ON THE CONTINUITY OF A CLASS OF
UNITARY REPRESENTATIONS

Lawrence J. Wallen

Let {U } be a sequence of unitary operators satisfying the conditions
U‘rzlﬂ U, for n=1, 2, ---. Let E™ be the spectral measure on [-7, 7) associated
with U,. In general EnJrl is obtained from an orthogonal splitting of E® (see the
remark at the end of this note). Let D be the group of dyadic rationals, topologized
as a subset of the reals. The U, give rise to the representation V. of D defined by
v =U;".

m/Zn n

In this note, we study the relation between the measures E™ and the continuity of
V.. If for example E*(X) = E®"1(X/2) for all n and all Borel sets X, then V. is
continuous in the uniform operator topology. If U, =A,I and the numbers A, satisfy
the conditions Arle =2, and A} =1, and if {A,} has no limit, then the resulting Ve
is continuous only on the zero vector. In general, the closed subspace C of vectors
x for which V,.x is a strongly continuous function of r is a proper subspace. The
theorem we prove below tells how to recapture C from the E™. The theorem bears
out the feeling that the way to get continuity is to use principal square roots, at least
asymptotically.

Throughout this note, B denotes the class of Borel sets on the line, and all limits
involving projections are in the strong operator topology.

THEOREM. If P is the orthogonal projection on C and 1 is any interval having
0 in its intevior, then

P= lim lim E"(m2™"1).

I —o00 N —0o0

LEMMA. If X € B and X C [-n, 7), then EP'1(X/2) < EX(X).

Pyroof. By the regularity of the spectral measures [1, p. 63], it suffices to prove
the lemma for the case where X is an interval. Pick a sequence of “polynomials”
P (we allow both positive and negative powers) such that p,,(ei*) converges
boundedly to the characteristic function ¥(r) of X. Then p,,(U,) = E"(X) strongly.
But

Pn(Un) = Pen(W31) = 7 pn(e@MaEm10).
-

Let Xo={x € [-7, 7): A € X/2 (mod 7)}. Then pm(ezm) converges to the charac-
teristic function of X for A € [-7, 7), and therefore p,,(U,) = p,(U2,;) converges
to gotl (Xo) strongly. Hence En+1(X/2) < EnH(X ) = EX(X).

Proof of the theorem. Define F*(X) = E™(X/2") for each X € B. Then, if m>n
and X C [-2"7, 2"7), it follows from the lemma that

Received January 19, 1968.

153



154 LAWRENCE J. WALLEN
(1) Fotlx) = E™ 2 ™x/2) < ET(Q2TTX) = FR(X).
Also (again for m > n),

) 0
(2) U, = U?nm n — S el)\Zm ndEm(h) — S el}tZ n dFmO\)

For each positive integer m, the sequence {F™(X N [-m, m])} is an ultimately
decreasing sequence of projections, by (1), and hence

lim FX N [-m, m]) = G™(X)

n

defines a projection-valued measure on B. Since G™T1(X) > G™(X),
H(X) = lim G™(X) likewise defines a projection-valued measure. Thus, since

H(X) = lim lim E*2™® {X N [-m, m]}),

what we must show is that H(R) = P. We may assume that I =[-1, 1].
Suppose H(R)x = x. Then, if J is an interval,

|[HX)x - F(X)x| < |HEX N I)x - FNX 0 I)x| + [|HE)x| + || FP@E)x] .

The last term may be rewritten as ||x - F™(9)x| = |H()x - F(3)x + H(I")x||, and
we get the inequality

|HX)x - FPX)x]| < [|HE N IDx - FX N Ix|| +2 [HE)x| + [|58@)x - FP@)x] .

Picking first J large, then m large, we see that F™(X)x — H(X)x strongly for each
X € B. But, by (2),

o0 o0
U, x = lim S e gFm\)x = j‘ A2 ™" gH()x ;
m VY_, -0

hence

(3) VeX = S°° elAr gH(\)x,

-0

and therefore x € C, by bounded convergence. Thus H(R) <P.

To obtain the reverse inequality, we use an elementary Fourier argument. Let
Px = x, and let v(A) be the continuous extension of (Vyx, x). I m2™ < 7, then

mrrne > §7 (122 Yaper?

-n
m2 1 m2

2 sin?(m/2) 2 ™y Sﬂ et || EP()x||?
pm o T(m/2) 27Pp2 -7
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n 3 2 sin? (m/2) (v/27)

=2 T /) (v/2n)?

(VV/Zn X, X).

Hence

2 sin? (mr/2)
7 (ma%/2)

[+
lim |E™m2 x| > S v(A)dr,
n —-00
and therefore ||H(R)x|> > v(0) = ||x||? ; this completes the proof.
Our proof shows that if V, is continuous for all x, then, by (3),
o0
vV, = S e dH() .
=00
This, of course, is Stone’s Theorem.
We finish by making some observations on square roots of unitary operators in
general. Suppose that V2 = U, where U is unitary, then, for each integer v,

vl < max(lvll, v, 1.

It follows from a theorem of Sz.-Nagy that there exists a strictly positive opera-
tor A such that V= AWA"1 where. W is unitary (see [2]). From the relation
w2 = A-1UA, it follows that (A~1UA)* = (A"1UA)"! or A%U = UA%. Hence A com-
mutes with U, and therefore V is similar to a unitary square root of U.

W can be represented in the following way. There exist projection-valued
measures P and N on the unit circle such that P(X)N(Y) =0 and
P(X) + N(X) = E(X), where X and Y are any Borel sets and E is the spectral
measure of U, and such that

W = Sw/—zdP—Sw/EdN,

where vz is the principal square root of z. We omit the proof, since it is easy.
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