EXTREMAL LENGTH AS A CAPACITY
William P. Ziemer

1. INTRODUCTION

In Euclidean n-space E,, the p-capacity (1 < p < «) of a pair of disjoint closed
sets Cp and C; is defined as

(1) I'y(Co, Cy) = inf (S |grad u|P dLn),

En

where the infimum is taken over all continuous functions u on E, that are infinitely
differentiable on E_ - (Cq U C|) and assume values 0 on Cy and 1 on C;. Under
the assumptions that Cy contains the complement of some closed n-ball and that

1 <p <, it was shown in [14] that T'(Co, C}) is equal to the reciprocal of the p-
dimensional extremal length of all continua in E, that intersect both Cg and C;.
This equality was first established by F. W. Gehring [10] in the case where p = n,
and it plays an important role in the theory of quasiconformal mappings on E,

For an arbitrary set E C E,, let {,(E) denote the reciprocal of the p-dimen-
sional extremal length of all closed connected sets that join E to the point at infinity
of E,,. By using the relationship between p-capacity and extremal length that was
referred to above, we shall show that Y, is a capacity in the sense of Brelot.

Let W%) denote the collection of distributions whose partial derivatives are
functions locally in £P, and call a function u p-precise if u € er) and if for every

g > 0, there exists an open set U such that ¥ (U) < &€ and u restricted to the com-
plement of U 1s continuous. For p > 1, we use the results of [8] to show that every

function u € W is equivalent to a precise function, thus extending the result ob-

tained by J. Deny and J. L. Lions [5] in the case p = 2. In the terminology of N.
Aronszjan and K. Smith, the precise functions form a perfect functional completion*
whose exceptional sets are #/P—null sets. Finally, for every bounded Suslin set

A Cc E_, we shall show that
Vpla) = inf ( §

En

|grad ulp),

where the infimum is taken over all precise functions u that “vanish at infinity” and
for which u(x) =1 for Yp-almost all x € A.

2. NOTATION AND PRELIMINARIES

By L, and Hk, we denote n-dimensional Lebesgue measure and k-dimensional
Hausdorff measure in E_ (for properties of the latter, see [6]). Let 2P be the

Received July 7, 1969.
This research was supported in part by NSF grants GP7505 and GP11603.

Michigan Math. J. 17 (1970).

117



118 WILLIAM P. ZIEMER

class of functions f for which |f|? is L-integrable, and let |f ||P be the ZP-
norm.

2.1. A continuous, real-valued function u is said to be absolutely continuous in
the sense of Tonelli (ACT) on an n-dimensional interval I if it is absolutely con-
tinuous on almost all segments in I that are parallel to the coordinate axes and if its
gradient (which will be denoted by Yu) belongs to 2!, The function u is called ACT
on an open set U if it is ACT on every interval I C U. By using integral averages,
one can easily show that the infimum in (1) can be extended to the class of ACT
functions (see [9]).

If @ is a domainin E,, WIID(Q) will denote the class of distributions on 2
whose partial derivatives are in £P. Such distributions are functions, and each
u € WIID(Q) has a representative that is absolutely continuous on almost all segments
I in © that are parallel to the coordinate axes.

2.2. If x is a family of closed sets in E,, the p-dimensional module of x
(1 < p <) is defined as

(2) My(x) = inf(S fPaL  f /\x),

En

where f A x means that f is a nonnegative Borel function satisfying the condition
1
S fdH™ > 1
B

for every B € x. By referring to [8, 2.2], one sees that f in this definition can be
assumed to be lower-semicontinuous.

2.3. For EC E, and 1 <p <n, define l,l/p(E) to be the p-dimensional module
of all closed connected sets that join E to the point at infinity of En, and let ¥ (E)
be the p-dimensional module of all nondegenerate continua that intersect E. Finally,
if E is compact, let I';(E) be defined as in (1), except that the infimum is taken
over all continuous functions u with compact support that are identically 1 on E
and ACT in E_ - E. In the case where p > n, the support of each function u is re-
quired to lie in some fixed open ball S containing E, and in the definition of t}/p(E),
only those continua that join E to E, - S will be considered.

The following theorem is essential in showing that Y is a capacity, and while
its proof is similar to that of Theorem 3.8 in [14], there are some new difficulties
that deserve to be treated.

2.4. THEOREM. If E C E,, is compact, then Yo(E) = Tp(E) (1 <p < ).

Proof. We shall consider only the case where 1 < p <n (the case where p>n
is simpler). Let B, (k=1, 2, -+ ) denote the closed ball centered at 0 of radius Kk,
and for simplicity of notation, assume E C interior B;. As in [14, Section 3], the
only closed connected sets B that need to be considered in the definition are those
for which H!(B8 n By ) < =, for every k. Hence, 8 is locally connected and therefore
arcwise connected. Consequently, there exists an arc g* C 8 that joins E to «.
Since H!(B* N Byi) < « for every Kk, there is an arc-length parametrization of B*,
say 7: [0, ©) — B*, such that v(0) € E and |y(t)| — w0 as t — «, Now the proof
proceeds precisely as in [14, Lemma 3.1] to establish the inequality tlxp(E) < I‘p(E).
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To prove the opposite inequality, let x be the family of closed, connected sets
that join E to =, and let £ be a lower-semicontinuous function such that f A x. If,
for every positive integer i, we define

f(x) (f(x) > il 27k x™/P and x € int By - Br_1),
fi(x) =
i-la-kg-n/p  (f(x) <i-12-*%k-2/P and x € int By - By_}),

then f; is lower-semicontinuous, f; Ax, and ||f; - £ p — 0. Therefore, without loss

of generality, we may assume that f is bounded away from zero by a constant C, on
each ball By.

For each positive integer k, let
f(x)  (i(x) <k),
f1(x) = < k (f(x) > k),
0 (x ¢ By,

and define

uy(x) = inf (SB fdel) (x € By),

where the infimum is taken over all continua g8 that join E to {x}. Asin [14, Sec-
tions 3.4 and 3.5], the infimum is attained by some By, the function u, has Lipschitz
constant k, and |Vuk| < fk a.e.. Thus, to conclude the proof, it suffices to prove
that

liminfmy > 1,

k—o
where

my = min {u(x): x € 3B, }.

To this end, let x) € 9By be such that ux(xyx) = my, and let 8 € By be a con-
tinuum joining {x, } and E such that

uk(Xk) = SB fdel .
k

If we assume that lim infi _, o myi < 1, then some subsequence would satisfy the in-
equality

5 £, dH! < 1.
By

This implies that H 1(,3k) < o, since fj is bounded away from zero on each By.
Thus g, may be assumed to be an arc of finite length, say a; . Let v [0, a; ] — By
be the arc-length parametrization. If each 7y is restricted to [0, 1], then, by
reasoning similar to that of [14, Lemma 3.3], there exist a subsequence (which we
still denote by {y}) and a map p;: [0, 1] — E, such that {y,} converges
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uniformly to y; on [0, 1]. Now by restricting each v, of this subsequence to [0, 2],
there exists another subsequence that converges to a map p,: [0, 2] — E_ . Note
that u, is an extension of u; . By continuing in this manner and then by employing
Cantor’s diagonalization process, one obtains a map u: [0, ©) — E,, and a subse-
quence such that {yk} converges uniformly to £ on compact subsets. It is easy to
verify that g = u [0, ©) is a closed connected set that joins E to infinity, and conse-
quently,

S fag’ > 1.
B

For every ¢ > 0, there exists a positive integer m such that

S f,dH! > 1-¢,
B

for k > m. Therefore,

lim inf m, = lm infS f dH' > lim inf S £ A’ > S £ aH >1-¢,
k — o0 k —o0 Bk k— o0 Bk [3

and this concludes the proof.

3. CAPACITY AND MEASURE

From the properties of the p-dimensional module as discussed in [8, Chapter 1],
it follows that the set function ¥, that was introduced in Section 2.3 is monotone and
countably subadditive. Let A be a subset of E, and x the class of all continua that
intersect A. If f € £, is a function such that f A x, then it must be the case that

S fdH! = o
Y

for -almost all ¥ € x. Therefore, the following result now follows from (8,
Theorem 2].

3.1. THEOREM. For 1< p <, ¥, is an outey measure on E, that assumes
only the values 0 and .

If L,(E)> 0, then it follows from [13] and Theorem 2.4 that Y (E) > 0, and
therefore \IJP(E) = o, Consequently, in order to simplify the exposition, we shall
assume in Theorems 3.5 and 3.6 below that L (E)= 0. If L_(E)= 0, then there
exists a function f € £, that is infinite on E. Therefore, the p-dimensional module
of all continua that intersect E and that are subsets of E is zero.

3.2. LEMMA. If K; D K2 D - are compact sels, then

lim Y(K;) = wp( n Ki) (1<p<).

i— 00 i=1
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Proof. It follows from Theorem 2.4 that we only need to show that

<0
im T,(K;) = T, nl Ki).
1=

i— o0

To do this, choose £ > 0, and let u be a smooth function with compact support that is

equal to 1 on ﬂj‘;l K, and that satisfies the inequality

o0
S |vulPdL, < T ani)+s.
1=

En

Since u is continuous, it is no less than 1 - € on Kj, for all large i. Hence, for
large i,

[0}
Tp(K;) < (1-e)! S |vulP dL, < (1 -€)7} I“p(n Ki) +e |,
E, i=1

and therefore lim; _; I"p(Ki) LTy (ni= 1 Ki) . Since the opposite inequality is
obvious, the proof is complete.

3.3. LEMMA. If A C A, C *** are subsets of E_, then

lim y(A;) = x,l/p(U Ai) (1<p<n).
i— 00 i=1

If p > n, the same vesult holds, provided the closure of each Aj is contained in some
open ball S.

Proof. If 1 <p <n, let x; be the class of closed connected sets that join A; to
[=e] -
infinity, and observe that Ui:1 X; is precisely the class of closed connected sets

L]
that join Uizl A; to infinity. Thus the result is an immediate consequence of [14,
Lemma 2.3].

In the case where p > n, the proof proceeds in a similar way, and in fact it is
easier to handle.

Lemma 3.2 states that t,!/p is right-continuous on compact sets, while Lemma
3.3 implies left continuity on arbitrary sets. In the terminology of Brelot, Y is a
true capacity, and therefore the next theorem follows directly from [2, Theorem 1].

3.4. THEOREM. If E C E, is a Suslin set, then
Yp(E) = sup {z,bp(K): K C E, K compact} (1 <p<=).

We shall now establish a similar result for the measure ¥,, and we begin with

the following result.

p?

3.5. THEOREM. If E C E,, then V,(E) =0 if and only if Yp(E)=0
1 <p< ).



122 WILLIAM P. ZIEMER

Proof. In view of the inequality ¥p(E) > Yp(E), we need only show that
u,bp(E) = 0 implies \IIP(E) = 0. The assumption that ybp(E) = 0 implies that there
exists some nonnegative function f € & with the property that if A is any ray whose
end point is in E, then

(3) S fdH' = e,
A

In case p > n, equation (3) will hold for all line segments A one of whose end points
is in E and the other in the complement of the ball S that is assumed to contain E.
Therefore, by employing polar coordinates, (3) implies that the Riesz potential of
order 1 has the property that

o= e )

En

whenever x € E. In view of Theorem 6 in [8], this leads to the conclusion that the
p-dimensional module of all continua that intersect E is zero, that is, \pr(E) =0.

3.6. THEOREM. If E C E, is a Suslin set, then
¥ (E) = sup {\IJP(K): K CE, K compact} (1 <p<),

Proof. I ¥p(E) =, then, by Theorem 3.5, we have that ¥(E) > 0. Therefore,
Theorem 3.4 asserts the existence of a compact set K C E with y,(K) > 0, and
hence, ‘I'p(K) = oo,

We shall now consider the problem of extending the set function I', from com-
pact sets to arbitrary sets, and then we shall determine its relationship to ybp . We
follow [2] in making this extension.

3.7. Definition. For an arbitrary set A C E,, let

*I‘p(A) = sup {PP(K): K C A, K compact}
and
>kl"p(A) = inf {*I‘p(G): GD A, G open}.
Because I, is right-continuous on compact sets (see proof of Lemma 3.2), it fol-
lows from [2, Chapter II] that +1p and *T agree on compact and open sets. We

shall write I, whenever ,I'y; and *Fp are equal. Moreover, it is easy to verify
that for every pair of compact sets K| and K,, we have the inequality

(4) IL,(K; UKy)+ IK) NKy) < TK))+ TKp).

An equality of this type plays an important role in Choquet’s general theory of ca-
pacities [4]. According to [2, Theorem 2], (4) implies that *I'; is a true capacity,
and therefore, as in the proof of Theorem 3.4, we have that *Fp is an inner regular
function on Suslin sets. This proves the following.

3.8. THEOREM. If 1 <p <=, then

Y (E) = ,T(E) = *T'(E) = T'(E),
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whenever E is a Suslin set,

3.9. Remark. As in classical capacity theory, it is possible to introduce the
concept of capacitary dimension, which in our context is based on the capacity !,Dp .
Corresponding to an arbitrary set E C E,, there exists a real number o (0 < a < n)
such that

llfn_B(E) =0 for every B> o, and l,Un_B(E) > 0 forevery B< .

The existence of the number @ is obvious if one employs the following criterion to
determine when the p-dimensional module of a family X of closed sets is zero [8,
p. 179]: Mp(x) = 0 if and only if there exists a function f € £P (f > 0) such that

S fdg! = o for every B € x.
B

We call this number « the yY-capacitary dimension of E. If E is a Suslin set, it
follows from Theorem 3.5, [8, Theorems 6 and 7], and [8, p. 199] that the -capaci-
tary dimension of E is equal to its Hausdorff dimension, but we do not know in gen-
eral under what conditions y, and H?"P vanish simultaneously. However, the
following is known:

(i) If K is a compact set with H*(K) =0 (0 < a <n - 1), then T',_4(K) =0,
and therefore ¥,_o(K) =0 [13, p. 335].

(ii) If 2 < o < n, there exists a compact set K satisfying the conditions
Ya(K) =0 and H*"%(K) = © (see [13, p. 339] and [3, p. 28]).

(iii) Fleming has shown that H*"1(K) = 0 if and only if T';(K) = 0, whenever
K C E, is compact [7]. By using Theorem 2.4, we obtain that H?~1(K) = 0 if and
only if ¥, (K) = 0.

4. PRECISE FUNCTIONS

In this section, we introduce precise functions and show that every function in
WII, is equivalent to a precise function. It will then follow that the precise functions
form a perfect functional completion in the sense of Aronszjan and Smith [1].

4.1. Definition. A function u € WII)(Q), where @ is a bounded domain, is called

p-precise if for every € > 0, there exists an open set U such that y¥4,(U) <& and u
restricted to 2 - U is continuous. B. Fuglede proved in [8, Theorem 9] that Y, is
equal, up to a constant factor, to Newtonian capacity. Therefore the 2-precise func-
tions are the same as the precise functions of Deny and Lions [5, p. 354].

4.2. LEMMA. If ¢ is a continuously diffeventiable function whose support is
contained in Q and if E = {x: |q5(x)| >al, then

@ < a® | |vefPar, (1 <p<=).
Q

Proof. If K is a compact subset of E, then clearly
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I'h(K) < a"PS | ve|PdL,
Q
The conclusion now follows from Theorems 2.4 and 3.4.

The proof of the following theorem is similar to that of [5, Theorem 3.1].

4.3. THEOREM. Every function in WIID(Q) is equal almost everywhere to a p-
precise function (1 <p < =),

Proof. Let u e WIID(Q) and let K be a compact subset of 2. There exists a
nonnegative C* -functlon a whose support is in £ and that is identically 1 on K.
Hence, u¥*=a-ue W (9) and the support of u* is contained in Q. It is well known
[11, p. 64] that the molhﬁers ¢; of u* are of class C* and that

(5) ”qbi- u*”p — 0 and ”qui—Vu*”p — 0

Since the support of u* is contained in Q, the same may be assumed for each of the
¢;. By passing to a subsequence if necessary, we may assume that

[oe]

©) 2 2P I Véii1 - v¢1”p <
i=1

. o0
Let E; = {x: |¢41(x) - ¢;(x)| > 27} and Wy = Ui:k E;. It follows from Lemma
4.2 that

V(W) < Ewp(E) < Ekz V8541 - Vaill 5,

and therefore (6) implies that Yp (W) > 0 as k > =, On © - W, the sequence
{¢;} converges uniformly; hence {¢:} converges yp-almost everywhere to a func-
tion v* that is precise. Clearly, v* is equivalent to u* and u* =u on K. Now, by
expressing £ as the union of closed sets K; € K, C -+, where

= {x: d(x, aQ) > i1},

it can easily be verified that there exists a precise function that is equivalent to u.

If P is a hyperplane in E, and S a bounded subset of E,, let S* be the Steiner
symmetrization of S with respect to P [12, Section 1.7]. It follows from [12, Sec-
tion 7.3] that if S is compact, then I‘p(S) > FP(S*) (1 < p <), and therefore,

(7) WolS) > wy(S).

If G is a bounded open set, let K; C K, C *** be compact sets whose union is G.

Note that G* = Ui=1 Kf, and therefore Lemma 3.3 and (7) imply the inequality
(8) V(@) > Yp(GH).

In particular, (8) implies that
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9) ¥p(G) > Ypln(@)],
where 7w: E, — P is the orthogonal projection. This leads to the following theorem.

4.4, THEOREM. If u € WII)(Q) (1 < p < =) is precise and P is a hyperplane,
then u is continuous on all segments in Q@ ovthogonal to P, except possibly for those
whose projection onto P is a yp-null set,

Proof. For each positive integer i, there exists an open set U; C £ such that
¥p(Ui) <i-! and u is continuous on - Uj. Thus, by (8), Yp[lim inf; _, , 7(U;)] = 0
and u is continuous on each segment in Q whose projection is not in
lim inf;_, o, 7(U;).

4.5. Remark. We shall now employ the results of [8, Chapter III] to provide a
representation for precise functions. To this end, let R;(x) = lx| 1-n pe the Riesz
kernel of order 1 and recall from [8] that if f is a nonnegative function in £, then
the set E = {x: R #(x) = o} isa ¥p-null set and therefore a Yp-null set. Here
R #f denotes the convolution of the two functions. Moreover, if E is a Suslin set
for which Y;(E) = 0, then, by Theorem 3.5, ¥p(E) = 0 and there exists a function
f € P (f >0) such that R*f(x) = « for every x € E.

Now let u € W%)(Q). According to [8, Chapter III], Vu is an irrotational vector
field, because if {¢i} is a sequence of mollifiers for u, then ¢; — u and V¢; — Vu
in &P (see (5)). Therefore, there exists a set E with 4, (E) = 0 and with the prop-
erty that if X is chosen arbitrarily in Q@ - E, we may define

X
(10) wx) = S Vu+const. (x € Q- E),
X0

where the line integral refers to a curve joining xg to x. Fuglede showed in [8,
Chapter III] that curves exist that give meaning to (10) and that (10) is independent
of the choice of curve. If the constant in (10) is chosen appropriately, it follows that
uw* is p-precise and equivalent to u. To see this, choose xg so that

lim; _, , ¢;(xg) = ¢, and set the constant in (10) equal to -c. Since V¢; — Vu in the
#P-norm, we can add to E another yp-null set (denote the union by E), so that for
some subsequence of {c,bi} the following is true, for x € Q - E:

im [¢;(x) - ¢i(xg)] = lim SX Ve; = Sx Vu = u¥(x) - ¢

i—)oo i-—>oo XO XO

(see [8, p. 216]). Hence ¢i(x) — u*(x) for x € Q - E, and therefore, as in the proof
of Theorem 4.3, it follows that u* is p-precise (1 < p <), In the terminology of
Aronszajn and Smith [1], the p-precise functions form a perfect functional comple-
tion of smooth functions whose gradients are in £P. The exceptional class in this
completion consists of precisely all subsets of Suslin sets E for which w,bp(E) =0.

Another representation of p-precise functions can be obtained in terms of
Bessel potentials. Let Gj(x) be the Bessel kernel of order 1 [1, p. 416]. If
fe 2P, then G;*f and R;*f are simultaneously infinite. Therefore, it follows from
[8] that a function u € WII) is p-precise (1 < p < =) if and only if there exists a
function g € #P such that u = G *g, except possibly for a ¥/p-null set.

We shall conclude this paper by proving that the infimum in (1) can be taken over
the class of p-precise functions and that there is an extremal in this class.
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4.6. Definition. For a bounded set E C E, and for 1 <p <n, let .

® (E) = inf (gE |7ul® dLn),

where the infimum is taken over all p-precise functions u that are equal to 1 at
Yp-almost every point in E and that are “admissible.” A p-precise function u is
admissible if there exist C*-functions u, having compact support such that u, — u
at Yp-almost all points and | Vu, - V| p — 0. In the case where p > n, the sup-
ports of the admissible functions are required to lie in some fixed open ball S con-
taining E.

n

4.7, LEMMA. If A C E, is compact, then
Vp(A) = @,(8) (1<p<=),

Proof. We shall show that ®p(A) > I‘p(A), and, in view of Theorem 2.4, this
will suffice to establish the lemma. Choose ¢ > 0, and let u be an admissible func-
tion such that

(11) S |vu|PaL, < @ A)+¢.
En

Let u; be C*-functions with compact support such that u; — u at Y,-almost every
point and such that ||Vu; - Vu”P — 0. As in Remark 4.5, there exists an open set U
such that ¥(U) <¢ and u; — u uniformly on E, - U. Since ¥y, is a true capacity
as well as a strong capacity, every yYp-capacitable set is outer regular [2, p. 18].
Therefore, we can assume that U contains the set AN {x: u(x) # 1}. Let x be the
class of closed connected sets S that join A to «. Recall that 8 can be taken to be
of locally finite H! -measure. Moreover, by [8, Theorem 3], we may assume, for a
subsequence, that

(12) S |Vu; - vu] aH! = 0 (8 €x).
B

For every f € X, there exists an arc f* C B that joins A to *«, and for all such arcs
B*, u; is of class C® along B*. Therefore, for all such arcs p* that join A - U to
o, we have the inequality

(13) lim |vus| au! > 1.

i—o YVp*
Consequently, (11), (12), and (13) lead to the relation
(14) e+ O4(A) > V(A -U).
Since Y (A) <Y ,(A - U)+¢ and € is arbitrary, (14) implies that @,(A) > Y (A).

4.8. COROLLARY. ®p is vight-continuous on compact sets.

We shall now show that ® is left-continuous on arbitrary sets, all of which are
assumed to be contained in some fixed ball B.
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4.9. LEMMA. If E| CE, C -+ and U:ozl E; C B, then

lim ©(E;) = ep(U Ei) (1<p< ).

i— o0 i=1

Proof. Again, we shall only consider the case where 1 <p <n. For each in-
teger i, let u; be an admissible function for E; such that

S [Vu;|PdL, < @,(E) +i™ .
En

Observe that 2'1(ui + uj) is admissible for E; (j > i), and therefore

-P p
8,(E;) < 2 j |Vu; +Vuy| " dL, .

En

Without loss of generality, we may assume that the limit in Lemma 4.9 is finite, and
consequently, by employing Clarkson’s inequality in a manner similar to that in the
proof of Lemma 2.3 in [14], it follows that

lim S |Vy; - vy;|PdL, = 0.

i,j oo "Ep

Hence, there exists a vector field f € £P such that Vu; — f, in the £P-norm. In the
terminology of [8, Chapter III], f is an irrotational field. We now proceed as in Re-
mark 4.5 to find a set E with I,DP(E) = 0 and such that if xy is chosen arbitrarily in
E, - E, then we may define

(15) u*(x) = ‘S\x f + const. (xe E, - E).
%0
Choose x such that lim; _,« u;(Xg) = ¢ exists, and set the constant in (15) equal to

-c. Thus, as in 4.5, u;(x) — u*(x) for x € E, - E. Moreover, Vu* =1 a.e., and we
shall show that u* is p-precise and admissible.

[~ ¢]
Clearly, u* = 1 at Yp-almost all points of U1:1 E;. If u* were admissible for

(>o]
Ui: 1 E;, the proof would be complete, for then

(=]
lim @,(E;) = lim S | vy |PdL, = SE |Vu*P dL,, > €, U1 Ei>.
n 1=

i—o0 i—sew “E/

To prove that u* is admissible, observe that for each nonnegative integer i,
there exist a C*-function v; with compact support and an open set U; such that
Yp(U;) <271, |Vv; - Vuy ”p <i™!,and |vi(x) - yx)| <i’! for x € E, - U;. If

o i

we let Vj = Ui:j Ui, then it is clear that ||[Vvj - Vu*|, — 0 and that v; — u* at
Yp-almost all points of E, - Vj, where v,l/p(Vj) < 21-J, Since j is arbitrary,
v; —u* at t,bp—almost all points, and therefore u* is admissible and p-precise.
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Corollary 4.8 and Lemma 4.9 imply that GP is a true capacity on each subset
of B. Since Gp and l,l/p agree on compact sets, this leads to our last theorem.

4,10, THEOREM. If E is a bounded Suslin set, then
Op(E) = Yp(B)  (1<p<=).

By employing an argument similar to that in Lemma 4.9, one can easily show that
there exists an admissible function u such that H Vu”ll;’ = GP(E).

REFERENCES

1. N. Aronszajn and K. T. Smith, Theory of Bessel potentials. 1. Ann. Inst.
Fourier 11 (1961), 385-475.

2. M. Brelot, Lectures on potential theory. Tata Institute of Fundamental Re-
search, Bombay, 1960.

3. L. Carleson, Selected problems on exceptional sets. Van Nostrand mathemati-
cal studies, No. 13. Van Nostrand, Princeton, 1967.

4. G. Choquet, Theory of capacities. Ann. Inst. Fourier, Grenoble 5 (1953-54),
131-295.

5. J. Deny and J. L. Lions, Les espaces du type de Beppo Levi. Ann. Inst.
Fourier, Grenoble 5 (1953-1954), 305-370.

6. H. Federer, The (¢,k) rectifiable subsets of n space. Trans. Amer. Math. Soc.
62 (1947), 114-192.

7. W. H. Fleming, Functions whose pavtial devivatives ave measures. Illinois J.
Math. 4 (1960), 452-478.

8. B. Fuglede, Extvemal length and functional completion. Acta Math. 98 (1957),
171-219.

9. F. W. Gehring, Symmelrization of vings in space. Trans. Amer. Math. Soc. 101
(1961), 499-519.

, Extremal length definitions for the conformal capacity of vings in
space. Michigan Math. J. 9 (1962), 137-150.

11. C. B. Morrey, Jr., Multiple integrvals in the calculus of varviations. Grundlehren
math. Wissensch., vol. 130. Springer-Verlag, New York, 1966.

10.

12. G. Polya and G. Szeg8, Isoperimetric inequalities in mathematical physics.
Ann. of Math. Studies, no. 27. Princeton U. Press, Princeton, N.J., 1951.

13. H. Wallin, A connection between o-capacity and LP-classes of differentiable
Sfunctions. Ark. Mat. 5 (1963/65), 331-341.

14. W. P. Ziemer, Extremal length and p-capacity. Michigan Math. J. 16 (1969),
43-51.

Indiana University
Bloomington, Indiana 47401



