ON THE CONTINUITY OF A CLASS OF UNITARY REPRESENTATIONS

Lawrence J. Wallen

Let $\{U_n\}$ be a sequence of unitary operators satisfying the conditions $U_{n+1}^2 = U_n$ for $n=1, 2, \cdots$. Let E^n be the spectral measure on $[-\pi, \pi)$ associated with U_n . In general, E^{n+1} is obtained from an orthogonal splitting of E^n (see the remark at the end of this note). Let D be the group of dyadic rationals, topologized as a subset of the reals. The U_n give rise to the representation V_r of D defined by $V_{m/2^n} = U_n^m$.

In this note, we study the relation between the measures E^n and the continuity of V_r . If for example $E^n(X)=E^{n+1}(X/2)$ for all n and all Borel sets X, then V_r is continuous in the uniform operator topology. If $U_n=\lambda_n I$ and the numbers λ_n satisfy the conditions $\lambda_{n+1}^2=\lambda_n$ and $\lambda_1=1,$ and if $\left\{\lambda_n\right\}$ has no limit, then the resulting V_r is continuous only on the zero vector. In general, the closed subspace C of vectors x for which $V_r x$ is a strongly continuous function of r is a proper subspace. The theorem we prove below tells how to recapture C from the E^n . The theorem bears out the feeling that the way to get continuity is to use principal square roots, at least asymptotically.

Throughout this note, B denotes the class of Borel sets on the line, and all limits involving projections are in the strong operator topology.

THEOREM. If P is the orthogonal projection on C and I is any interval having 0 in its interior, then

$$P = \lim_{m \to \infty} \lim_{n \to \infty} E^{n}(m 2^{-n} I).$$

LEMMA. If $X \in B$ and $X \subset [-\pi, \pi)$, then $E^{n+1}(X/2) \leq E^{n}(X)$.

Proof. By the regularity of the spectral measures [1, p. 63], it suffices to prove the lemma for the case where X is an interval. Pick a sequence of "polynomials" p_m (we allow both positive and negative powers) such that $p_m(e^{i\lambda})$ converges boundedly to the characteristic function $\psi(\lambda)$ of X. Then $p_m(U_n) \to E^n(X)$ strongly. But

$$p_{m}(U_{n}) = p_{m}(U_{n+1}^{2}) = \int_{-\pi}^{\pi} p_{m}(e^{2i\lambda}) dE^{n+1}(\lambda).$$

Let $X_0 = \{\lambda \in [-\pi, \pi): \lambda \in X/2 \pmod{\pi}\}$. Then $p_m(e^{2i\lambda})$ converges to the characteristic function of X_0 for $\lambda \in [-\pi, \pi)$, and therefore $p_m(U_n) = p_m(U_{n+1}^2)$ converges to $E^{n+1}(X_0)$ strongly. Hence $E^{n+1}(X/2) \leq E^{n+1}(X_0) = E^n(X)$.

Proof of the theorem. Define $F^n(X) = E^n(X/2^n)$ for each $X \in B$. Then, if $m \ge n$ and $X \subset [-2^n \pi, 2^n \pi)$, it follows from the lemma that

Received January 19, 1968.

(1)
$$F^{m+1}(X) = E^{m+1}(2^{-m}X/2) \le E^{m}(2^{-m}X) = F^{m}(X).$$

Also (again for m > n),

(2)
$$U_n = U_m^{2^{m-n}} = \int_{-\infty}^{\infty} e^{i\lambda 2^{m-n}} dE^m(\lambda) = \int_{-\infty}^{\infty} e^{i\lambda 2^{-n}} dF^m(\lambda).$$

For each positive integer m, the sequence $\{F^n(X \cap [-m, m])\}$ is an ultimately decreasing sequence of projections, by (1), and hence

$$\lim_{n} \mathbf{F}^{n}(\mathbf{X} \cap [-m, m]) = \mathbf{G}^{m}(\mathbf{X})$$

defines a projection-valued measure on B. Since $G^{m+1}(X) \ge G^m(X)$, $H(X) = \lim_{X \to \infty} G^m(X)$ likewise defines a projection-valued measure. Thus, since

$$H(X) = \lim_{m \to n} \lim_{n \to \infty} E^{n}(2^{-n} \{X \cap [-m, m]\}),$$

what we must show is that H(R) = P. We may assume that I = [-1, 1].

Suppose H(R)x = x. Then, if J is an interval,

$$\|H(X)x - F^{m}(X)x\| \le \|H(X \cap J)x - F^{m}(X \cap J)x\| + \|H(J^{i})x\| + \|F^{m}(J^{i})x\|.$$

The last term may be rewritten as $\|x - F^m(J)x\| = \|H(J)x - F^m(J)x + H(J')x\|$, and we get the inequality

$$\left\| \left. H(X)x - F^{m}(X)x \right\| \right\| \leq \left\| \left. H(X \cap J)x - F^{m}(X \cap J)x \right\| + 2 \left\| \left. H(J')x \right\| + \left\| \left. H(J)x - F^{m}(J)x \right\| \right\|.$$

Picking first J large, then m large, we see that $F^{m}(X)x \to H(X)x$ strongly for each $X \in B$. But, by (2),

$$U_n x = \lim_{m} \int_{-\infty}^{\infty} e^{i\lambda 2^{-n}} dF^{m}(\lambda) x = \int_{-\infty}^{\infty} e^{i\lambda 2^{-n}} dH(\lambda) x;$$

hence

(3)
$$V_{r} x = \int_{-\infty}^{\infty} e^{i\lambda r} dH(\lambda)x,$$

and therefore $x \in C$, by bounded convergence. Thus $H(R) \leq P$.

To obtain the reverse inequality, we use an elementary Fourier argument. Let Px = x, and let $v(\lambda)$ be the continuous extension of $(V_r x, x)$. If $m2^{-n} < \pi$, then

$$\begin{split} \| \mathbf{E}^{\mathbf{n}} (\mathbf{m} \, \mathbf{2}^{-\mathbf{n}} \, \mathbf{I}) \mathbf{x} \|^2 & \geq \int_{-\mathbf{m}2^{-\mathbf{n}}}^{\mathbf{m}2^{-\mathbf{n}}} \left(1 - \frac{|\lambda|}{\mathbf{m}2^{-\mathbf{n}}} \right) \mathbf{d} \| \mathbf{E}^{\mathbf{n}} (\lambda) \mathbf{x} \|^2 \\ & = \sum_{\nu = -\infty}^{\infty} \frac{2 \, \sin^2(\mathbf{m}/2) \, 2^{-\mathbf{n}} \nu}{\pi \, (\mathbf{m}/2) \, 2^{-\mathbf{n}} \nu^2} \int_{-\pi}^{\pi} \, \mathbf{e}^{\mathrm{i} \lambda \nu} \, \mathbf{d} \| \mathbf{E}^{\mathbf{n}} (\lambda) \mathbf{x} \|^2 \end{split}$$

$$= 2^{-n} \sum_{-\infty}^{\infty} \frac{2 \sin^2(m/2) (\nu/2^n)}{\pi (m/2) (\nu/2^n)^2} (V_{\nu/2^n} x, x).$$

Hence

$$\lim_{n} \| E^{n}(m 2^{-n} I) x \|^{2} \geq \int_{-\infty}^{\infty} \frac{2 \sin^{2}(m \lambda / 2)}{\pi (m \lambda^{2} / 2)} v(\lambda) d\lambda,$$

and therefore $\|H(R)x\|^2 \ge v(0) = \|x\|^2$; this completes the proof.

Our proof shows that if V_r is continuous for all x, then, by (3),

$$V_r = \int_{-\infty}^{\infty} e^{i\lambda r} dH(\lambda)$$
.

This, of course, is Stone's Theorem.

We finish by making some observations on square roots of unitary operators in general. Suppose that $V^2 = U$, where U is unitary, then, for each integer ν ,

$$\|V^{\nu}\| \le \max(\|V\|, \|V^{-1}\|, 1).$$

It follows from a theorem of Sz.-Nagy that there exists a strictly positive operator A such that $V = AWA^{-1}$, where W is unitary (see [2]). From the relation $W^2 = A^{-1}UA$, it follows that $(A^{-1}UA)^* = (A^{-1}UA)^{-1}$ or $A^2U = UA^2$. Hence A commutes with U, and therefore V is similar to a unitary square root of U.

W can be represented in the following way. There exist projection-valued measures P and N on the unit circle such that P(X)N(Y)=0 and P(X)+N(X)=E(X), where X and Y are any Borel sets and E is the spectral measure of U, and such that

$$W = \int \sqrt{z} dP - \int \sqrt{z} dN,$$

where \sqrt{z} is the principal square root of z. We omit the proof, since it is easy.

REFERENCES

- 1. P. R. Halmos, Introduction to Hilbert space and the theory of spectral multiplicity. Chelsea, New York, N.Y., 1951.
- 2. B. Sz.-Nagy, On uniformly bounded linear transformations in Hilbert space. Acta Univ. Szeged. Sect. Sci. Math. 11 (1947), 152-157.

University of Hawaii Honolulu, Hawaii 96822