TYPES OF AMBIGUOUS BEHAVIOR OF ANALYTIC
FUNCTIONS, II

G. S. Young

Let f be a complex-valued function defined in the open disk D: |z| < 1. A point
p in the unit circle C is an ambiguous point of f if there exist two arcs, each hav-
ing p as one endpoint, but otherwise lying in D, such that on either of the arcs f(z)
has a limit as z approaches p, but such that the limits are distinct. The concept is
due to Bagemihl [1], as is the fundamental result that an arbitrary function can have
only a countable number of ambiguous points. Lohwater and Piranian [2] have proved
that, given an arbitrary countable set K on C, there is a meromorphic function f of
bounded characteristic defined in D whose points of ambiguity constitute precisely
K.

How far is it possible to prescribe the two asymptotic values at the points of
ambiguity? Does the presence of many points of ambiguity guarantee the existence
of asymptotic values at other boundary points? Can there exist many ambiguous
points where there are more than two asymptotic values? In this note I give a
family of examples relevant to these questions. References to other work on such
questions can be found in [4].

THEOREM. Let W,, W,, W, be three finite sels of points on the Riemann
spheve. Then theve exists a function f, meromorphic in D, such that (1) for each
j G=1, 2, 3) the set of asymptotic values of f is Wi, at each point of a ceriain
dense set Ajon C,and (2) f has asymptotic values only at points of AU A, U A,
The sets Aj do not depend on the sets Wj.

Remark, It follows from Bagemihl’s theorem that the sets A j are necessarily
countable.

Proof. I remark first that for each positive integer k there is an entire function
¢x having precisely k asymptotic values at infinity. ¥or k = 1, we may take ¢, to
be z itself, and for k = 2, we may take ¢, to be e%#. For k> 2, Valiron has shown
[3, p. 140] that the function

1 (2) = Sz[sin p(k-1)/2]2 -kt g
0

has the desired property. Note that ¢, (0) = 0.

In the proof we shall also need a meromorphic function that has no asyfnptotic
values at «. For this we choose any doubly periodic, meromorphic function ¢, that
is finite at 0 and 1.

Valiron shows that for k> 2 the k - 1 finite asymptotic values of ¢, are
equally spaced on a circle around the origin. Thus ¢4(0) is not an asymptotic value of
¢ For the other values of k, ¢,(0), ¢,(0), ¢,(0) are not asymptotic values of their
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functions. Next we remark that for each integer k > 0 and for any complex number
o other than zero, the two functions ¢, (az) and ¢, (z) have the same sets of asymp-
totic values. Also given two finite sets, {zi, zj, ***, 2, } and {w;, w,, **-, w,}, of
non-zero numbers, we can select @ such that if z; is any element of the first set
and wy, is any element of the second set, then ¢(ozzj) # Wp. Let the number of ele-
ments in W,, W,, W, be, respectively, r, s and t. There exist three numbers a, b,
and c¢ such that for all choices of @, 8, and v, (1) the function

01(2) = [¢(a/2) - a]-!
has r asymptotic values at z = 0, all finite; (2) the function
0,(z) = [$5(8/(z - 1)) - b]"
has s asymptotic values at 1, all finite; (3) the function
05(2) = [¢prz) - c]™!

has t asymptotic values at infinity, all finite; and (4) none of the numbers

0n(0), 0, (1), On(=x) (n =1, 2, 3) that are well defined is an asymptotic value of any
of the three functions. Each function is meromorphic over the entire sphere, ex-
cept for one essential singularity. Now let

g(z) = ¢,0,(z) + c;0,(2) + c304(2),

the numbers c,, c,, c; being nonzero. At each of the points z = 0, 1, «, two of the
functions composing g are continuous and the third has asymptotic values. It is
conceivable that an asymptotic value at one of these points may also be an asympto-
tic value at another. Appropriate choices of «, 8, v, c,, c,, ¢c; will prevent this from
happening. Thus, if an asymptotic value at z = 0 is also an asymptotic value at
z=1,

C,W; + €y 0,(0) + c305(0) = ¢,6,(1) + c,w, + c305(1),
where for n =1, 2, w, is an asymptotic value of 6,(z). This gives the relation
c,(wy - 6,(1)) + c,(6,(0) - w,) + c3(05(0) - 6,5(1)) = 0.

If either w, # 0,(1) or 6,(0) # w,, then the values of ¢,, c,, c; for which the
equality holds form a thin subset of complex three-space. But we have already re-
marked that «, 8, ¥ can be chosen so that w, # 6,(1), w, # 6,(0). More than that,
a, B, ¥ can be chosen so that equality of any two asymptotic values will occur for
only a thin set of values of c,, ¢,, cg. Then the thinness of the ¢’s guarantees the
existence of one triple for which none of the undesired equalities of asymptotic
values of g holds.

With these choices, we can now say that g has r asymptotic values at z=0, s
at z=1, and t at z = «, all being different, and all finite. There is a rational func-
tion p that maps the asymptotic values at z = 0 onto the points in W,, maps the
asymptotic values at z = 1 onto the points in W,, and maps the asymptotic values at
z = onto W,

The composite function p o g has each point of W, as an asymptotic value at
z = 0, each point of W, as an asymptotic value at z = 1, and each point of W; as an
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asymptotic value at z = «; it has no other asymptotic values at these points, and has
no asymptotic values at any other point.

Now let h be that elliptical modular function in D that has for vertices of its
basic triangle the points 1, exp (ni/3), exp (27i/3), and that maps these, respectively,
onto 1, 0, and «». Let A, be the set of points on C where the radial limit of h(z) is
0, let A, be the set where the radial limit is 1, and let A; be the set where the ra-
dial limit is oo,

Let P be a path approaching 0 on which p o g has an asymptotic value, w. At
each point of A, there is a path lying in D (except for an end point) whose image
under the map h is the path P, and on this path h o (p o g) has the asymptotic value
w. Likewise, any asymptotic value of h o (p o g) at a point of A, is an asymptotic
value of po g at z = 0. Similar statements hold for A, and A;. This completes the
proof.
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