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1. INTRODUCTION

Let G be a finite group, let K be an algebraic number field, and let R be the
algebraic integers of K. We let RG be the group ring consisting of all linear com-
binations of elements of G with coefficients in R. By an RG-module we understand
a unital, left RG-module that is finitely generated and torsion-free as R-module.
Thus in particular, if R = Z, the rational integers, every ZG-module gives rise to a
representation of G by matrices with entries in Z and conversely. We denote by
n(RG) the number of non-isomorphic indecomposable RG-modules.

Recently, Heller and Reiner {4] proved that, if G is a p-group, then n(ZQG) is
finite if and only if G is cyclic of order p or p? (see [6] and [7]). The necessity of
this condition was also proved by Dade [2]. This extends earlier results of
Diederichsen [4] and Reiner [9] on the cyclic group of order p, and results of Roiter
[13] and Troy [14] on the cyclic group of order four. For arbitrary G, Heller and
Reiner showed that, if n(ZG) is finite, then for every p all p-Sylow subgroups of G
are cyclic of order p or p? (see [6] and [12]).

In this paper we complete these results, proving that for arbitrary G, if all
Sylow subgroups of G are cyclic of order at most pZ, then n(ZG) is finite.

The general reference for the results used, as well as for the notation, will be

[1].

2. REDUCTION TO THE LOCAL CASE
Given a prime ideal P in R, we denote by Rp the ring of the P-adic valuation
of K, that is,

Rp=1{a/b; a, beR, b £ P}.

If R' is a ring extension of R and M is an RG-module, we denote the R' G-module
R'®r M by R'M.

LEMMA 1. Givern any group G, let Ry be the ring of elements of K integral at
all primes P which divide the ovderv of G. An RG-module M is decomposable if
and only if the Rg G-module RgM is decomposable.

Proof. Suppose that Ry M is decomposable, and let L. be an RyG-summand.
Set L, N M= N. Then N is an RG-module which is a pure R-submodule of M;
therefore it is an R-direct summand of M, and Ry N = L.. Since Ry cC Rp for all
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prime ideals P of R which divide the order of G, it follows that RpN = Rp L is an
Rp G-summand of RpM. This implies that N is an RG-summand of M (see [10]).
The implication in the other direction is obvious.

LEMMA 2. Given any group G and RyG-modules M and N, N is isomorphic to
an Ro G-summand of M if and only if for every prime ideal P in R which divides
the order of G RpN is isomorphic to an Rp G-summand of Rp M.

Proof. For each P let RpM=RpN+ Mp. Then KM= KN + KMp. From the
Krull-Schmidt Theorem for KG-modules, it follows that all the RpG-modules Mp
are K-isomorphic. Then, by a theorem of Maranda (see [8]), there exists an Ry G-
module L such that for all P which divide the order of G, Mp £ RpL. Therefore,
for all such P, RpM = Rp (N + L); and, by a result of Maranda [8], this implies
M= N+ L.

For every fixed t let E; be the set of all t-tuples (n;, --+, ny), where n;,

1 < i< t, are non-negative integers not all 0. Consider E; to be partially ordered
by letting

(ny, ++-, npY < (nf, +=-, n) if n;<n} for all i.

LEMMA 3. Every non-empty subset S of E; has a finite numbev of minimal
elements,

Proof. The result is obviously true for Ej; assume it has been proved for E¢_).
Let (n;, *--, ny) be any fixed element of S. For each k (1 <k <t) and each m
(0 < m< n) consider

S ={(m,, ***,n) €8S; n =m}.

By the induction hypothesis, the number of minimal elements of the ordered set Sf(n
is finite. Now let S be the set formed by (n,, **+, n,) and all the minimal elements
of all ordered sets Sll;n (1<k<t, 0<m<ny). Then § is finite and every mini-
mal element of S is in S.

LEMMA 4. Let R' be a ving extensionof R with R Cc R'C K, and let G be any

group. Then given any R'G-module M', therve exists an RG-module M such that
M' =R'M.

Proof, Let {mi} (1 <i<t) be a set of generators of M' over R'. Take

M= 2, Rgm;.
1<it
g€qG

Then M is an RG-module, and it is easily seen that M' = R'M.

PROPOSITION 5. Given any group G, n(RQG) is finite if and only if for every
prime ideal P of R which divides the ovder of G, n(Rp G) is finite.

Proof. If n(RG) is finite, then n(Rp G) must be finite because, since
R C Rp C K, by Lemma 4 every Rp G-module is obtained from an RG-module by
taking the tensor product with Rp.

Assume now n(RpG) finite for all P dividing the order of G. By Lemma 1, if
an Ry G-module M is indecomposable, then Ry M is indecomposable. Since there
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can only be a finite number of RG-modules Rg-isomorphic to a fixed RgG-module
(see [15]), to prove that n(RG) is finite it suffices to show that n(RgG) is finite.

For each P which divides the order of G assume the set of indecomposable
Rp G-modules to be numbered from 1 to r(P). Then given any RgG- module M, for
each such P we can assign to M a sequence of non-negative integers (n see. f (P))
by letting n be the number of times that the i-th indecomposable R G- module ap-
pears in some fixed decomposition of RpM into indecomposable RpG-modules.
Assume also that the set of prime ideals in R which divide the order of G is num-
bered from 1 to s, and order the preceding sequences accordingly. Then to each
Rp G-module M, there corresponds a well-defined sequence of t = r(P;) + -+ + r(Pg)
non-negative integers (n (M), *--, ny(M)). Furthermore, that n; (M) = n;(N) for all
i (1<iLKt) implies that RpM = RpN for all P which divide the order of G.
Therefore M = N.

We observe now that, if M # N and n; (N) < n; (M) for all i (1 < i< t), then for
all P which divide the order of G, RpN is isomorphic to an Rp G-summand of
Rp M. Thus by Lemma 2, N is isomorphic to an RgG-summand of M. It follows
that, if M is indecomposable, the sequence (nj; (M), ***, n{(M)) must be minimal in
the set E; defined above. From Lemma 3 we conclude that n(RyG) is finite.

3. COMPLETE VALUATION RINGS

PROPOSITION 6. Let G be any group, and let H be a p-Sylow subgroup of G.
Consider the algebyaic number field K with a P-adic valuation such that p € P, and
let K*, with valuation ving R*, be the completion of K. Then n(R* G) is finite if and
only if n(R*H) is finite.

Proof. Suppose n(R*G) is finite. Let L be an indecomposable R* H-module.
Form the induced R* G-module
G = %k
L™ =R*G ®R* I L.
Given any R* G-module M, My indicates the R* H-module obtained by restriction
of the operation of R*G on M to R*H.

Then (LY = L i L' for some R* H-module L'. If we take L= M;+ -+ M
where the M; (1 < i< t) are indecomposable R* G-modules, it follows that

ot

(LG)gg & Mgy +o0 + M.

Since the Krull-Schmidt Theorem holds for representations over complete valuation
rings (see [11]), and since L is indecomposable, L. must be isomorphic to a sum-
mand of M;y for some i (1 < i< r). This shows that the ranks of the indecompos-
able R* H- modules are bounded; therefore n(R* H) is finite.

Now suppose n(R* H) is finite. Let M be an indecomposable R* G-module.
Then [(My)Gly = My + L', where L' is an R* H-module. Let 7 be the projection
(MGl — My, and choose g1, **"y Em € G, to be m representatives of the cosets
of G over H. Since m =[G : H] is prime to p, m-1 € Rp; therefore,

= Lgym~lng!
i=1
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is well defined. 7' is an R* G-homomorphism which maps (MH)C' onto M, leaving
fixed the elements of (My)C which are in M, so M is an R* G-summand of (Mg)C.
If My;= Ly %+ + L, where the L, (1 <i<t) are indecomposable R* H-modules,
then

(M9 = LE+ -+ LY

so, from the Krull-Schmidt Theorem for R* G-modules, it follows that M is iso-
morphic to a summand of Lic' for some i (1 <i< t). This implies that n(R*G) is
finite,

For the proof of the two implications in Proposition 6 we only need the fact that
the Krull-Schmidt Theorem holds for R*G and R* H-modules. The result then also
holds, for example, for Rp G and Rp H-modules if Rp is a valuation ring of a
splitting field for G and H (see [5]).

PROPOSITION 7, Let K be an algebraic number field with valuation ving Rp,
and let K* (with valuation ring R¥*) be the completion of K. Then for any G, if
n(R* G) is finite, so is n(RpQG).

Proof. Suppose n(R* G) is finite. To prove that n(RpG) is finite, it suffices
to show that the ranks of the indecomposable Rp G-modules are bounded.

To each indecomposable Rp G-module M assign a sequence of t = n(R*G) inte-
gers: (n (M), --+, n;(M)), where n;(M) is the multiplicity with which the i-th inde-
composable R* G-module appears in some fixed decomposition of R¥* M into
indecomposable R* G-modules. Then if

(l’ll(L), °*ty nt(L)) S (nl(M)’ °** nt(M)) ’

it follows that R* L is isomorphic to an R* G-summand of R* M. By Lemma 3, the
set of all such sequences has a finite number of minimal elements; therefore for
every Rp G-module M of rank larger than a fixed number, there exist an RpG-
module L and an R* G-module N* such that R*M = R* L + N*, It follows that
K*M = K*L 1 K*N*, The proof of the Noether-Deuring Theorem (see [3]) shows
that KL is a KG-summand of KM if K*L, is a K*G-summand of K*M. So there
exists a KG-module N such that KM = KL + N. Thus we see that

K*L + K*N* = K*L { K*N;

so by the Krull-Schmidt Theorem, K* N* = K* N,

Thus we arrive at the case of an R* G-module N*, such that K* N* comes from
a KG-module N. It is known (see [1] and [5]) that this situation implies the exist-
ence of an Rp G-module N such that N* = R*¥ N, Therefore, R¥*M = R*(L + N), and
this implies M= L £+ N (see [8]).

This proves that the ranks of the indecomposable Rp G-modules are bounded.

4. PROOF OF THE THEOREM

THEOREM 8. Given any grvoup G, if for every pvime p which divides the ovder
of G the p- Sylow subgroups of G are cyclic of order p ov p2, then n(ZG) is finite.

Proof. Suppose that all Sylow subgroups of G are cyclic of order at most p2.
To show that n(ZG) is finite, by Proposition 5, it is enough to prove that n(Z,G) is
finite for all primes p which divide the order of G.
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Let p be any such prime, and let H be a p-Sylow subgroup. Since H is cyclic
of order at most p2, we know that n(ZH) is finite; therefore, n(ZpH) is finite. Let
Z* be the completion of Zp. In [6] it is shown that if H is a cyclic p-group every
Z* H-module is the tensor product of a Zp H-module with Z*, so n(Z* H) must be
finite. From Proposition 6 it follows that n(Z* G) is finite, and Proposition 7 shows
that n(Z, G) is finite.
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