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INTRODUCTION

Let M9 and M2*k be complete, differentiable (C*°) Riemannian manifolds of
constant sectional curvature C and C respectively. It is known that for C < C and
k < d - 1, there exist no isometric immersions of M9 in M%+K, On the other hand,
if C > C there are many such immersions, even for k = 1. We shall investigate the
character of these immersions in the critical case C = C using a refinement of the
method applied to the flat case in [2]. The general idea is that if M9 is not totally
geodesic in Md+k it must be bent along rather special submanifolds. We prove a
precise formulation of this in the next section, and draw some consequences from it
in Section 3.

THE MAIN THEOREM

Let M9 and Mtk pe manifolds with the same constant curvature C, M9 peing
assumed complete. We assume further that Y: M2 — MAtk s gn zsomet'rzc immer-
sion, with k < d. Our notation will be essentially that in [2]. In particular, we ex-
press the second fundamental form information of ¥ in terms of a tensor T related
to the classical operators S, by the 1dent1ty < Txly), z> = <8,(x), y>, where

, Yy € M, and z € (M, )L, (Here (M, )1 denotes the orthogonal complement of

dI,D(Mm) in MW(m) )

If m € M, let .#(m) be the space of null-vectors at m, that is, the subspace of
M,,, consisting of all vectors x such that T, = 0. There is a useful result (Theorem
2 of [1]) which,.though stated for the flat case, applies also in the case at hand. It
asserts that for each point m € M, there exzsts a vector y € N (m)+ such that Ty
is one-one on A (m)l . (Here the orthogonal complement is only in M,,.)

Let n be the minimum value of the dimension of .#(m) on M, and let G be the
(open) set of M on which this minimum occurs. Then 4 is a differentiable field of
n-planes on G. Using this notation, we can state our main result.

THEOREM 1. The field A& is integrable on G; its leaves are complete, totally
geodesic, n-dimensional submanifolds of Md with n > d - k. Furthermove, each
leaf is totally geodesic in MK relative to x,D

Proof. The last assertion follows immediately from the definition of #. The
lower bound for n is a consequence of the theorem of Chern and Kuiper stated above.
The proof that # is integrable on G and that its leaves are totally geodesic is the
same as in the flat case. This is true because the proof involves only the relative
position of ¥ (M) in M, that is, involves only the second fundamental form and
Codazzi equation of . However, the essential feature of the theorem is the com-
pleteness of the leaves. This depends not merely on relative information, but also
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on the intrinsic geometry of M. The completeness proof we now give will, when
reduced to the case C = C = 0, yield a simplified version of the proof in [2].

We use the following criterion for completeness of a Riemannian manifold L:
for some fixed number & > 0, every geodesic segment y: [0, b) — L of length less
than € has a geodesic extension y: [O, c) — L with ¢ > b. In applying this criterion
to prove the completeness of a leaf L of 4, let ¢ = ¢(M) be 7#/2+/C if the curvature
C of M is positive; otherwise let ¢ (M) = 1.

We need a frame field of a rather special type.

LEMMA 1. Lety: [0, b) — L be a unit speed geodesic in a leaf L. of N in G,
with b < ¢(M). Then theve exists a frame field E = (Ey, ***, E4) on a neighborhood
of v in G such that

1. The geodesic vy is an integral curve of Ey;

2. Each integral curve of E| is a geodesic of M;

3. The vector fields E;, -+, E,, are contained in N;
4, The frame field E is parallel on y.

Proof. Let x3, *--, Xq be a Frobenius coordinate system for .# defined on a
neighborhood U of the point m = v(0). We can arrange for 9/0x;(m) to be the ini-
tial velocity v'(0) of v. Then let © be the slice, x; constant, of U through m. De-
note by = - L the slice of U through m which has xy, x,41, ***, Xq constant. Now
the (totally geodesic) leaf L. has constant curvature C, and the length of v is less
than n/2VC if C is positive. Thus, reducing the size of U if necessary, we can
find a differentiable vector field E; on X - L, tangent to L, such that the geodesics
of L with initial velocity E; fill a neighborhood of ¥ in L. Extend E; to a vector
field (also denoted by E;) on Z, with E; contained in .#. We want to show that
those geodesics of M with initial velocities given by E; will fill a neighborhood of
v in M. First we state rigorously what this means. Consider the differentiable
function F:  x [0, b) — M such that F(s, t) = Og,(s) (t). (Here o, denotes the

geodesic of M with initial velocity x.) Note that the curve t — F(m, t) is the given
geodesic Y. We must prove that ¥ is regular at each point of {m} x [0, b). By our
original choice of the geodesics in L, the restriction of F to (Z:L) x [0, b) is regu-
lar on {m} x [0, b). Now let K be the slice of U through m, complementary to L,
and let f be the restriction of F to Kx [0, b). To prove the required regularity of
F, it suffices to show that for each t € [0, b) the function f.: K — M such that

fi (k) = F(k, t) is regular at m, and that the image of Km under the diffevential map
of f; has intersection zevo with the tangent space of L at fi(m) = y(t).

But, using standard properties of foliations, we can deduce this from the follow-
ing facts:

(1) The above assertion is true for t = 0, since fy is the inclusion map of K in
M.

(2) For each point k € K, the curve t — F(k, t) lies in the leaf L(k) of #
through k—at least for as long as this curve remains in G.

The preceding construction takes place in M. But since the geodesic y is in G
and G is open in M, we can reduce to G by replacing the geodesics used to define
the function F by their maximum initial segments in G. It is now easy to obtain the
required frame field. First, define E = (E,, ---, E4) differentiably on Z, with E,
as above and E;, -+, E,, also in #. Then parallel translate out the geodesic seg-
ments just mentioned.
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It remains to prove the following lemma.
LEMMA 2. The leaves of A4 in G arve complete.

Proof. We use the criterion given earlier; hence we suppose that y: [0, b) — L
is a unit speed geodesic in a leaf L, with b < ¢(M). We want a geodesic extension of
v in L. Since vy is also a geodesic of M (complete), there exists a geodesic exten-
sion ¥ in M. It suffices to show that the point ¥(b) is in G. We assume the con-
trary and derive a contradiction. Let E = (Ej, ---, E4) be a frame field as given by
Lemma 1. Let ¢ = (¢ij) be the connection form of M relative to this frame field,
where.1 < i, j < d. We exclude the totally geodesic case n = d, and adopt the index
conventions 1 <a,b<n, n+ 1<r,s<d. If te[0,Db), denote by P(t) the
(d - n) X (d - n) matrix which is the value of (¢.;(E.)) at y(t). Thus P is a differ-
entiable matrix-valued function on [0, b). Using the Codazzi equation exactly as in
[2], we find

t
(*) S trace P — 4o as t— b.
0

We interrupt the proof of this lemma to establish the portion of its proof which
is intrinsic to M.

LEMMA 3. The matrix function P defined above satisfies the differential
equation P' = -P% - CI on [0, b).

Proof. We use this part of the second structural equation:
d¢r1 = _E¢ri VA ¢11 + er /\0)1.

From properties 1 and 4 in Lemma 1, we find that ¢(E;) = 0 ony. From property 2,
we conclude that ¢,.1(E;) = 0 on the whole domain of E. Thus, applying the above
structural equation to E;, E_ yields, on y, the equation

El(¢rl(Es)) = ¢r1([El’ Es]) - Co -

In general,

[El, Es] = E(‘l)is(El) - ¢;1(EQ) E;.

But ¢(E;) = 0 on y; and, since the leaves of .# are totally geodesic, from property
3 we see that

$:1(Ey) = <Vg_(Ey), E,> =0.

Thus the bracket term above reduces to ‘Z¢r1(Eq) qsql(E s) on ¥, so we have ob-
tained the required differential equation.

Resuming the proof of Lemma 2, we shall show that the differential equation for
P is incompatible with the limit condition (*). Consider, for each t € [0, b), the
(complex) eigenvalues and eigenvectors of the (real) matrix P(t). The equation
P' = -P% - CI shows that P is actually an analytic function, and one can deduce that
the eigenvectors of P(t) do not depend on t. It follows that for each eigenvector X
of P(0), we obtain a complex-valued function A on the interval [0, b) such that

(1) A(0) = rp;
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(2) The function A satisfies the same differential equation as P itself, that is,
A'= -\2 - C;

(3) If t € [0, b), then for all distinct choices of eigenvalues Ao of P(0), the num-
bers A(t) give all distinct eigenvalues of P(t).

To contradict (*), it suffices to show that trace P is bounded above on the inter-
val [0, b). Note that if A is real-valued, the differential equation in (2) shows that A
is bounded above on the interval. We shall prove that either A is real-valued o7
the magnitude |A| of A is bounded on the interval.

There are four cases to be considered.

Case 1. C arbitrary, Ag = O.

Here M is real-valued on the interval.

Case 2. C> 0, a9 # 0.

Solving the differential equation for A yields the result

Ao VC - VCtan(tVC)
Agtan(tvC) + vC

Alt) = ©0<t<b).

Since b < m/2VC, the magnitude |x| of X is bounded in this case, unless the de-
nominator of this expression is zero for t = b. But in that event, Ag = -1/tan(bvC),
S0 A is real-valued.

Case 3. C=0, rg#0.

Then A(t) = 2g(1 + tAO)‘l. Thus either Ag = -1/b, and A is real-valued, or |A|
is bounded.

Case 4. C< 0, rg# 0.
This case is similar to Case 2, with tan(tVC) replaced by tanh(tV-C).

CONSEQUENCES

We prove three corollaries of Theorem 1. In each case, M(C) denotes a com-
plete manifold of constant curvature C.

COROLLARY 1. If C> 0 and 2k < d, then every isomelvic immevrsion of
MYC) in MIYKC) is totally geodesic.

Proof. If such an immersion exists which is not totally geodesic, we deduce
from Theorem 1 that Md(C) must contain two disjoint, complete, totally geodesic
submanifolds, the sum of whose dimensions is at least d. But this is impossible.

This shows, for example, that the sphere Sd(C) is rigid in the sphere Sd+k(C)
if 2k < d. The next corollaries are analogous to Corollary 2 of [2].

COROLLARY 2. If C < 0, there exist no bounded isometric immersions of
MYC) in the hyperbolic space HZ24-1(O).

COROLLARY 3. If C > 0 and diameter (Md(C)) < w/VC, there exist no iso-
metric immersions of MYC) in the spherve S%2-1(C).

These two results follow from this consequence of Theorem %
must carry some entire geodesic of Md(C) onto a geodesic of H
respectively.

'im immersion

d-Yie) or 524 1(c)
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