod g(dM) is a PL g-ball. Denote this ball by B.
Then the map g; ¢: M — B is a proper map, and we can apply Irwin’s theorem [4,
Theorem 1.1], which says that g, is homotopic (rel dM) to an embedding. This
completes the proof.

6. DISCONNECTED, BOUNDED PL n-MANIFOLDS IN E¢

Here we present a sufficient condition for the extensibility to M of an embed-
ding of aM into E?, for the case where M is disconnected. By a disconnected,
bounded PL n-manifold M we mean a manifold M such that dM # ¢ and each com-
ponent of M is bounded.

LEMMA 3. Let M" C E? be a bounded PL n-manifold. Then E® - M is
(g - n - 1)-connected.

Proof. Since every continuous map f: 89 -l L pd - M is homotopic to a PL
map, we can assume that f is PL. But every map in EY is nullhomotopic. There-
fore there exists a PL extension F: D9" — E" of f. By a general-position argu-
ment, we can assume that F is a map in general position with respect to M. Thus
we get O-dimensional intersections between M and F(D). As usual, we notice that
these intersections, as top-dimensional intersections, are transversal. Therefore
the intersections can be piped over the boundary of M. Thus we obtain a map
g: D9™™ — E9 - M that is an extension of f, and therefore f is nullhomotopic in
EY - M.

THEOREM 4. Let M = M; U M, be a compact, bounded PL n-manifold. As-
sume that My is (k + 1)-connected and My is x-connected (2k+2 <n, k <n - 4).
Let g: oM — E2n-k-1 pe g PL, embedding. If the embeddings

2n-k-1

g, = g|aM;: 9M; — E - g(dM,)

and

g | aM,: M, — EZP K1 _ g(aMm;)

il

g2

ave tnessential, then g extends to a PL embedding of M.
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Proof. Let W; =E2"-k-1 . g(3M;). Each W; is an open PL n-manifold without
boundary. Furthermore, by a general-position argument, each W; is (n - k - 2)-
connected. Since g;: 0M; — W, is inessential, it extends continuously to a map of
M, into W, . We are now in the situation of Theorem 2. The condition 2k +2 <n
implies q = 2n - k - 1 > 3n/2. Furthermore, we need (2n - q - 1)-connectedness of
M; and (2n - q)-connectedness of W, . The condition 2n - (2n -k - 1) - 1 =k im-
plies that

2n-(2n-k-1)=k+1<n-k-2,

and we see that both conditions are satisfied. Therefore g;: 0M; — W, extends to a
PL embedding, say g;: M; — W, . Analogously, g>: dM, — Wl extends to a PL
embedding g,: M, — W, . The embeddings g, and g, together give a PL map

g: M — E2n-k-1 gych that gl M; = g; , which is in general a PL immersion of M.

By a general-position argument, we can assume that dim Sz(g) <k +1, and from the
construction we see that S(g) C int M. Since by assumption M; is (k + 1)-connected
and k+1 < n - 3, we can engulf S,(g) N M; by a PL n-ball B such that B C int M, .
Let A be a PL arc that connects a boundary point of 9B with some point in aM,,
and let A be properly embedded in M; - int B. Then B U A is a collapsible poly-
hedron, since the ball collapses to any one of its points. Subdivide M, and choose a
triangulation of E2n-k-1 gych that g is simplicial and B U A is a subpolyhedron of
M. Since g| M; = g;, we see that B U A is embedded into g2n-k-1  mherefore we
can look at the second derived neighborhood N of g(B U A) in E2n-k-1 ' gsubdividing
M and E2n-K-l twice barycentrically. By the usual argument, we deduce that

(1) N is a (2n - k - 1)-ball;

(2) Nj = g 1(N) n M; is an n-ball (since it is the second derived neighborhood
of BUA in M;);

(3) N; N aM; is a face of Ny, that is, an (n - 1)-ball (since it is the second de-
rived neighborhood of the point A N 9M;);

(4) N, is semiproperly embedded in N; in fact, g(Frys Ny) € 9N, and Fry; N;
is an (n - 1)-ball;

(5) N, =g 1(N) N M, is a PL n-manifold (since it is the second derived
neighborhood of S,(g) N M,); furthermore, N, C int M, , and g embeds N,
properly into N.

Consider now the second derived neighborhood K of g(Nl) in N. We see im-
mediately that

(6) K isa (2n - k - 1)-ball, 3K N 9N is a common face, and therefore
L=cl(N -K) isa (2n - k - 1)-ball such that

(7) LNgM;)=¢ and
(8) g embeds 3N, into L.

Now we restrict our attention to N, and L. From the construction it follows
that no point of M - N, is mapped into L and that g | M - int N, is an embedding.
Since L is a ball, and since g embeds BNZ into 9L, this implies that the map

g|aN,: aN, — EZPTR-L _g(m)

is inessential. Extend this map to N,. Together with the map g\ (M, - int N,), the
extension gives a continuous extension of the embedding
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g|oaM,: oM, — B4R

g(Ml) =W.

W is an open PL (2n - k - 1)-manifold without boundary, and furthermore, W is

(n - k - 2)-connected, by Lemma 3. The condition 2k +2 < n implies that
n-k-1>k+1 sothat n-k-22>k+ 1. Since M, is k-connected, Theorem 2 is
again applicable, and therefore this map is homotopic to a PL embedding that keeps
oM, fixed. This completes the proof of the theorem.

Remark 2. We point out that the conditions of Theorem 4 are not necessary.
Let the manifold M be a union of two disjoint n~annuli M; = S?-1 x I and
M, = S*-1 x I. It is possible to embed M into E2"-l in a linked fashion so that aM,
is not inessential in E2"-! - 3M, and 9M, is not inessential in E2"-1 - 3M;. For
the case where M has more than two components, we can state the following obvious
corollary.

r
COROLLARY 4. Let M=, M; be a compact PL n-manifold with aM; + @
Jov each i. Assume that each M; is (k + 1)-connected (we can obviously allow that
M, be only k-connected) (2k +2 <n, k <n - 4). Let g: oM — E2n-k-1 peo 4 PL
embedding. If

g, = g| oM,z aM; — gén-k-1 _ g(U an)
j#i

is inessential for each i, then g extends to a PL embedding of M.

Proof. Suppose that g has been extended to an embedding g of UJ- <i Mj .
Since

g om; — B2 U glamy)
j#i
is inessential, it extends to an embedding of M; , by the argument used in the proof of

Theorem 4. We can remove the intersection with U . <1 g(M;), considering one com-
ponent M; at a time, in the same way as in the proof of Theorem 4. Thus we obtain a
continuous extension of g; onto M; into

g2kl U gy - U giomy)
i<i j>i
which by Theorem 1 is homotopic to an embedding that keeps oM; fixed. This com-
pletes the inductive step and therefore the proof of the corollary.

To obtain a concordance between two embeddings as described in Corollary 4,
we need an additional restriction.

PROPOSITION 3. Suppose that the manifold M = M; U M, satisfies the condi-
tions in Theovem 4. Suppose fuvther that

fo,f;: M, UM, — E**K
are extensions of the same embedding g: oM — E®" K gnd that

fo|M; ~ £, | M, (relaM,;) in W, = E2""K - g(3M,)

and
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fo| My ~ £, M, (relaM,)  in W, = E22°K_ g(aM,).

Then fg and f, are concovdant and keep oM fixed.

Proof. Let hy and h{ be the assumed homotopies (rel 3M;) and (rel 3M,), re-
spectively. We define h: M X I — E2n-k xX I by the condition

(h(x),t) if xe M,
h(x, t) =
(hg(x), t) if x e M.

It follows immediately that
h|(M; xD): M; XI — (E2?"K x1) - h(3a(M, x 1)),

h| (M, xI): My X1 — (E22-Kx1) - h(a(M; X 1)),
and that
h|(@MxI) = gxid, h|(Mx0)=1£,, h|(Mx1)=rf.

Now the proof of Theorem 4 applies, and therefore h is homotopic (rel o(M x I)) to
a semiproper PL embedding. In the proof of Theorem 4, we use Lemma 3, which
applies to the present case in an obvious way. Interior intersections between the
embedded M; X1 and M, X1 can be removed in the same way over oM, X I. This
gives the desired concordance.

We point out that the additional assumption used in Proposition 3 is in fact
necessary.
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