CONCERNING THE ORDER STRUCTURE OF
KOTHE SEQUENCE SPACES

A. L. Peressini

1. INTRODUCTION

Since 1934 a rather extensive study has been made, principally by G. Kothe, of
the linear and topological structure of certain vector spaces A of real sequences for
which there is associated a dual sequence space A*. An excellent account of the
basic theory of these spaces can be found in Section 30 of [4]. In 1951, this theory
was extended to spaces of functions by J. Dieudonné [2]. These spaces are partially
ordered in a natural way, and the purpose of this paper is to study some of the rela-
tions that exist between their order and topological structures. More specifically,
we shall concern ourselves with some of the properties of the coarsest and finest
compatible topologies (see Section 3) on these spaces. Since some of our results
hold only for the sequence space case, we shall place our presentation in this frame
work and then indicate what modifications must be made for function spaces.

2. PRELIMINARY MATERIAL

Suppose w denotes the ordered vector space of all sequences x = (X;) of real
numbers and that ¢ denotes the linear subspace of w consisting of those sequences
with only finitely many non-zero components. (The linear operations and order re-
lations on w are defined in the usual coordinatewise fashion; for example, x>y if
X; > y; for all i.) If A is a linear subspace of w containing ¢, the a-dual 2* of X
is defined by

2 = {u= () € w: 22|x;uy| < +0 for all x = (x;) € A} .

(In this paper, Z will indicate summation over the index set of all natural numbers.)

The spaces A and A* form a dual system <A, A*> with respect to the bilinear form
(x, ) > <x,u>=2x;u;. If K= {x €x:x;> 0 for all i} denotes the cone in A, the
dual cone K'= {u € A *: <x, u> > 0 for all x € K} coincides with the cone of all se-
quences in A* with non-negative components.

The a-dual of A*, which we shall denote by A**, contains A; if A = A**, then A
is said to be perfect. For a given s = (s;) define

A = {uew:2|sjuy < +=};
then A = n A, if A is perfect. Moreover,
veEK!
r= U a2
yeK

if A is solid (that is, if |x|< |y| and y € A imply x € A, where [x|= (|x;|) denotes
the lattice theoretic absolute value of x in A).
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Two sequence spaces A and p are isomorvphic if there exist one-one, onto,
linear maps 0: A — 4, p: A* — p* such that <x, u> = <o(x), p(u)> for all
X €N, u€r* If A and u are isomorphic and the mappings o, p are order iso-
morphisms, we say that A and u are order isomorphic. If X and u are isomor-
phic (respectively, order isomorphic), they are topologically isomorphic for any
pair of corresponding topologies that can be defined entirely in terms of the dual
system (respectively, the dual system and order structure). If u > 0, the following
alternatives hold for Ay, A¥ (see [4, p. 414]):

(1) A, is order isomorphic to w and Al"; is order isomorphic to ¢ if u; =0 for
all but finitely many values of i.

(2) A, is order isomorphic to the space

0l = {xew: 27|x;] < +e0}
and A is order isomorphic to the space (m) of bounded sequences if u; # 0
for all but finitely many values of i.

(3) A, is order isomorphic to w X £1, and A¥ is order isomorphic to ¢ X (m)
otherwise.

Kothe defines the normal topology on a sequence space X to be the locally con-
vex topology generated by the family of semi-norms

p,(x) = 2 |x;u;]  (ueKY.

A simple computation shows that this topology coincides with the topology o(x, A*)
on A of uniform convergence on the order bounded sets in A*, which was studied for
more general dual systems in [6]. (A subset B of A* is order bounded if it is con-
tained in an order interval [u, v] = {s € A*: u< s < v}.) Thus a neighborhood basis
of the zero element 0 for the normal topology is given by the class

{[-u, u]°: u € K}

where © denotes the formation of the polar set for the dual system <A, >,

We refer the reader to [5] or [8] for the basic results on ordered vector spaces;
[3] contains a discussion of some of the fundamental properties of the order struc-
ture of the spaces introduced in [2].

3. THE EXTREME COMPATIBLE TOPOLOGIES

Throughout this section, we assume that A is a sublattice of w and that A D ¢.
A Hausdorff locally convex topology € on X\ which is finer than o(\, \*) is a com-
patible topology if the positive cone K in A is T -normal (see [8; Def. 1, p. 121}])
and the lattice operations are < -continuous. In this paper, we discuss some of the
properties of the finest and the coarsest compatible topologies on A.

The coarsest compatible topology on X is the topology o(x, A*) of uniform con-
vergence on the order bounded subsets of A*. This is a consequence of Proposition
1.1 and Theorem 2.1 of [6]. We shall first characterize those spaces A for which
the coarsest compatible topology coincides with the weak topology o(A, A*).

PROPOSITION 1. The lattice operations in A arve o(i, \*)-continuous if and
only if 2\* = ¢.
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Proof. Suppose that the lattice operations in A are o(x, A*)~continuous; then,
since K is always o(x, A*)-normal, it must be that o(A, A*) = o(a, 2*). It follows
that each order interval in A* is contained in the closed convex circle hull of some
finite set in A*; hence each order interval in A* is contained in a finite dimensional
subspace of A*.

Since A* D¢ in general, it is only necessary to show that \* ¢ ¢. Suppose, to
the contrary, that there exists a u € A* such that uikaé 0 k=1, 2, 3, ). Without
loss in generality, we can assume that u; > 0 for all i. For each positive integer
k, define v(k) to be the ix-section of u (that is, the ix-th Abschitt in Kothe’s ter-
minology (see [4; p. 415]). Then one can easily verify that v(¥) € [-u, u] for each k,
and that {v(K): k=1, 2, .--} is a linearly independent set. But then the order inter-
val [-u, u] cannot be contained in a finite dimensional subspace of A*; hence \* = ¢.

Conversely, suppose that A* = ¢ and that [-v, v] (v € K") is a given order inter-
val in A*. Suppose that Vi k=1, 2, ..., m) denote the non-zero components of v,

then define v(k) to be the sequence with vj; as its ix-component and all other com-
ponents equal to zero. Then if u € [-v, v], we can write

m m
u=2 (u; /mv; )mv(k) with 22 [u- /mv; |< 1.
=1 1) 1k k=1 1k k' =

It follows that [-v, v] is contained in the convex circled hull of the finite set
F={mvk:k=1, 2 ..., m}. Therefore, o(x, ¢) = o(A, ¢) which implies that the
lattice operations in A are o()\, ¢)-continuous.

COROLLARY. If X\ is pevfect, the lattice operations in » are o(r, \*) con-
tinuous if and only if A = w.

The preceding proposition shows that the lattice operations in A are rarely
weakly continuous. In contrast to this result, we shall now prove that these opera-
tions are always sequentially continuous for the weak topology.

PROPOSITION 2. The lattice opevations in A ave o(\, \*)-sequentially con-
tinuous.

Proof. Suppose that x(n) isa sequence in A that converges for o(x, A*) to
x(0) € A; then this sequence converges to the same limit in A** for o(A**, A\*¥). But
A** is perfect; hence M** equipped with o(A** \*), is the projective limit of the
spaces A,(u € K'), each equipped with o(x,, A¥) (see [4; Section 30, p. 416]). There-
fore, x(n) converges to xc(lo) in each A, for o(Ay, A¥). It is an immediate conse-
quence from Section 2 that each A, equipped with o()ry, A}), is order isomorphic to
the topological product of £1, equipped with o(¢1, (m)), and w, equipped with o(w, ¢).
Hence, in virtue of Proposition 1 and the fact that (¢!, (m))-convergence for se-
quences in equivalent to convergence in the usual £ 1—norm, it follows that x(®) con-
verges to x(9) in each Ay for o(Ay, A¥). By making use of known results concerning
the projective limit (see [4; Section 19.10, p. 234]), we conclude that x(n) converges
to x(0) for o(A** A*) and hence for o(r, A¥).

COROLLARY. The topology o(x, \*) is metrizable if and only if \* = ¢,

Proof. The necessity is an immediate consequence of Propositions 1 and 2. To
prove the sufficiency, we observe that if A* = ¢, then A** = w. Hence, since o(w, ¢)
is metrizable and o(w, ¢) induces o(A, ¢) on A, it follows that o(), ¢) is metrizable.

Remark. 1f <A, A*> is a dual system of Kothe function spaces, the topology
o(A, A*) is generated by the family of semi-norms



412 A. L. PERESSINI

P = | ltglan (g ea®.
E

We refer the reader to [2] for all definitions and notation regarding Kéthe function
spaces.

If the lattice operations in A are ¢(A, A*)-continuous, then one can show that
each g € A* has compact support by methods analogous to those used in Proposition
1. However, if A* = (E, u), it does not follow that the lattice operations in A are
o(A, A*)-continuous; in fact, these operations may not even be o(A, A¥*)-sequentially
continuous. For example, if E is the unit interval and p is the Lebesgue measure
on E, then &(E, u) = L*[0, 1] and Q(E, u) = L1]o0, 1], and it is easy to show by ex-
ample that the lattice operations in L1[0, 1] are not o(L!, L.®)-sequentially contin-
uous.

It is a consequence of the general theory of ordered locally convex spaces that
the finest compatible topology on X is the so-called order topology T, (see [9; (4.a),
p. 140]). A neighborhood basis of 0 for ¥, consists of the class of all convex cir-
cled subsets of A that absorb each order interval in A. This topology is not in gen-
eral consistent with the dual system <X, A*>; that is, the topological dual of (T )
may not coincide with A*. For example, if A is the space (m) of bounded real se-
quences, then T, coincides with the usual norm topology on (m) which is strictly
finer than the Mackey topology 7(Xx, A*).

An inductive limit characterization of T, obtained by H. Schaefer (see [8; (4.4),
p. 134]) has proved to be quite useful in the study of this topology. The following
results provide a different, more concrete, inductive limit representation for the
order topology on A if A is a solid sequence space.

Suppose that A is a sequence space and that y is a given element of the positive
cone K in A. Then, as we have noted in Section 2, A; is order isomorphic either to
(m), or ¢, or the product space (m) X ¢. The order topology on (m) is generated by
the standard supremum norm on that space, while the order topology on ¢ coincides
with the locally convex sum topology if ¢ is regarded as the direct sum of countably
many copies of the real line. Since the order topology on m X ¢ is the product of
the order topologies on (m) and ¢, we obtain the following result:

PROPOSITION 3. Ify = (y;) i¢s an element of the positive cone K in a sequence
space A, then Ag“,, equipped with its ovder topology ‘I,OY), is topologically isomorphic
to

(a) (m) equipped with the supremum novm if all but a finite number of compo-
nents of y ave non-zevo,

(b) ¢ equipped with its locally convex sum topology if all but a finite number of
the components of y arve zevo,

(c) the product of (m) equipped with the supremum norm and ¢, equipped with
the locally convex sum topology, if y has an infinite number of zevo as well
as non-zevo components.

Now suppose that A is a solid sequence space and that H is an exhausting subset
of the positive cone K in A; that is, for each x € K, there exist y €e H and o« > 0
such that x < ay. The family {A’;: y € H} is directed since

y < z implies AJ C A} .
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Moreover, if y, z € H and y < z, the embedding map of A} into A% is continuous for
the corresponding order topologies %&Y) and 1&2) since it is a positive linear map-
ping (see [5; (5.2)]). Since A is solid,

r= U Ay

veEH

hence we can define the inductive limit topology € on A with respect to the family
{A?(%&Y)): y € K} and the corresponding embedding maps Iy of A’{, into A. Since K
is ¥ -normal (see, for example, [5; p. 42, Remark]), we know that ¥ is coarser
than the order topology ¥, on A. On the other hand, ¥, is coarser than T since
each embedding map I, is positive and therefore continuous for ‘.I:gY) and T _. We
have now proved the following result:

PROPOSITION 4. If X is a solid sequence space and H is an exhausting subset
of the cone K in X\, then M\, equipped with its ovdevr topology, is the inductive limit
of the family {A";,(zgy)): y € H} of subspaces of N, equipped with theiv respective
ovder topologies.

COROLLARY. If A is a solid sequence space with an ovder unit e, then A(T )
is topologically isomorphic to (m) equipped with the supremum novm.

Proof. This is an immediate consequence of Propositions 3, 4 and the fact that
e;> 0 for all i if e = (e;) is an order unit.

Remavk. Proposition 4 carries over immediately to Kothe function spaces since
its proof depends only on the properties of the order topology. The result is that
A(T ) is the inductive limit of the spaces {Lg(zgg)): geA g> 0} (see [2; p.
100]).

PROPOSITION 5. If X is a sequence space and \* contains an ovder unit e,
then ) is ovder isomovphic to a o0, (m))-dense linear subspace of £1.

Proof. Since e is an order unit, each component e¢; of e is positive. For each
X € A** and each v € A¥, define 0(x) = (e;x;) and p(v) = (v;/e;); then o(x) € ¢! and
p(v) € (m) since e is an order unit in A*. It is easy to verify that o and p are
positive, linear, and one-to-one. If y € ¢1 and v € A\*, define x = (x;) by x; = yi/e;
(i=1, 2,--). Then

2 |xivi| =2 lYi(Vi/ei)l < oo

since (vi/e;) = p(v) € (m); hence o maps AX** onto £1,

By making use of a similar argument, we can show that p maps A* onto (m). It
is clear that <x, v> = <o(x), p(v)> for each x € A** and each v € A*; hence A** is
order isomorphic to £1. Since A is g(A**, A*)-dense in A**, A is order isomorphic
to the o(¢!, (m))-dense subspace o(A) of ¢1. This completes the proof.

The preceding result will be helpful in drawing certain conclusions concerning
bounded linear operators on sequence spaces. Recall that a linear operator T on a
locally convex space E(Z) is bounded if it maps some % -neighborhood of 0 into a
bounded set. Clearly every bounded linear operator is continuous.

PROPOSITION 6. If T is a positive lineay opevator on X and N is equipped
with o(x, \¥), then T is bounded if and only if T is o(x, A\*)-continuous and \* con-
tains an element which is an ovder unit for the vange of the adjoint opevator T'.
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Proof. If T is bounded, then T is o(X, A¥)-continuous; hence it is also o(x, A*)-
continuous since o(A, A*) is consistent with the dual system <X, A*> (see [1; Chap-
ter IV, Section 4, Prop. 6, p. 103}). Moreover, there is an element u, in the cone
K' of A* such that for each u € K', one can find a constant C, > 0 for which

T([-uo, Uo]%) € Cuf-u, u]®.
But then if v € A*, we obtain the result
T veT([-]|v], |[v]D c Clvl[—uo, ul,

that is, T'v < C,v|uo. Thus u_ is an order unit for the range of T'.

Conversely, suppose that T is o(A, A*)-continuous and that u, € A* is an order
unit for the range of T'. Then for each u € \*, there exists a positive constant Cu
such that T'u < Cyu,. Given u € K', define C|, = max (C,, C_,); then

T.["u, u] - C{l[_uo’ uo]
since T' is a positive linear mapping. It follows that
T([‘ucu uo]o) - C{l[—u} u]o;

hence T is bounded for o(x, A*).

COROLLARY. If A* contains an ovder unit, then every positive lineay opevator
T on X is bounded for o(A, A*) provided that one of the following conditions is salis-

fied:
(1) X is perfect,
(2) T is o(x, A*)-continuous.

Pyroof. If condition (2) is satisfied, the assertion is an immediate consequence of
Proposition 6. If (1) holds, then with respect to the topology o(r, A¥), A is complete
(see [4; Section 30,5(7), p. 416]), the lattice operations in X are continuous, and the
cone K in X is normal. Moreover, since A* contains an order unit, o(x, \*) is
normable, (see [6; Prop. 1.3, p. 204]). The following result is due to H. Schaefer but
does not appear explicitly in his published works: If E(Z) is a complete metrizable
locally convex space which is a vector lattice with a normal cone and ¥ -continuous
lattice operations, then ¥ coincides with the order topology ¢ ,. A proof of this fac
can be found in [7].

It follows from this result that o(x, A*) coincides with the order topology To on
A. The fact that T is positive then implies that T is o(Xx, A*)-continuous; hence con-
dition (2) is satisfied. ]

Remark. It is clear from the proof of Proposition 6 that this result holds for
arbitrary dual systems of ordered vector spaces and, in particular, for dual sys-
tems <A, A*> of Kothe function spaces. The corollary, as well as its proof, also
carries over immediately to Kothe function spaces.
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