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1. INTRODUCTION

This paper considers the structure and ideal theory of a commutative ring R
with at most two prime ideals. If R contains a unit element, then R is a primary
ring in the sense of Zariski-Samuel [3, p. 204]. The following definition is there-
fore a generalization of that of Zariski-Samuel: A primary ving is a commutative
ring containing at most two prime ideals. A primary domain is a primary ring con-
taining no proper zero divisors. As already noted, the only case of interest is in the
study of primary rings without unit.

If A is an ideal of a commutative ring R, then VA is the intersection of all
prime ideals of R containing A [1, p. 9]. If R is a primary ring with prime ideals
P and R, this means VA = P or VYA = R. This simple observation serves as a
starting point for our investigations. In fact, the commutative ring R is a primary
ring if and only if given b € R, b is nilpotent or V(b) = R. If S is a ring in which
V(0) = P is a proper prime ideal, if M is the intersection of all prime ideals of S
properly containing P, and if Q is an ideal of S contained in M, then Q is a pri-
mary ring. For a primary domain D we can state, conversely: there exists a do-
main J (hence V(0) = (0) is prime) with unit such that D is an ideal of J contained
in the intersection of all non-zero prime ideals of J. One can state much stronger
results of a similar nature if S or D is Noetherian—for example, if D is a Noether-
ian primary domain, then there exists a semi-local domain J with unit such that D
is an ideal of J contained in the Jacobson radical of J. An interesting theorem is
proved in connection with the converse of the previous result; namely, that an ideal
Q contained in the Jacobson radical of a semi-local domain D with unit is itself a
Noetherian ring if and only if each maximal ideal of D has finite index in D when
considered as a subgroup of the additive group of D.

All rings considered in this paper will be assumed to be commutative and to
contain more than one element. If D is an integral domain, Q(D) will denote the
quotient field of D and D* will denote the subring of Q(D) generated by D and the
identity element of Q(D). Z will always denote the ring of integers. The termin-
ology is that of Zariski-Samuel [3] [4].

2. PRIMARY RINGS

In -iew of the remarks made previously, all primary rings considered in the
remainder of this paper will be assumed to contain no unit clement. There are es-
sentially two cases to consider then in examining a primary ring R. One is the case
where R contains no proper prime ideals. This occurs if and only if every element
of R is nilpotent. The more interesting case is where R contains a proper prime
ideal P. In this case v(0) = P and if be R - P, v(b) = R. That these two properties
determine a primary ring is shown by
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THEOREM 1. A ring R is a primary ving if given b € R, either b is nilpotent

or V(b) = R.

Proof. If P is a prime ideal of R, P contains every nilpotent element of R.
Therefore either P is the set of nilpotent elements or P = R. Hence R contains at
most two prime ideals.

COROLLARY 1. The integral domain D is a primary domain if and only if
given a, b € D with b+ 0, there exist a K € Z and a d € D such that ak = db.

Proojf. That the condition is sufficient follows from Theorem 1. If D is a pri-
mary domain, then b* + 0 implies V¥ (bz) =D [1, p. 9] so that for some t € D and
n, k € Z, ak = tb2 + nb2 = (tb + nb) b = db.

THEOREM 2. A ring R is a primary ving if and only if v(0) = P is a prime
ideal and R /P is a primary domain.

Proof. A primary ring has these two properties. If a ring R has these two
properties and P; is a prime ideal of R, P; D P. If P; D P, then P;/P is a non-
zero prime ideal of R/P so that P;/P = R/P, P; = R, and the result follows.

We now consider the problem of construction of primary rings. We first show
how any primary domain may be obtained. The previous simple results lead to the
following.

THEOREM 3. If J is an integral domain, if M is the intevsection of all non-
zevo prime ideals of J, and if D is an ideal of J contained in M, then D is a pri-
mary domain. Convevsely, if Dg is a primary domain, then there exists an integral
domain Jy with unit such that Dy is an ideal of Jy contained in the intevsection of
all non-zevro prime ideals of J.

The following lemma will be needed in the proof of the second part of Theorem 3
and later on in this paper.

LEMMA 1. Let S be a ving with unit e, and let R be a subving of S such that
S is genevated by R and e. A subset of R is an ideal of S if and only if it is an
ideal of R. S is Noethevrian if and only if R is Noethevian. Finally, if S is a do-
main, if M is the intersection of all non-zevo prime ideals of S, and if N is the
intersection of all non-zero prime ideals of R, then N C M.

Proof. Clearly an ideal of S contained in R is an ideal of R. If A is an ideal
of R, a€ Ajand d=r + ne € S, then da = ra + na € A also. Hence A is an ideal of
,S.

If S is Noetherian, R is Noetherian by what was just proved. To prove the con-
verse we take an ideal A of S and show A has a finite basis. Thus A; = ANR is
an ideal of R, and we may choose a finite basis {al, eee, as} of A; in R if R is
Noetherian. If B is the collection of all integers n such that r + ne € A for some
r € R, then B is an ideal of Z and therefore is generated by some single element b.
If a=x+Dbe € A and if a* = y + me € A, then for some integer q, a* - qa € A;. It
follows that {aj, --+, ag, a} is a basis of A in S.

If P is a non-zero prime ideal of S and S is a domain, then (0) CRPC R N P
so that R N P is a non-zero prime ideal of R. It follows that M D N.

Proof of Theorem 3. We first show D is a primary domain. Thus if a, b € D
and b # 0, we denote by (b); and (b)p the principal ideals generated by b in J and
D, respectively. v (b)j is the intersection of all prime ideals of J containing b.
Hence D c M C V(b)y. It follows that for some k, n € Z and some d € J,
ak = db + nb. Consequently a¥*! = (da + na)b and da + na € D. By Corollary 1, D
is a primary domain.
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Next, we suppose D is a primary domain and we let Jg = Dg*. Jg is an inte-
gral domain with unit, and Lemma 1 shows D is an ideal of J contained in every
non-zero prime ideal of Jg.

COROLLARY 2. If S is a 7ving in which Vv (0) = P is a proper prime ideal, if M
is the intervsection of all prime ideals of S properly containing P, and if Q is an
ideal of S contained in M, then Q is a primary ving.

Proof. We note that P N Q is the set of nilpotent elements of Q. Now
Q/PNQ~P+ Q/Pc M/P —which, by Theorem 3 as applied to the domain S/P, is
a primary domain. Corollary 2 now follows from Theorem 2 in view of the following
lemma.

LEMMA 2. If A is an ideal of the primary ving R, then A is a primary ving.

Proof. Suppose x € A and x is not nilpotent. Then the principal ideal generated
by x in R has radical R by Theorem 1. If then a € A, we see that ak = vx + nx for
some v € R and some n, k € Z. Hence aktl = (va + na)x and va + na € A since A
is an ideal of R. Theorem 1 now implies Lemma 2.

In view of Corollary 2 and Theorem 3, we might expect the following statement
to be true: If Rg is a primary ring, then there exists a ring Sy with unit in which
V(0) = Py is a proper prime ideal and such that Rq is an ideal of Sy contained in
the intersection of all prime ideals of Sy which properly contain Py. That this
statement is false is shown by the following example. We let

Rg = {2*, 4%, 6%, 8%, 10*, 0*}

denote the ring of residue classes of the ring of even integers modulo the principal
ideal generated by 12. Rg is a primary ring. Yet in any ring Sy with unit e con-
taining R, the set of nilpotent elements will not form a prime ideal. This is true
because (2*)(2* + e) is nilpotent, but neither 2* nor 2* + e can be. For 2* this is
obvious. Any power of 2* + e may be written in the form r + e for some r € R.
Since e ¢ R, no power of 2* + e is zero.

Remark. It can be seen that if the requirement that Sy have a unit is dropped,
then the resulting statement is true. The author has been unable to find an exact
analog to Theorem 3 in the case of primary rings. If we take Sy = Z/(12) and Ry
as in the previous example, the difficulty of describing Ry in terms of the prime
ideals of S; is illustrated, even in the case when R, and S; are Noetherian.

3. NOETHERIAN PRIMARY RINGS

As we might expect, the results of the previous section may be strengthened if
we consider rings which are Noetherian. Before we begin, we note that the primary
domain constructed in Theorem 3 is trivial if M = (0). Similarly, in Corollary 2, Q
is a “trivial” primary ring in the sense that every element of Q is nilpotent if
M = P. Accordingly, we shall be interested in analogs to Theorem 3 and Corollary
2 in the cases where M = (0) and M D P, respectively.

Definition. The Jacobson radical of a ring R with unit is the intersection of all
maximal ideals of R.

THEOREM 4. If J is a Noetheviarn domain with unit, not a field, such that the
tntersection M of all non-zevo prime ideals of J is non-zevo, then J is a one-
dimensional (see [2]) semi-local ving and M is the Jacobson radical of J.
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Proof. We let m be a non-zero element of M and we let
(m) =Qp N+ NQx

be an irredundant representation of (m) in J, where Q; is Pj-primary. Suppose
P, -+, P; are the minimal primes of (m). If P is any non-zero proper prime ideal
of J, then m € P implies some P; C P (1 <i<t). Hence Pj, ---, P¢ are all the
minimal prime ideals of J. Now if p € P, then the principal ideal theorem [3, p.
238] implies that p is in some minimal prime ideal of J, It follows that

t
cUr
i=1

so that P = P; for some i [3, p. 215]. Hence Pj, -+, Py are all the non-zero proper
prime ideals of J, and each of these is minimal. The conclusions of Theorem 4 then
follow.

COROLLARY 3. If R is a Noetherian ving with unit such that Vv{0) = P is a non-
maximal proper prime ideal of R, and if the intersection M of all prime ideals of R
properly containing P is not P, then R is one-dimensional and M is the Jacobson
vadical of R.

Proof. The corollary follows immediately by application of Theorem 4 to the
domain R/P.

Remark. Lemma 1 shows that there is no loss of generality in Theorem 4 by
assuming that J has a unit.

THEOREM 5. Let R be a Noethevian primary ving such that \/(T =P cCR. Let
R* be a ving with unit e containing R such that R* is genevated by R and e. Then
R* contains only a finite numbeyr of prime ideals and every proper prime ideal of
R* is maximal ov minimal.

Proof. By Lemma 1, R* is a Noetherian ring. If P* is prlme in R*, either
p* ﬂ R =R or P* N R = P. We shall show that if Pl and PZ are prime in R¥,
if P} N R =P, and if P} c P}, then P} N R = R. Thus if

- * *
d—r+ne€P2-Pl

and if be R - P, then bd € P53 N R, bd ¢ Pf. Therefore P N R = R as asserted.
This implies that if P*N R = P, P* is a minimal prime ideal of R*., We let

& = {P’f, oee, Plt} be the set of prime ideals of R* that intersect R in P. The set
© is non-empty for if P=Q N -« N Q, is an irredundant representation of the
ideal P in R*, where Q; is Pj-primary, then vP =Py N .-« N P,. Now VPN R=P
since P is prime in R. Therefore for some j with 1 <j< a, P; i R so that

P € 8. Now for 1< i<k, R*/P* is a Noetherian domain w1th un1t such that the
1ntersect10n of all non-zero prime ideals of R*/P¥ contains R + P}/P} + P¥/Pt.

By Theorem 4, R*/P* is a one-dimensional semi-local ring. The proof follows
immediately from th1s observation.

COROLLARY 4. If Do is a Noetherian primary domain, then D§ is a one-
dimensional semi-local ving and Do is an ideal of D§ contained in the Jacobson
radical of Dy. If DO has characteristic p # 0, then D is a local ving and Dg is
its unique maximal ideal. (Note that Dy, D§, and Q(DO) = Q(DO) all have the same
characteristic.) If Dﬁ has charactevistic 0, then DO/DO ~ Z/(s) for some integer
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s> 0. The maximal ideals of D§ in this case ave Dy + (p; €), =+, Dg + (py €) where
Py s *°*s Py are the prime divisors of s.

Proof. Theorem 5 and Lemma 1 imply the conclusions of the first sentence of
the corollary.

If C is the set of all elements ke of Do such that k € Z, then D =Dy + C.
Therefore DJ/Dy ~ C/DO N C ~ Z/(s) for some integer s. If C isa f1n1te field of
p elements, then Dy N = (0) “and s = p. Consequently, Do is a local ring and D
is its max1ma1 ideal. If C is not finite, that is, if D§ has characteristic 0, then
because D0 is a semi-local ring D*/D , and hence Z/(s), has only finitely many
prime ideals. Hence s # 0. Further (pl)/ (s) i=1, 2, -, k) are the maximal
ideals of Z/(s). Therefore

Dy + (p; €), ***, Dy + (D €)

are the maximal ideals of D{.

Notation. If A is an ideal of the ring S, then [S: A] will denote the index of A
in S —that is, the cardinality of the set of cosets of A in S when A is considered
as a subgroup of the additive group of S.

The following theorem shows in what case the Jacobson radical of a one-
dimensional semi-local domain is itself a Noetherian domain.

THEOREM 6. Suppose J is a one-dimensional semi-local domain with Jacobson
radical M. A non-zevo ideal Q of J contained in M is itself a Noetherian domain
if and only if [J: Q] is finite. In ovder that Q have finite index in J, it is necessary
and sufficient that M have finite index in J. Finally,[J: M| is finite if and only if
[J: M;] is finite for each maximal ideal M; of J.

Proof. If M;, ---, M; are the mnaximal ideals of J, then [3, p. 178]

J/M=~J/M; @ - ® I/ M.

Hence [J: M] is finite if and only if [J: M;] is finite for each i.

We next suppose that [J: M] is finite. Since any non-zero ideal A of J contains
a power of M, to show [J: Q] is finite, it suffices to show [J: M*] is finite for any
integer r. ThlS we prove by 1nduct1on the case r = 1 being true by hypothesis.
Suppose now that [J: M ] is finite. M /M +1 is canonically a vector space over the
field J/M. Since J is Noethenan this space is finitely generated. Because J/M is
finite by assumption [M%: ms+l ] is finite. Then by the induction hypcthesis

[J: M5T1] = [3: MO [Mm®: M5

is finite. It is clear that if there exists an ideal Q C M such that [J: Q] is finite,
then [J: M] is finite. We may summarize by saying: A necessary and sufficient
condition that [J: A] be finite for each non-zero ideal A of J is that [J: M] be
finite.

Now suppose that the ideal Q € M has finite index in J. If B is a non-zero ideal
of the ring Q, then BQ is a non-zero ideal of J and BQC BC QC J. From the
preceding paragraph, [J: BQ] is finite. Therefore [Q: B] is finite and Q is a
Noetherian ring.

Conversely, suppose that Q is Noetherian. Let q be a non-zero element of Q,
and let e be the identity of J. The ideal Jq of J is contained in Q and is an ideal
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of Q. Let rjq, --+, ryq be a basis for the ideal Jq in Q. Then if d € J, there
exist elements q; € Q and integers n; such that dq = Z(q; + n; e) r; q. Thus

d = Z(q; + n;e)r;, and modulo Q, d = Zn; r;, where r;, ---, r, are fixed elements
of R. Now Q* ¢ J and Q* is a one-~-dimensional semi-local ring by Corollary 4.
Also by Corollary 4, there exists an integer s # 0 such that se € Q. This means
that in the congruence above we may require that each n; be such that 0 < n; < s.
Therefore [J: Q] is finite as asserted.
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