ON THE MAXIMUM DEGREE IN A RANDOM TREE
J. W. Moon

1. INTRODUCTION

A tree is a connected graph that has no cycles (see, for example, Ore [7] as a
general reference on graph theory). The degree of a node X in a tree is the number
d(x) of edges joining X to other nodes. Since any tree T, with n labelled nodes has
exactly n - 1 edges, it follows that the average value of d(x), as x runs over the
nodes of T,, is 2(1 - 1/n). Let D = D(T,) denote the maximum degree of nodes in
the tree T,,, that is, let D(T,) = max {d(x): x € T,}. Our object here is to derive,
by elementary and crude arguments, an asymptotic formula for the average value of
D(T,) over the set of the n"-2 trees T, with n labelled points.

2. PRELIMINARY RESULTS
We first list some results that we shall use later. (In what follows, n and k will
always denote integers such that 1 <k <n - 1.)
LEMMA 1. If the integers d(i) (i=1, 2, ---, n) form a decomposition of 2(n - 1),

() b b ()

trees T, with n labelled nodes, the ith node having degree d(i).
This has been proved by Moon [5], [6] and Riordan [8].

LEMMA 2. There ave (E ) ‘3) (n - 1)?"K-1 tyees T, with n labelled nodes in
which d(x) =k for each node x.

This was first proved by Clarke [1]; it follows easily from Lemma 1.

[ (14+¢)logn |

LEMMA 3. If k = Tog 1og 1

, then % < n-&to(l) gs n — e« for any posi-

tive constant ¢.

LEMMA 4. If k = (llc:gsl)olgnn , then I—{H—' > n&to(l) gsn — «, for any positive

constant t.

LEMMA 5. If k = [log n], then % < n2log n/nloglogn for all sufficiently large

values of n.
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The derivations of these three lemmas make use of the inequalities
(k/e)k < k! <kX and t < -log(l - t) < t/(1 - t), where 0 <t < 1; we omit the de-
tails, since they are straightforward.

3. AN UPPER BOUND FOR D

Suppose we pick a tree T, at random from the set of the n™"? trees with n
labelled nodes and consider the degree of an arbitrary node x. It follows from
Lemma 2 that

Pr{d(x) =k} = (112: ?) -1kl g _1/mpn n2 (-2

nn-2 &-DU g 1)2 (- k-l
e'l :
<(k—1)" if k> 3.
Therefore,
-1
a(i, 1 e (1 1 )
Pr{d(x) >k} < e k! P r )1 T <7 1+k+1+(k+1)2+
-1
_ e 1) 1 -
= & (1+k <gpe Hk>2.

The following result now follows from Boole’s inequality

Pr {UEl} < 2 pri{E;}

(the case k =1 is obvious).
THEOREM 1.

Pr{D>k} <.

COROLLARY 1. If € denotes a positive constant, then

log n

D < (1+8)10g log n

Jov almost all trees T, that is, for all but a fraction that tends to zevo as n tends
to infinity.

This corollary follows from Theorem 1 and Lemma 3.

4. A LOWER BOUND FOR D

If t(n, k) denotes the number of trees T, for which D(T,) <k, then it follows
from Lemma 1 that
72 Le-1 }n

- _ ' - . n_Z . cea - -
t(n, k) = (n - 2)! X the coefficient of z in { 1+2z+ 5y Tt PEERY

Hence,
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t(n,k)<(n—2)!{1+1+2%+---+?l—{_1—1)!} < (n—Z)E{e——]:T}

n
< cnn'3/2{1 —#} < cnn-3/2 - exp (-n/e -k!),

for some constant ¢ (¢ < 2e), by Stirling’s formula (see, for example, Feller [2, p.
52]). If we divide both sides of this inequality by n®-2 the total number of trees
T, , we obtain the following result.

THEOREM 2.
Pr{D<k} < enl’/2 exp(-n/e -k!).

COROLLARY 2. If ¢ denotes a positive constant, then

log n

P> g logn

Jor almost all trees T .

This corollary follows from Theorem 2 and Lemma 4.

5. THE EXPECTED VALUE OF D

Let £ be any positive constant; if E(D) denotes the expected value of D(T,),
taken over the set of the n»-2 trees T, , then

n-1
E(D) = 22 k Pr{D=k}.
k=1
Hence,
E(D) < k; Pr{D<k;} +k, Pr{D>k;} +(n-1) Pr{D >k, },
where

- log n - .
k; —l:(1+s) Tog logn:l and kp = [log n] ;

therefore, it follows from Theorem 1 and Lemmas 3 and 5 that

log n —£+o(1) , 1> logn
E(D) < (1+¢) Tog log n + (log n)n +———n10g Togn
_ _logn =
—(1+s+0(1))10g10gn, as n— ©,

Also,

_ log n _ log n
E(D) 2 (1-¢) log log n Pr {D >(1-¢) log logn }

log n

log log n’ as n =,

> (1-¢-o0(1))
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by Corollary 2. Since £ can be arbitrarily small, the two preceding inequalities
imply the following result.

THEOREM 3.

log n

E(D) ~ log log n

as n — o,

By using sharper estimates for n/k! in Theorems 1 and 2, one can show that

_ logn  logloglogn __logn logn logloglogn
(1-e) log log n log log n < D(Ty) log log n < (@+e) log log n log log n

b

for almost all trees T, and each positive constant €.

In view of Lemma 1, the problem we have considered here is but a special case
of the following problem (see [3] and [4]). If m different balls are randomly dis-
tributed among n different boxes, what is the expected number of balls in the box
containing the maximum number of balls? We leave it to the reader to decide what
restrictions on the relative sizes of m and n are necessary for the preceding argu-
ment to work in the more general case.
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