EXTREMAL LENGTH AS A CAPACITY

William P. Ziemer

1. INTRODUCTION

In Euclidean n-space E_n , the p-capacity $(1 \le p < \infty)$ of a pair of disjoint closed sets C_0 and C_1 is defined as

(1)
$$\Gamma_p(C_0, C_1) = \inf \left(\int_{E_n} |\operatorname{grad} u|^p dL_n \right),$$

where the infimum is taken over all continuous functions u on E_n that are infinitely differentiable on E_n - $(C_0 \cup C_1)$ and assume values 0 on C_0 and 1 on C_1 . Under the assumptions that C_0 contains the complement of some closed n-ball and that $1 , it was shown in [14] that <math display="inline">\Gamma_p(C_0,\,C_1)$ is equal to the reciprocal of the p-dimensional extremal length of all continua in E_n that intersect both C_0 and C_1 . This equality was first established by F. W. Gehring [10] in the case where p = n, and it plays an important role in the theory of quasiconformal mappings on E_n .

For an arbitrary set $E \subset E_n$, let $\psi_p(E)$ denote the reciprocal of the p-dimensional extremal length of all closed connected sets that join E to the point at infinity of E_n . By using the relationship between p-capacity and extremal length that was referred to above, we shall show that ψ_p is a capacity in the sense of Brelot.

Let W_p^1 denote the collection of distributions whose partial derivatives are functions locally in \mathscr{L}^p , and call a function u p-precise if $u \in W_p^1$ and if for every $\varepsilon > 0$, there exists an open set u such that $\psi_p(u) < \varepsilon$ and u restricted to the complement of u is continuous. For u is equivalent to a precise function, thus extending the result obtained by u Deny and u is equivalent to a precise function, thus extending the result obtained by u Deny and u is equivalent to a precise function, thus extending the result obtained by u Deny and u is equivalent to a precise function, thus extending the result obtained by u Deny and u is equivalent to a precise function, thus extending the result obtained by u Deny and u is equivalent to a precise function, thus extending the result obtained by u Deny and u is equivalent to a precise function, thus extending the result obtained by u Deny and u is equivalent to a precise function, thus extending the result obtained by u is equivalent to a precise function, thus extending the result obtained by u is equivalent to a precise function, thus extending the result obtained by u is equivalent to a precise function, thus extending the result of u is equivalent to a precise function, thus extending the result of u is equivalent to a precise function, thus extending the result of u is equivalent to a precise function, thus extending the result of u is equivalent to a precise function, thus extending the result of u is equivalent to a precise function u is equivalent to u in the case u in the case u is equivalent to u in the case u is equivalent to u in the case u is equ

$$\psi_{p}(A) = \inf \left(\int_{E_{p}} |grad u|^{p} \right),$$

where the infimum is taken over all precise functions u that "vanish at infinity" and for which u(x) = 1 for ψ_p -almost all $x \in A$.

2. NOTATION AND PRELIMINARIES

By L_n and H^k , we denote n-dimensional Lebesgue measure and k-dimensional Hausdorff measure in E_n (for properties of the latter, see [6]). Let \mathscr{L}^p be the

Received July 7, 1969.

This research was supported in part by NSF grants GP7505 and GP11603.

Michigan Math. J. 17 (1970).

class of functions f for which $|f|^p$ is L_n -integrable, and let $||f||_p$ be the \mathscr{L}^{p} -norm.

2.1. A continuous, real-valued function u is said to be absolutely continuous in the sense of Tonelli (ACT) on an n-dimensional interval I if it is absolutely continuous on almost all segments in I that are parallel to the coordinate axes and if its gradient (which will be denoted by ∇u) belongs to \mathscr{L}^1 . The function u is called ACT on an open set U if it is ACT on every interval I \subset U. By using integral averages, one can easily show that the infimum in (1) can be extended to the class of ACT functions (see [9]).

If Ω is a domain in E_n , $W^1_p(\Omega)$ will denote the class of distributions on Ω whose partial derivatives are in $\mathscr L^p$. Such distributions are functions, and each $u \in W^1_p(\Omega)$ has a representative that is absolutely continuous on almost all segments I in Ω that are parallel to the coordinate axes.

2.2. If χ is a family of closed sets in $E_n,$ the p-dimensional module of χ (1 $\leq p < \infty)$ is defined as

(2)
$$M_{p}(\chi) = \inf \left(\int_{E_{p}} f^{p} dL_{n} : f \wedge \chi \right),$$

where $f \wedge \chi$ means that f is a nonnegative Borel function satisfying the condition

$$\int_{\beta} f dH^1 \geq 1$$

for every $\beta \in \chi$. By referring to [8, 2.2], one sees that f in this definition can be assumed to be lower-semicontinuous.

2.3. For $E \subset E_n$ and $1 \leq p < n$, define $\psi_p(E)$ to be the p-dimensional module of all closed connected sets that join E to the point at infinity of E_n , and let $\Psi_p(E)$ be the p-dimensional module of all nondegenerate continua that intersect E. Finally, if E is compact, let $\Gamma_p(E)$ be defined as in (1), except that the infimum is taken over all continuous functions u with compact support that are identically 1 on E and ACT in E_n - E. In the case where $p \geq n$, the support of each function u is required to lie in some fixed open ball S containing E, and in the definition of $\psi_p(E)$, only those continua that join E to E_n - S will be considered.

The following theorem is essential in showing that ψ_p is a capacity, and while its proof is similar to that of Theorem 3.8 in [14], there are some new difficulties that deserve to be treated.

2.4. THEOREM. If $E \subset E_n$ is compact, then $\psi_p(E) = \Gamma_p(E)$ $(1 \le p < \infty)$.

Proof. We shall consider only the case where $1 \leq p < n$ (the case where $p \geq n$ is simpler). Let B_k ($k = 1, 2, \cdots$) denote the closed ball centered at 0 of radius k, and for simplicity of notation, assume $E \subset \text{interior } B_1$. As in [14, Section 3], the only closed connected sets β that need to be considered in the definition are those for which $H^1(\beta \cap B_k) < \infty$, for every k. Hence, β is locally connected and therefore arcwise connected. Consequently, there exists an arc $\beta^* \subset \beta$ that joins E to ∞ . Since $H^1(\beta^* \cap B_k) < \infty$ for every k, there is an arc-length parametrization of β^* , say $\gamma \colon [0, \infty) \to \beta^*$, such that $\gamma(0) \in E$ and $|\gamma(t)| \to \infty$, as $t \to \infty$. Now the proof proceeds precisely as in [14, Lemma 3.1] to establish the inequality $\psi_p(E) \le \Gamma_p(E)$.

To prove the opposite inequality, let χ be the family of closed, connected sets that join E to ∞ , and let f be a lower-semicontinuous function such that $f \wedge \chi$. If, for every positive integer i, we define

$$f_i(x) = \begin{cases} f(x) & (f(x) > i^{-1} \ 2^{-k} \ k^{-n/p} \ \text{ and } x \in \text{ int } B_k - B_{k-1}), \\ i^{-1} \ 2^{-k} k^{-n/p} & (f(x) \le i^{-1} \ 2^{-k} k^{-n/p} \ \text{ and } x \in \text{ int } B_k - B_{k-1}), \end{cases}$$

then f_i is lower-semicontinuous, $f_i \wedge \chi$, and $\|f_i - f\|_p \to 0$. Therefore, without loss of generality, we may assume that f is bounded away from zero by a constant C_k on each ball B_k .

For each positive integer k, let

$$f_k(x) = \begin{cases} f(x) & (f(x) \leq k), \\ k & (f(x) > k), \\ 0 & (x \notin B_k), \end{cases}$$

and define

$$u_k(x) = \inf \left(\int_{\beta} f_k dH^1 \right) \quad (x \in B_k),$$

where the infimum is taken over all continua β that join E to $\{x\}$. As in [14, Sections 3.4 and 3.5], the infimum is attained by some β_k , the function u_k has Lipschitz constant k, and $|\nabla u_k| \leq f_k$ a.e.. Thus, to conclude the proof, it suffices to prove that

$$\lim_{k\to\infty}\inf m_k\geq 1,$$

where

$$m_k = \min \{u_k(x): x \in \partial B_k\}$$
.

To this end, let $x_k \in \partial B_k$ be such that $u_k(x_k) = m_k$, and let $\beta_k \subset B_k$ be a continuum joining $\{x_k\}$ and E such that

$$u_k(x_k) = \int_{\beta_k} f_k dH^1$$
.

If we assume that $\lim\inf_{k\,\longrightarrow\,\infty}\,m_k<1,$ then some subsequence would satisfy the inequality

$$\int_{eta_k} f_k \, \mathrm{d} H^1 \, < \, 1 \, .$$

This implies that $H^1(\beta_k) < \infty$, since f_k is bounded away from zero on each B_k . Thus β_k may be assumed to be an arc of finite length, say a_k . Let $\gamma_k \colon [0, a_k] \to \beta_k$ be the arc-length parametrization. If each γ_k is restricted to [0, 1], then, by reasoning similar to that of [14, Lemma 3.3], there exist a subsequence (which we still denote by $\{\gamma_k\}$) and a map $\mu_1 \colon [0, 1] \to E_n$ such that $\{\gamma_k\}$ converges

uniformly to μ_1 on [0,1]. Now by restricting each γ_k of this subsequence to [0,2], there exists another subsequence that converges to a map $\mu_2\colon [0,2]\to E_n$. Note that μ_2 is an extension of μ_1 . By continuing in this manner and then by employing Cantor's diagonalization process, one obtains a map $\mu\colon [0,\infty)\to E_n$ and a subsequence such that $\{\gamma_k\}$ converges uniformly to μ on compact subsets. It is easy to verify that $\beta=\mu\,[0,\infty)$ is a closed connected set that joins E to infinity, and consequently,

$$\int_{eta} f dH^1 \geq 1$$
 .

For every $\varepsilon > 0$, there exists a positive integer m such that

$$\int_{\beta} f_k dH^1 > 1 - \epsilon,$$

for $k \ge m$. Therefore,

$$\lim_{k \to \infty} \inf_{m_k} = \lim_{k \to \infty} \inf_{\beta_k} f_k dH^1 \ge \lim_{k \to \infty} \inf_{\beta_k} f_m dH^1 \ge \int_{\beta} f_m dH^1 > 1 - \epsilon,$$

and this concludes the proof.

3. CAPACITY AND MEASURE

From the properties of the p-dimensional module as discussed in [8, Chapter 1], it follows that the set function Ψ_p that was introduced in Section 2.3 is monotone and countably subadditive. Let A be a subset of E_n and χ the class of all continua that intersect A. If $f \in \mathscr{L}_p$ is a function such that $f \wedge \chi$, then it must be the case that

$$\int_{\gamma} f dH^{1} = \infty ,$$

for M_p -almost all $\gamma \in \chi$. Therefore, the following result now follows from [8, Theorem 2].

3.1. THEOREM. For $1 \le p < \infty$, Ψ_p is an outer measure on E_n that assumes only the values 0 and ∞ .

If $L_n(E) > 0$, then it follows from [13] and Theorem 2.4 that $\psi_p(E) > 0$, and therefore $\Psi_p(E) = \infty$. Consequently, in order to simplify the exposition, we shall assume in Theorems 3.5 and 3.6 below that $L_n(E) = 0$. If $L_n(E) = 0$, then there exists a function $f \in \mathscr{L}_p$ that is infinite on E. Therefore, the p-dimensional module of all continua that intersect E and that are subsets of E is zero.

3.2. LEMMA. If $K_1 \supset K_2 \supset \cdots$ are compact sets, then

$$\lim_{i \to \infty} \psi_{p}(K_{i}) = \psi_{p}\left(\bigcap_{i=1}^{\infty} K_{i}\right) \quad (1 \le p < \infty).$$

Proof. It follows from Theorem 2.4 that we only need to show that

$$\lim_{i\to\infty} \Gamma_p(K_i) = \Gamma_p\left(\bigcap_{i=1}^{\infty} K_i\right).$$

To do this, choose $\epsilon>0$, and let u be a smooth function with compact support that is equal to 1 on $\bigcap_{i=1}^{\infty}K_{i}$ and that satisfies the inequality

$$\int_{E_n} |\nabla u|^p dL_n < \Gamma_p \left(\bigcap_{i=1}^{\infty} K_i\right) + \epsilon.$$

Since u is continuous, it is no less than $1 - \epsilon$ on K_i , for all large i. Hence, for large i,

$$\Gamma_p(K_i) \leq (1-\epsilon)^{-1} \int_{E_n} |\nabla u|^p dL_n < (1-\epsilon)^{-1} \Bigg[\Gamma_p \bigg(\bigcap_{i=1}^\infty K_i \bigg) + \epsilon \, \Bigg],$$

and therefore $\lim_{i\to\infty}\Gamma_p(K_i)\leq \Gamma_p\left(\bigcap_{i=1}^\infty K_i\right)$. Since the opposite inequality is obvious, the proof is complete.

3.3. LEMMA. If $A_1 \subset A_2 \subset \cdots$ are subsets of E_n , then

$$\lim_{i \to \infty} \psi_{p}(A_{i}) = \psi_{p} \left(\bigcup_{i=1}^{\infty} A_{i} \right) \quad (1$$

If $p \geq n,$ the same result holds, provided the closure of each A_i is contained in some open ball $S_{\boldsymbol{\cdot}}$

Proof. If $1 , let <math>\chi_i$ be the class of closed connected sets that join A_i to infinity, and observe that $\bigcup_{i=1}^{\infty} \chi_i$ is precisely the class of closed connected sets that join $\bigcup_{i=1}^{\infty} A_i$ to infinity. Thus the result is an immediate consequence of [14, Lemma 2.3].

In the case where $p \ge n$, the proof proceeds in a similar way, and in fact it is easier to handle.

Lemma 3.2 states that ψ_p is right-continuous on compact sets, while Lemma 3.3 implies left continuity on arbitrary sets. In the terminology of Brelot, ψ_p is a *true capacity*, and therefore the next theorem follows directly from [2, Theorem 1].

3.4. THEOREM. If $E \subset E_n$ is a Suslin set, then

$$\psi_{p}(E) = \sup \{\psi_{p}(K): K \subset E, K \text{ compact}\}$$
 $(1 .$

We shall now establish a similar result for the measure $\Psi_{\text{p}}\text{,}$ and we begin with the following result.

3.5. THEOREM. If $E \subset E_n$, then $\Psi_p(E) = 0$ if and only if $\psi_p(E) = 0$ (1 .

Proof. In view of the inequality $\Psi_p(E) \geq \psi_p(E)$, we need only show that $\psi_p(E) = 0$ implies $\Psi_p(E) = 0$. The assumption that $\psi_p(E) = 0$ implies that there exists some nonnegative function $f \in \mathscr{L}^p$ with the property that if λ is any ray whose end point is in E, then

$$\int_{\lambda} f dH^{1} = \infty.$$

In case $p \ge n$, equation (3) will hold for all line segments λ one of whose end points is in E and the other in the complement of the ball S that is assumed to contain E. Therefore, by employing polar coordinates, (3) implies that the Riesz potential of order 1 has the property that

$$\infty = U_1^f(x) = \int_{E_n} |x - y|^{1-n} f(y) dL_n(y),$$

whenever $x \in E$. In view of Theorem 6 in [8], this leads to the conclusion that the p-dimensional module of all continua that intersect E is zero, that is, $\Psi_p(E) = 0$.

3.6. THEOREM. If $E \subset E_n$ is a Suslin set, then

$$\Psi_{p}(E) = \sup \{\Psi_{p}(K): K \subset E, K \text{ compact}\}$$
 (1 < p < \infty).

Proof. If $\Psi_p(E) = \infty$, then, by Theorem 3.5, we have that $\psi_p(E) > 0$. Therefore, Theorem 3.4 asserts the existence of a compact set $K \subseteq E$ with $\psi_p(K) > 0$, and hence, $\Psi_p(K) = \infty$.

We shall now consider the problem of extending the set function Γ_p from compact sets to arbitrary sets, and then we shall determine its relationship to ψ_p . We follow [2] in making this extension.

3.7. Definition. For an arbitrary set $A \subset E_n$, let

$$_*\Gamma_p(A) = \sup \{\Gamma_p(K): K \subset A, K \text{ compact}\}$$

and

$$^*\Gamma_p(A) = \inf \{ _*\Gamma_p(G) : G \supset A, G \text{ open} \}.$$

Because Γ_p is right-continuous on compact sets (see proof of Lemma 3.2), it follows from [2, Chapter II] that ${}_*\Gamma_p$ and ${}^*\Gamma_p$ agree on compact and open sets. We shall write Γ_p whenever ${}_*\Gamma_p$ and ${}^*\Gamma_p$ are equal. Moreover, it is easy to verify that for every pair of compact sets K_1 and K_2 , we have the inequality

(4)
$$\Gamma_{p}(K_{1} \cup K_{2}) + \Gamma_{p}(K_{1} \cap K_{2}) \leq \Gamma_{p}(K_{1}) + \Gamma_{p}(K_{2}).$$

An equality of this type plays an important role in Choquet's general theory of capacities [4]. According to [2, Theorem 2], (4) implies that $^*\Gamma_p$ is a true capacity, and therefore, as in the proof of Theorem 3.4, we have that $^*\Gamma_p$ is an inner regular function on Suslin sets. This proves the following.

3.8. THEOREM. If 1 , then

$$\psi_{p}(E) = {}_{*}\Gamma_{p}(E) = {}^{*}\Gamma_{p}(E) = \Gamma_{p}(E),$$

whenever E is a Suslin set.

3.9. Remark. As in classical capacity theory, it is possible to introduce the concept of capacitary dimension, which in our context is based on the capacity ψ_p . Corresponding to an arbitrary set $E \subset E_n$, there exists a real number α $(0 \le \alpha \le n)$ such that

$$\psi_{\mathrm{n-}\beta}(\mathrm{E}) = 0$$
 for every $\beta > lpha$, and $\psi_{\mathrm{n-}\beta}(\mathrm{E}) > 0$ for every $\beta < lpha$.

The existence of the number α is obvious if one employs the following criterion to determine when the p-dimensional module of a family χ of closed sets is zero [8, p. 179]: $M_p(\chi) = 0$ if and only if there exists a function $f \in \mathscr{L}^p$ ($f \geq 0$) such that

$$\int_{\beta} f dH^{1} = \infty, \text{ for every } \beta \in \chi.$$

We call this number α the ψ -capacitary dimension of E. If E is a Suslin set, it follows from Theorem 3.5, [8, Theorems 6 and 7], and [8, p. 199] that the ψ -capacitary dimension of E is equal to its Hausdorff dimension, but we do not know in general under what conditions ψ_p and H^{n-p} vanish simultaneously. However, the following is known:

- (i) If K is a compact set with $H^{\alpha}(K)=0$ (0 < α < n 1), then $\Gamma_{n-\alpha}(K)=0$, and therefore $\psi_{n-\alpha}(K)=0$ [13, p. 335].
- (ii) If $2 < \alpha < n$, there exists a compact set K satisfying the conditions $\psi_{\alpha}(K) = 0$ and $H^{n-\alpha}(K) = \infty$ (see [13, p. 339] and [3, p. 28]).
- (iii) Fleming has shown that $H^{n-1}(K)=0$ if and only if $\Gamma_1(K)=0$, whenever $K\subset E_n$ is compact [7]. By using Theorem 2.4, we obtain that $H^{n-1}(K)=0$ if and only if $\psi_1(K)=0$.

4. PRECISE FUNCTIONS

In this section, we introduce precise functions and show that every function in W_p^l is equivalent to a precise function. It will then follow that the precise functions form a perfect functional completion in the sense of Aronszjan and Smith [1].

- 4.1. Definition. A function $u \in W_p^1(\Omega)$, where Ω is a bounded domain, is called p-precise if for every $\epsilon > 0$, there exists an open set U such that $\psi_p(U) < \epsilon$ and u restricted to Ω U is continuous. B. Fuglede proved in [8, Theorem 9] that ψ_2 is equal, up to a constant factor, to Newtonian capacity. Therefore the 2-precise functions are the same as the precise functions of Deny and Lions [5, p. 354].
- **4.2.** LEMMA. If ϕ is a continuously differentiable function whose support is contained in Ω and if $E = \{x: |\phi(x)| > \alpha\}$, then

$$\psi_p(E) \leq lpha^{-p} \int_\Omega |
abla \phi|^p dL_n \quad (1$$

Proof. If K is a compact subset of E, then clearly

$$\Gamma_{\mathrm{p}}(K) \leq \alpha^{-\mathrm{p}} \int_{\Omega} |\nabla \phi|^{\mathrm{p}} dL_{\mathrm{n}}.$$

The conclusion now follows from Theorems 2.4 and 3.4.

The proof of the following theorem is similar to that of [5, Theorem 3.1].

4.3. THEOREM. Every function in $W_p^1(\Omega)$ is equal almost everywhere to a p-precise function (1 .

Proof. Let $u \in W_p^l(\Omega)$, and let K be a compact subset of Ω . There exists a nonnegative C^∞ -function α whose support is in Ω and that is identically 1 on K. Hence, $u^* = \alpha \cdot u \in W_p^l(\Omega)$, and the support of u^* is contained in Ω . It is well known [11, p. 64] that the mollifiers ϕ_i of u^* are of class C^∞ and that

(5)
$$\|\phi_i - u^*\|_p \to 0$$
 and $\|\nabla \phi_i - \nabla u^*\|_p \to 0$.

Since the support of u^* is contained in Ω , the same may be assumed for each of the ϕ_i . By passing to a subsequence if necessary, we may assume that

(6)
$$\sum_{i=1}^{\infty} 2^{ip} \| \nabla \phi_{i+1} - \nabla \phi_i \|_p < \infty.$$

Let $E_i = \{x: |\phi_{i+1}(x) - \phi_i(x)| > 2^{-i}\}$ and $W_k = \bigcup_{i=k}^{\infty} E_i$. It follows from Lemma 4.2 that

$$\psi_{p}(W_{k}) \leq \sum_{i=k}^{\infty} \psi_{p}(E_{i}) \leq \sum_{i=k}^{\infty} 2^{ip} \| \nabla \phi_{i+1} - \nabla \phi_{i} \|_{p},$$

and therefore (6) implies that $\psi_p(W_k) \to 0$ as $k \to \infty$. On Ω - W_k , the sequence $\{\phi_i\}$ converges uniformly; hence, $\{\phi_i\}$ converges ψ_p -almost everywhere to a function v* that is precise. Clearly, v* is equivalent to u* and u* = u on K. Now, by expressing Ω as the union of closed sets $K_1 \subset K_2 \subset \cdots$, where

$$K_i = \{x: d(x, \partial\Omega) \geq i^{-1}\},$$

it can easily be verified that there exists a precise function that is equivalent to u.

If P is a hyperplane in E_n and S a bounded subset of E_n , let S^* be the Steiner symmetrization of S with respect to P [12, Section 1.7]. It follows from [12, Section 7.3] that if S is compact, then $\Gamma_p(S) \geq \Gamma_p(S^*)$ ($1 \leq p < \infty$), and therefore,

(7)
$$\psi_{\mathbf{p}}(\mathbf{S}) \geq \psi_{\mathbf{p}}(\mathbf{S}^*).$$

If G is a bounded open set, let $K_1 \subset K_2 \subset \cdots$ be compact sets whose union is G. Note that $G^* = \bigcup_{i=1}^{\infty} K_i^*$, and therefore Lemma 3.3 and (7) imply the inequality

$$\psi_{\mathbf{p}}(\mathbf{G}) > \psi_{\mathbf{p}}(\mathbf{G}^*).$$

In particular, (8) implies that

(9)
$$\psi_{p}(G) \geq \psi_{p}[\pi(G)],$$

where $\pi: E_n \to P$ is the orthogonal projection. This leads to the following theorem.

4.4. THEOREM. If $u \in W_p^l(\Omega)$ $(1 is precise and P is a hyperplane, then u is continuous on all segments in <math>\Omega$ orthogonal to P, except possibly for those whose projection onto P is a ψ_p -null set.

Proof. For each positive integer i, there exists an open set $U_i \subset \Omega$ such that $\psi_p(U_i) < i^{-1}$ and u is continuous on Ω - U_i . Thus, by (8), $\psi_p[\liminf_{i \to \infty} \pi(U_i)] = 0$ and u is continuous on each segment in Ω whose projection is not in $\lim_{i \to \infty} \pi(U_i)$.

4.5. Remark. We shall now employ the results of [8, Chapter III] to provide a representation for precise functions. To this end, let $R_1(x) = |x|^{1-n}$ be the Riesz kernel of order 1 and recall from [8] that if f is a nonnegative function in \mathscr{L}^P , then the set $E = \{x: R_1 * f(x) = \infty\}$ is a Ψ_P -null set and therefore a Ψ_P -null set. Here $R_1 * f$ denotes the convolution of the two functions. Moreover, if E is a Suslin set for which $\Psi_P(E) = 0$, then, by Theorem 3.5, $\Psi_P(E) = 0$ and there exists a function $f \in \mathscr{L}^P$ ($f \ge 0$) such that $R_1 * f(x) = \infty$ for every $x \in E$.

Now let $u \in W^1_p(\Omega)$. According to [8, Chapter III], ∇u is an irrotational vector field, because if $\{\phi_i\}$ is a sequence of mollifiers for u, then $\phi_i \to u$ and $\nabla \phi_i \to \nabla u$ in \mathscr{L}^p (see (5)). Therefore, there exists a set E with $\psi_p(E) = 0$ and with the property that if x_0 is chosen arbitrarily in Ω - E, we may define

(10)
$$u^*(x) = \int_{x_0}^x \nabla u + \text{const.} \quad (x \in \Omega - E),$$

where the line integral refers to a curve joining x_0 to x. Fuglede showed in [8, Chapter III] that curves exist that give meaning to (10) and that (10) is independent of the choice of curve. If the constant in (10) is chosen appropriately, it follows that u^* is p-precise and equivalent to u. To see this, choose x_0 so that $\lim_{i \to \infty} \phi_i(x_0) = c$, and set the constant in (10) equal to -c. Since $\nabla \phi_i \to \nabla u$ in the \mathscr{L}^p -norm, we can add to E another ψ_p -null set (denote the union by E), so that for some subsequence of $\{\phi_i\}$ the following is true, for $x \in \Omega - E$:

$$\lim_{i\to\infty} \left[\phi_i(x) - \phi_i(x_0)\right] = \lim_{i\to\infty} \int_{x_0}^x \nabla \phi_i = \int_{x_0}^x \nabla u = u^*(x) - c$$

(see [8, p. 216]). Hence $\phi_i(x) \to u^*(x)$ for $x \in \Omega$ - E, and therefore, as in the proof of Theorem 4.3, it follows that u^* is p-precise $(1 . In the terminology of Aronszajn and Smith [1], the p-precise functions form a perfect functional completion of smooth functions whose gradients are in <math>\mathscr{L}^p$. The exceptional class in this completion consists of precisely all subsets of Suslin sets E for which $\psi_p(E) = 0$.

Another representation of p-precise functions can be obtained in terms of Bessel potentials. Let $G_1(x)$ be the Bessel kernel of order 1 [1, p. 416]. If $f \in \mathscr{L}^p$, then $G_1 * f$ and $R_1 * f$ are simultaneously infinite. Therefore, it follows from [8] that a function $u \in W_p^l$ is p-precise $(1 if and only if there exists a function <math>g \in \mathscr{L}^p$ such that $u = G_1 * g$, except possibly for a ψ_p -null set.

We shall conclude this paper by proving that the infimum in (1) can be taken over the class of p-precise functions and that there is an extremal in this class. 4.6. Definition. For a bounded set $E \subset E_n$ and for $1 \le p < n$, let .

$$\Theta_{p}(E) = \inf \left(\int_{E_{n}} |\nabla u|^{p} dL_{n} \right),$$

where the infimum is taken over all p-precise functions u that are equal to 1 at $\psi_p\text{-almost}$ every point in E and that are "admissible." A p-precise function u is admissible if there exist $C^\infty\text{-functions }u_n$ having compact support such that $u_n\to u$ at $\psi_p\text{-almost}$ all points and $\|\nabla u_n-\nabla u\|_p\to 0.$ In the case where $p\geq n,$ the supports of the admissible functions are required to lie in some fixed open ball S containing E.

4.7. LEMMA. If $A \subset E_n$ is compact, then

$$\psi_{p}(A) = \Theta_{p}(A) \quad (1 \leq p < \infty).$$

Proof. We shall show that $\Theta_p(A) \ge \Gamma_p(A)$, and, in view of Theorem 2.4, this will suffice to establish the lemma. Choose $\epsilon > 0$, and let u be an admissible function such that

(11)
$$\int_{E_{n}} \left| \nabla u \right|^{p} dL_{n} < \Theta_{p}(A) + \varepsilon.$$

Let u_i be C^{∞} -functions with compact support such that $u_i \to u$ at ψ_p -almost every point and such that $\| \nabla u_i - \nabla u \|_p \to 0$. As in Remark 4.5, there exists an open set U such that $\psi_p(U) < \epsilon$ and $u_i \to u$ uniformly on E_n - U. Since ψ_p is a true capacity as well as a strong capacity, every ψ_p -capacitable set is outer regular [2, p. 18]. Therefore, we can assume that U contains the set $A \cap \{x: u(x) \neq 1\}$. Let χ be the class of closed connected sets β that join A to ∞ . Recall that β can be taken to be of locally finite H^l -measure. Moreover, by [8, Theorem 3], we may assume, for a subsequence, that

(12)
$$\int_{\beta} |\nabla u_{i} - \nabla u| dH^{1} \to 0 \quad (\beta \in \chi).$$

For every $\beta \in \chi$, there exists an arc $\beta^* \subset \beta$ that joins A to ∞ , and for all such arcs β^* , u_i is of class C^{∞} along β^* . Therefore, for all such arcs β^* that join A - U to ∞ , we have the inequality

(13)
$$\lim_{i\to\infty}\int_{\beta^*}\left|\nabla u_i\right|dH^1\geq 1.$$

Consequently, (11), (12), and (13) lead to the relation

(14)
$$\varepsilon + \Theta_{p}(A) \geq \psi_{p}(A - U).$$

Since $\psi_p(A) \le \psi_p(A - U) + \epsilon$ and ϵ is arbitrary, (14) implies that $\Theta_p(A) \ge \psi_p(A)$.

4.8. COROLLARY. Θ_p is right-continuous on compact sets.

We shall now show that Θ_p is left-continuous on arbitrary sets, all of which are assumed to be contained in some fixed ball B.

4.9. LEMMA. If $E_1 \subset E_2 \subset \cdots$ and $\bigcup_{i=1}^{\infty} E_i \subset B$, then

$$\lim_{i \to \infty} \Theta_{p}(E_{i}) = \Theta_{p}\left(\bigcup_{i=1}^{\infty} E_{i}\right) \quad (1$$

Proof. Again, we shall only consider the case where $1 . For each integer i, let <math>u_i$ be an admissible function for E_i such that

$$\int_{E_n} |\nabla u_i|^p dL_n < \Theta_p(E_i) + i^{-1}.$$

Observe that $2^{-1}(u_i + u_j)$ is admissible for E_i (j > i), and therefore

$$\Theta_{p}(E_{i}) \leq 2^{-p} \int_{E_{n}} \left| \nabla u_{i} + \nabla u_{j} \right|^{p} dL_{n}.$$

Without loss of generality, we may assume that the limit in Lemma 4.9 is finite, and consequently, by employing Clarkson's inequality in a manner similar to that in the proof of Lemma 2.3 in [14], it follows that

$$\lim_{i,j\to\infty}\int_{E_n} |\nabla u_i - \nabla u_j|^p dL_n = 0.$$

Hence, there exists a vector field $f \in \mathscr{L}^p$ such that $\nabla u_i \to f$, in the \mathscr{L}^p -norm. In the terminology of [8, Chapter III], f is an irrotational field. We now proceed as in Remark 4.5 to find a set E with $\psi_p(E) = 0$ and such that if x_0 is chosen arbitrarily in E_n - E, then we may define

(15)
$$u^*(x) = \int_{x_0}^{x} f + \text{const.} \quad (x \in E_n - E).$$

Choose x_0 such that $\lim_{i\to\infty} u_i(x_0) = c$ exists, and set the constant in (15) equal to -c. Thus, as in 4.5, $u_i(x) \to u^*(x)$ for $x \in E_n$ - E. Moreover, $\nabla u^* = f$ a.e., and we shall show that u^* is p-precise and admissible.

Clearly, $u^*=1$ at ψ_p -almost all points of $\bigcup_{i=1}^\infty E_i$. If u^* were admissible for $\bigcup_{i=1}^\infty E_i$, the proof would be complete, for then

$$\lim_{i\to\infty}\Theta_p(E_i)=\lim_{i\to\infty}\int_{E_n}\left|\nabla u_i\right|^pdL_n=\int_{E_n}\left|\nabla u^*\right|^pdL_n\geq\Theta_p\left(\bigcup_{i=1}^\infty E_i\right).$$

To prove that u^* is admissible, observe that for each nonnegative integer i, there exist a C^{∞} -function v_i with compact support and an open set U_i such that $\psi_p(U_i) < 2^{-i}$, $\| \nabla v_i - \nabla u_i \|_p < i^{-1}$, and $\| v_i(x) - u_i(x) \| < i^{-1}$ for $x \in E_n - U_i$. If we let $V_j = \bigcup_{i=j}^{\infty} U_i$, then it is clear that $\| \nabla v_i - \nabla u^* \|_p \to 0$ and that $v_i \to u^*$ at ψ_p -almost all points of $E_n - V_j$, where $\psi_p(V_j) < 2^{1-j}$. Since j is arbitrary, $v_i \to u^*$ at ψ_p -almost all points, and therefore u^* is admissible and p-precise.

Corollary 4.8 and Lemma 4.9 imply that $\Theta_{\rm p}$ is a true capacity on each subset of B. Since $\Theta_{\rm p}$ and $\psi_{\rm p}$ agree on compact sets, this leads to our last theorem.

4.10. THEOREM. If E is a bounded Suslin set, then

$$\Theta_{\mathbf{p}}(\mathbf{E}) = \psi_{\mathbf{p}}(\mathbf{E}) \quad (1 < \mathbf{p} < \infty).$$

By employing an argument similar to that in Lemma 4.9, one can easily show that there exists an admissible function u such that $\|\nabla u\|_{D}^{p} = \Theta_{p}(E)$.

REFERENCES

- 1. N. Aronszajn and K. T. Smith, *Theory of Bessel potentials*. I. Ann. Inst. Fourier 11 (1961), 385-475.
- 2. M. Brelot, Lectures on potential theory. Tata Institute of Fundamental Research, Bombay, 1960.
- 3. L. Carleson, Selected problems on exceptional sets. Van Nostrand mathematical studies, No. 13. Van Nostrand, Princeton, 1967.
- 4. G. Choquet, *Theory of capacities*. Ann. Inst. Fourier, Grenoble 5 (1953-54), 131-295.
- 5. J. Deny and J. L. Lions, Les espaces du type de Beppo Levi. Ann. Inst. Fourier, Grenoble 5 (1953-1954), 305-370.
- 6. H. Federer, The (ϕ, k) rectifiable subsets of n space. Trans. Amer. Math. Soc. 62 (1947), 114-192.
- 7. W. H. Fleming, Functions whose partial derivatives are measures. Illinois J. Math. 4 (1960), 452-478.
- 8. B. Fuglede, Extremal length and functional completion. Acta Math. 98 (1957), 171-219.
- 9. F. W. Gehring, Symmetrization of rings in space. Trans. Amer. Math. Soc. 101 (1961), 499-519.
- 10. ——, Extremal length definitions for the conformal capacity of rings in space. Michigan Math. J. 9 (1962), 137-150.
- 11. C. B. Morrey, Jr., Multiple integrals in the calculus of variations. Grundlehren math. Wissensch., vol. 130. Springer-Verlag, New York, 1966.
- 12. G. Polya and G. Szegő, *Isoperimetric inequalities in mathematical physics*. Ann. of Math. Studies, no. 27. Princeton U. Press, Princeton, N.J., 1951.
- 13. H. Wallin, A connection between α -capacity and L^p -classes of differentiable functions. Ark. Mat. 5 (1963/65), 331-341.
- 14. W. P. Ziemer, Extremal length and p-capacity. Michigan Math. J. 16 (1969), 43-51.

Indiana University Bloomington, Indiana 47401