SOME FREE PRODUCTS OF CYCLIC GROUPS

M. Newman

Let p and q be positive integers. The principal question we wish to consider is
that of giving a representation in terms of linear fractional transformations for the
free product of a cyclic group of order p and a cyclic group of order q. These in-
clude the Hecke groups discussed in [1], which correspond to the choice p = 2,

q > 3. In addition we consider two subgroups of the modular group and show that
these are free products of cyclic groups. The method of proof we employ is ele-
mentary; it is patterned after the proof given by K. A. Hirsch in his appendix to the
second volume of Kurds’s book on group theory [2], that T" is the free product of a
cyclic group of order 2 and a cyclic group of order 3. The referee points out that
essentially the same proof is given by H. Rademacher in his paper [5].

We introduce some notation. For a positive integer n, define

01 0 -1
X, = 2cos (n/n), A, = }, B, = .
-1 ap, 1A,

Then the eigenvalues of A, and B, are the numbers a,, 8,, where

o, = exp (in/n), B, = exp(-in/n)

are primitive (2n)t! roots of unity. If n> 1, these are distinct and both A, and B,
are similar to diag (oyn, Bn). Thus the least positive integer k such that Ah =z I,
Bﬁ:iI is k = n; and

n n
A =B =-1I.
We set A = Ay, B=Bg,
A=0,, =14, B}
({A, B} denotes the group generated by A and B) and agree to identify a matrix
with its negative. This is equivalent to considering A as a group of linear fractional
transformations (which, by the way, is a discontinuous group). Then to show that A
is the free product of a cyclic group of order p and a cyclic group of order q it is
only necessary to show that the relations

AP = B9 -1

are the defining relations for A. We assume that p> 2, q > 3. (The case p=q =2
will be treated separately.) We set

(1) oy - Bf) _ sin (rm/p)
a, - Bp sin (7/p) ’
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_23- B3 _ sin (s/q)
2 bs = aq- Bq Sin(@/q) "

LEMMA 1. For all integers r and s,
A" =a,A-a,. I, BS=b,B-bg_;I.
The proof is an easy consequence of the relationships
A* =2, A-1, B =2B-1I,

and we omit it.

If we note that

a = Apar-l -ar_2, bg= Aqbs—l -bs_2,

then, forming the product AT B®, we obtain
LEMMA 2. For all inlegers r and s,

[arbs +ar.1 bs-l arbs+1 +ar_) bs]

ar+l1 bg +arbg_1 arbg + ary] bgtl

A" B =

From this lemma, (1), and (2) we deduce

LEMMA 3. Suppose that 1 <r<p-1and 1<s<q-1. Then A* B°® has non-
negative elements. The diagonal elements are always positive, and at most one off-
diagonal element vanishes forv any parvticulayr paiv r, s.

We are now prepared to prove our first theorem.
THEOREM 1. Suppose that p> 2 and q > 3. The relationships

AP -B%=1

are defining velationships for A, and consequently A is the free product {A} * { B}
of a cyclic group of ovdey p and a cyclic group of ovder q.

Proof. Any word W of A may be written as
s r s I'n- Spn-1 AT
W=BnA1B1---An1Bn An’

where the r’s are all between 1 and p - 1 and the s’s are all between 1 and q - 1,

except that r, and s, each may be 0. Suppose that W = 1. Then B "W B " = 1,

so that

(3) AT1BSl. ATn-1gSn-1 ATng®n _ 1

We may assume relationship (3) to be of skoriest length, which we continue to denote
by n. Then s, # 0, since s,, being zero leads to the relationship

Arl-l-rnle ... Arn-lBsn—l -1,
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which is of length at most n - 1. Moreover, r, # 0, since r being zero leads to
the relationship

Ar]‘ le .. Arn—l Bsn_1+sn B

b

which is also of length at most n - 1.

But now Lemma 3 implies that (3) is impossible, and the proof of the theorem is
complete.

We next consider two subgroups of the modular group I'" defined in [4]. Here T’
is the multiplicative group of 2 X 2 rational integral matrices of determinant 1 in
which a matrix and its negative are identified. The subgroups we consider are T2
generated by the squares of the elements of T", and I'3, generated by the cubes of the
elements of I". It is shown in [4] that T2 = {R, S} and I'3= {T, U, V}, where
R3=8%=-1, T?=U%?=V2= -1, and

1 -1 0 -17
S|
1 od- 1 1
0 1 1 1 F-1 -2
-1 0 -2 -1 L1 1

and it was stated there that IT'? is the free product of two cyclic groups of order 3,
and that I'® the free product of three cyclic groups of order 2. Here we supply a
proof of this statement, which consists of showing that the relations

R®=S%=1

are defining relations for the group I'?, and that the relations

T2=0U%?=V?%=1

are defining relations for the group I'3. The pattern of proof is identical with that of
Theorem 1, and we need only prove lemmas analogous to Lemma 3.

By direct calculation, we find that

-1 -2 1 27

RS = = ,
. 0 -1 .0 1]
-2 17 2 17

RS? = = ,
[ -1 -1 1 1]
-1 -1 1 17

RZS — = ’
-1 -2 ] L1 2]
(-1 07 1 07

R2S2 = = )
[ -2 -1 ] [ 2 1]
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Hence we obtain

LEMMA 4. Suppose that 1 <r, s< 2. Then R" S° has nonnegative elements.
The diagonal elements ave always positive, and at most one off-diagonal element
vanishes for any particulayr paiv r, s.

This lemma implies
THEOREM 2. The relationships
R®=8%=1

ave defining velationships fov T'?, and consequently T'? is the free product
{R} * {S} of two cyclic groups of order 3.

The calculations are somewhat more involved for I'3, but of the same type. As
in the proof of Theorem 1, if a word of I'® is the identity, we may assume that it be-
gins with T. (It is trivial to prove that T must appear and that

{0, v} ={u} « {v})
Then there is a relationship
TX; TX, = TX, =1,

where each X is of the form (UV)®, (VU)*, (UV)®U, or (VU)°V. If we define

C, = T(UV), D,=TVU),

s s
Es = T(UV) U, F,= T(VU) v,
then
Cr =3Cr1 - Cro25 Dp=3D._ 1 -Dry,
Es = 3Es—1 -E5_,, Fg= 3Fs—l - Fs—Z

(since UV and VU have trace 3 and determinant 1), and

1 3 3 8 1 0 3 1
CJ.: » C2= 3 D1= ’ D2= ’
0O 1 1 3 3 1 8 3

[C-2 -1 2 17 C .5 -2 T 5 27
Eo— = » E1: = )
[ -1 -1 | 1 1 | -2 -1 2 1]
C -1 -1 1 17 -1 -2 7 1 27
F, = = , F, = = .
| -1 -2 ] 1 2] -2 -5 | | 2 5]

This implies

LEMMA 5. If r> 1, s > 0 the matrvices Cr, Dr, Es, Fs have nonnegative ele-
ments. The diagonal elements ave always positive, and at most one off-diagonal
element vanishes for a particular pair v, s in each matvix. These properties are
presevved undev multiplication.



SOME FREE PRODUCTS OF CYCLIC GROUPS 3173

As in the proof of Theorem 1, Lemma 5 implies
THEOREM 3. The velationships

T2=TU2=V2=1
are defining relationships for I'3, and consequently T'? is the free product

{1} « {U} = {V}

of three cyclic groups of ovder 2.

In conclusion we mention that the omitted case of Theorem 1, corresponding to
p = q = 2, can be realized by considering the subgroup {T} % {U} of I'>. The
groups {R} and {S} are conjugate subgroups of I', and the groups {T}, {U}, {V}
are conjugate subgroups of I', as they must be. It is possible to give geometric
proofs of Theorems 1, 2, 3 by considering the fundamental regions of the groups and
the cycles of vertices, but we do not enter into these discussions here. A geometric
discussion of the general situation of the free product of countably many cyclic
groups of arbitrary orders has been given by J. Lehner [3].
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