ISOMETRIC IMMERSIONS OF CONSTANT CURVATURE MANIFOLDS

Barrett O'Neill and Edsel Stiel

INTRODUCTION

Let M^d and \overline{M}^{d+k} be complete, differentiable (C^{∞}) Riemannian manifolds of constant sectional curvature C and \overline{C} respectively. It is known that for $C < \overline{C}$ and k < d-1, there exist no isometric immersions of M^d in \overline{M}^{d+k} . On the other hand, if $C \ge \overline{C}$ there are many such immersions, even for k=1. We shall investigate the character of these immersions in the critical case $C=\overline{C}$, using a refinement of the method applied to the flat case in [2]. The general idea is that if M^d is not totally geodesic in \overline{M}^{d+k} , it must be bent along rather special submanifolds. We prove a precise formulation of this in the next section, and draw some consequences from it in Section 3.

THE MAIN THEOREM

Let M^d and \overline{M}^{d+k} be manifolds with the same constant curvature C, M^d being assumed complete. We assume further that $\psi \colon M^d \to \overline{M}^{d+k}$ is an isometric immersion, with k < d. Our notation will be essentially that in [2]. In particular, we express the second fundamental form information of ψ in terms of a tensor T related to the classical operators S_z by the identity $\langle T_x(y), z \rangle = \langle S_z(x), y \rangle$, where $x, y \in M_m$ and $z \in (M_m)^{\perp}$. (Here $(M_m)^{\perp}$ denotes the orthogonal complement of $d\psi(M_m)$ in $\overline{M}_{\psi(m)}$.)

If $m \in M$, let $\mathscr{N}(m)$ be the space of null-vectors at m, that is, the subspace of M_m consisting of all vectors x such that $T_x = 0$. There is a useful result (Theorem 2 of [1]) which, though stated for the flat case, applies also in the case at hand. It asserts that for each point $m \in M$, there exists a vector $y \in \mathscr{N}(m)^{\perp}$ such that T_y is one-one on $\mathscr{N}(m)^{\perp}$. (Here the orthogonal complement is only in M_m .)

Let n be the minimum value of the dimension of $\mathcal{N}(m)$ on M, and let G be the (open) set of M on which this minimum occurs. Then \mathcal{N} is a differentiable field of n-planes on G. Using this notation, we can state our main result.

THEOREM 1. The field ${\mathscr N}$ is integrable on G; its leaves are complete, totally geodesic, n-dimensional submanifolds of M^d , with $n \geq d-k$. Furthermore, each leaf is totally geodesic in \overline{M}^{d+k} relative to ψ .

Proof. The last assertion follows immediately from the definition of \mathscr{N} . The lower bound for n is a consequence of the theorem of Chern and Kuiper stated above. The proof that \mathscr{N} is integrable on G and that its leaves are totally geodesic is the same as in the flat case. This is true because the proof involves only the relative position of $\psi(M)$ in \overline{M} , that is, involves only the second fundamental form and Codazzi equation of ψ . However, the essential feature of the theorem is the *completeness* of the leaves. This depends not merely on relative information, but also

Received January 11, 1963.

This research was supported in part by a National Science Foundation grant.

on the intrinsic geometry of M. The completeness proof we now give will, when reduced to the case $C = \overline{C} = 0$, yield a simplified version of the proof in [2].

We use the following criterion for completeness of a Riemannian manifold L: for some fixed number $\varepsilon > 0$, every geodesic segment $\gamma \colon [0, b) \to L$ of length less than ε has a geodesic extension $\widetilde{\gamma} \colon [0, c) \to L$ with c > b. In applying this criterion to prove the completeness of a leaf L of \mathscr{N} , let $\varepsilon = \varepsilon(M)$ be $\pi/2\sqrt{C}$ if the curvature C of M is positive; otherwise let $\varepsilon(M) = 1$.

We need a frame field of a rather special type.

LEMMA 1. Let $\gamma:[0,b)\to L$ be a unit speed geodesic in a leaf L of N in G, with $b<\epsilon(M)$. Then there exists a frame field $E=(E_1,\cdots,E_d)$ on a neighborhood of γ in G such that

- 1. The geodesic γ is an integral curve of E_1 ;
- 2. Each integral curve of E₁ is a geodesic of M;
- 3. The vector fields E_1 , ..., E_n are contained in \mathcal{N} ;
- 4. The frame field E is parallel on γ .

Proof. Let x_1, \dots, x_d be a Frobenius coordinate system for $\mathscr N$ defined on a neighborhood U of the point $m=\gamma(0)$. We can arrange for $\partial/\partial x_1(m)$ to be the initial velocity $\gamma'(0)$ of γ . Then let Σ be the slice, x_1 constant, of U through m. Denote by $\Sigma \cdot L$ the slice of U through m which has x_1, x_{n+1}, \dots, x_d constant. Now the (totally geodesic) leaf L has constant curvature C, and the length of γ is less than $\pi/2\sqrt{C}$ if C is positive. Thus, reducing the size of U if necessary, we can find a differentiable vector field E_1 on $\Sigma \cdot L$, tangent to L, such that the geodesics of L with initial velocity E_1 fill a neighborhood of γ in L. Extend E_1 to a vector field (also denoted by E_1) on Σ , with E_1 contained in $\mathscr N$. We want to show that those geodesics of M with initial velocities given by E_1 will fill a neighborhood of γ in M. First we state rigorously what this means. Consider the differentiable function $F: \Sigma \times [0, b) \to M$ such that $F(s, t) = \sigma_{E_1(s)}(t)$. (Here σ_x denotes the

geodesic of M with initial velocity x.) Note that the curve $t \to F(m,t)$ is the given geodesic γ . We must prove that F is regular at each point of $\{m\} \times [0,b)$. By our original choice of the geodesics in L, the restriction of F to $(\Sigma \cdot L) \times [0,b)$ is regular on $\{m\} \times [0,b)$. Now let K be the slice of U through m, complementary to L, and let f be the restriction of F to $K \times [0,b)$. To prove the required regularity of F, it suffices to show that for each $t \in [0,b)$ the function $f_t \colon K \to M$ such that $f_t(k) = F(k,t)$ is regular at m, and that the image of K_m under the differential map of f_t has intersection zero with the tangent space of L at $f_t(m) = \gamma(t)$.

But, using standard properties of foliations, we can deduce this from the following facts:

- (1) The above assertion is true for t=0, since f_0 is the inclusion map of K in M.
- (2) For each point $k \in K$, the curve $t \to F(k, t)$ lies in the leaf L(k) of \mathscr{N} through k—at least for as long as this curve remains in G.

The preceding construction takes place in M. But since the geodesic γ is in G and G is open in M, we can reduce to G by replacing the geodesics used to define the function F by their maximum initial segments in G. It is now easy to obtain the required frame field. First, define $E=(E_1,\,\cdots,\,E_d)$ differentiably on Σ , with E_1 as above and $E_2,\,\cdots,\,E_n$ also in $\mathscr N$. Then parallel translate out the geodesic segments just mentioned.

It remains to prove the following lemma.

LEMMA 2. The leaves of N in G are complete.

Proof. We use the criterion given earlier; hence we suppose that $\gamma\colon [0,\,b)\to L$ is a unit speed geodesic in a leaf L, with $b<\varepsilon(M)$. We want a geodesic extension of γ in L. Since γ is also a geodesic of M (complete), there exists a geodesic extension $\widetilde{\gamma}$ in M. It suffices to show that the point $\widetilde{\gamma}(b)$ is in G. We assume the contrary and derive a contradiction. Let $E=(E_1,\cdots,E_d)$ be a frame field as given by Lemma 1. Let $\phi=(\phi_{ij})$ be the connection form of M relative to this frame field, where $1\le i$, $j\le d$. We exclude the totally geodesic case n=d, and adopt the index conventions $1\le a$, $b\le n$, $n+1\le r$, $s\le d$. If $t\in [0,b)$, denote by P(t) the $(d-n)\times (d-n)$ matrix which is the value of $(\phi_{r1}(E_s))$ at $\gamma(t)$. Thus P is a differentiable matrix-valued function on [0,b). Using the Codazzi equation exactly as in [2], we find

(*)
$$\int_0^t \operatorname{trace} P \to +\infty \quad \text{as } t \to b.$$

We interrupt the proof of this lemma to establish the portion of its proof which is intrinsic to M.

LEMMA 3. The matrix function P defined above satisfies the differential equation $P' = -P^2 - CI$ on [0, b).

Proof. We use this part of the second structural equation:

$$d\phi_{r1} = -\sum \phi_{ri} \wedge \phi_{i1} + C\omega_r \wedge \omega_1.$$

From properties 1 and 4 in Lemma 1, we find that $\phi(E_1) = 0$ on γ . From property 2, we conclude that $\phi_{r1}(E_1) = 0$ on the whole domain of E. Thus, applying the above structural equation to E_1 , E_s yields, on γ , the equation

$$\mathbf{E_{1}}(\phi_{\mathtt{rl}}(\mathbf{E_{s}})) = \phi_{\mathtt{rl}}([\mathbf{E_{1}},\,\mathbf{E_{s}}]) \,-\, \mathsf{C}\delta_{\mathtt{rs}}\,.$$

In general,

$$[E_1, E_s] = \sum (\phi_{is}(E_1) - \phi_{i1}(E_s)) E_i.$$

But $\phi(E_1) = 0$ on γ ; and, since the leaves of $\mathscr N$ are totally geodesic, from property 3 we see that

$$\phi_{\tt rl}({\tt E}_a) = \langle \nabla_{\tt E}_a({\tt E}_l), \, {\tt E}_{\tt r} \rangle = 0$$
.

Thus the bracket term above reduces to $-\Sigma\phi_{rl}(E_q)\phi_{ql}(E_s)$ on γ , so we have obtained the required differential equation.

Resuming the proof of Lemma 2, we shall show that the differential equation for P is incompatible with the limit condition (*). Consider, for each $t \in [0, b)$, the (complex) eigenvalues and eigenvectors of the (real) matrix P(t). The equation $P' = -P^2$ - CI shows that P is actually an analytic function, and one can deduce that the eigenvectors of P(t) do not depend on t. It follows that for each eigenvector λ_0 of P(0), we obtain a complex-valued function λ on the interval [0, b) such that

(1)
$$\lambda(0) = \lambda_0$$
;

- (2) The function λ satisfies the same differential equation as P itself, that is, $\lambda' = -\lambda^2 C$;
- (3) If $t \in [0, b)$, then for all distinct choices of eigenvalues λ_0 of P(0), the numbers $\lambda(t)$ give all distinct eigenvalues of P(t).

To contradict (*), it suffices to show that trace P is bounded above on the interval [0, b). Note that if λ is real-valued, the differential equation in (2) shows that λ is bounded above on the interval. We shall prove that *either* λ is real-valued *or* the magnitude $|\lambda|$ of λ is bounded on the interval.

There are four cases to be considered.

Case 1. C arbitrary, $\lambda_0 = 0$.

Here λ is real-valued on the interval.

Case 2. C > 0, $\lambda_0 \neq 0$.

Solving the differential equation for λ yields the result

$$\lambda(t) = \frac{\lambda_0 \sqrt{C} - \sqrt{C} \tan(t\sqrt{C})}{\lambda_0 \tan(t\sqrt{C}) + \sqrt{C}} \qquad (0 \le t < b).$$

Since $b < \pi/2\sqrt{C}$, the magnitude $|\lambda|$ of λ is bounded in this case, unless the denominator of this expression is zero for t=b. But in that event, $\lambda_0=-1/\tan(b\sqrt{C})$, so λ is real-valued.

Case 3. C = 0, $\lambda_0 \neq 0$.

Then $\lambda(t) = \lambda_0(1 + t\lambda_0)^{-1}$. Thus either $\lambda_0 = -1/b$, and λ is real-valued, or $|\lambda|$ is bounded.

Case 4. C < 0, $\lambda_0 \neq 0$.

This case is similar to Case 2, with $tan(t\sqrt{C})$ replaced by $tanh(t\sqrt{-C})$.

CONSEQUENCES

We prove three corollaries of Theorem 1. In each case, M(C) denotes a complete manifold of constant curvature C.

COROLLARY 1. If C>0 and $2k\leq d,$ then every isometric immersion of $M^d(C)$ in $\overline{M}^{d+k}\!(C)$ is totally geodesic.

Proof. If such an immersion exists which is not totally geodesic, we deduce from Theorem 1 that $M^d(C)$ must contain two disjoint, complete, totally geodesic submanifolds, the sum of whose dimensions is at least d. But this is impossible.

This shows, for example, that the sphere $S^d(C)$ is rigid in the sphere $S^{d+k}(C)$ if $2k \le d$. The next corollaries are analogous to Corollary 2 of [2].

COROLLARY 2. If C<0, there exist no bounded isometric immersions of $M^d(C)$ in the hyperbolic space $H^{2d-1}(C)$.

COROLLARY 3. If C>0 and diameter $(M^d(C))<\pi/\overline{C}$, there exist no isometric immersions of $M^d(C)$ in the sphere $S^{2d-1}(C)$.

These two results follow from this consequence of Theorem 1: an immersion must carry some entire geodesic of $M^d(C)$ onto a geodesic of $H^{2d-1}(C)$ or $S^{2d-1}(C)$ respectively.

REFERENCES

- 1. S. S. Chern and N. H. Kuiper, Some theorems on the isometric imbedding of compact Riemann manifolds in Euclidean space, Ann. of Math. (2) 56 (1952), 422-430.
- 2. B. O'Neill, Isometric immersion of flat Riemannian manifolds in Euclidean space, Michigan Math. J. 9 (1962), 199-205.

University of California, Los Angeles

