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1. INTRODUCTION

We acknowledge valuable consultations with G. Rayna and G. A. Stengle.

This article was suggested by two distinct lines of investigation, which merged
after each had proceeded independently. These were the study of almost-periodic
functions and sequences, and the study of matrix transformations of periodic se-
quences initiated by Vermes [6], [7] and Newton [5]. In the latter investigation, the
the natural desire of functional analysts to work in a complete space (see, for exam-
ple, Corollary 2) prompted us to deal with the completion of the space of periodic
sequences. This completion turns out to be smaller than the space of almost-
periodic sequences, thus damping any hopes of an extensive use of the theories of
Bohr and von Neumann. The situation is this; each almost-periodic function on
(-0, ) is uniformly approximable by linear combinations of periodic functions. In
attempting to restrict this result to the integers, we run into several snags. First,
the restriction of a periodic function need not be a periodic sequence; second, the
set of periodic sequences is already a linear space, so that its linear closure is the
same as its closure; and, finally, that closure is actually smaller than the space of
restrictions of almost-periodic functions, and therefore the analogous theorem is
actually false.

A sequence x of complex numbers is called semiperiodic if to each € > 0, there
corresponds a positive integer n such that |xk - xk+rn| < ¢ for all r, k; it is called
almost-periodic if to each € > 0, there corresponds a positive integer n such that
every interval (K, K+ n), K= 1, 2, ---, contains an integer t satisfying the condition
lxr - xr+t| < ¢ for all r.

Taking m to be the familiar Banach space of all bounded complex sequences
with “x” = sup Ixnl, the closure in m of the set p of periodic sequences is shown,
in Theorem 1, to be precisely the set q of semiperiodic sequences.

A related problem of interest concerns the properties of the space q as a sub-
space of m, considered as the conjugate of the space f of absoclutely convergent
series with ”x” =2 'an- The space g turns out to be large enough to be norming
over [. (See Section 5, below, for a definition of this concept.)

Since q is so large, it is interesting that there exist regular matrices which
sum all of its sequences (for example, the Cesaro matrix, which yields the von
Neumann mean) especially since known theorems place restrictions on the number
of bounded divergent sequences summed by a regular maftrix.

If S denotes the set of (C, 1)-summable bounded sequences, then S\c¢, is
norming over f: this suggests the problem of identifying the matrices A having the

Received September 14, 1961.

363



364 I.-D. BERG and ALBERT WILANSKY

property that (cp N m)~Ncg is norming over f. It seems plausible that every co-
null matrix has this property.

2. PERIODIC SE QUENC ES

In [7], Vermes asks whether p has a complete norm. We can immediately
answer this in the negative, since p has a countable Hamel basis and is therefore of
first category in itself (it is the union of an increasing sequence of finite~-dimensional
subspaces, hence the union of an increasing sequence of closed subspaces). The
existence of the countable basis is observed in [6]; we shall exhibit one explicitly,
since we can fortunately show that it is a Schauder basis for q.

3. SEMIPERIODIC SEQUENCES

The sequence {cos n} is not uniformly approximable by periodic sequences: if
X is a sequence of period k, then, for suitable n,

|x_; - cos nk|= |x, - cos nk|> 1/2.
This shows that p, the closure of p in m, is not the set of almost-periodic

sequences.

THEOREM 1. p = q, that is, the uniform closure of the set of peviodic sequences
is the set of semiperiodic sequences.

Let x be semiperiodic. Let € > 0 be given, and choose n as in the definition of
semiperiodicity. If y is defined by yi = xx for k < n, and yx4n =yk, then y € p
and clearly |x - y” < E.

Conversely, let x € p and € > 0. There exists y € p with Hx - y” <g/2. Let n
be the period of y. Then, for any r and Kk,

|xk - xk+rn| < |xk - Yk' + lYk - xk+rn| = ka - Ykl * ka-l-rn - Xk+rn|
<2fx-y[< ..

Thus x is semiperiodic.

4. A SCHAUDER BASIS
A Schauder basis for a space is a sequence such that each member of the space
is a unique infinite linear combination of its terms.

Corresponding to any pair a, b of positive integers with b < a, we denote by
da,p that sequence which has period a and whose first a elements are zero, except
for an element 1 in the b*® place. For example, d, , = {1} and

d4,3= {O: 0’ 1, 0! 0, 07 17 0; "'} *
Let
H = {d1,17 d2,2; de,s: ds,q; ds,sy dg

,63 dz4,7, -},
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where the terms are dpyy for (n - 1)! <k < n!. In the matrix whose rows are the
members of H, the main diagonal consists of ones, and all terms below the main
diagonal are zero. From this we see immediately that H is a Hamel basis for p.

We write H = {h,}; for example, h; = d, ,, h, = dg 4.
It is important to observe that if

n

X = {xl, X5, *0*y Xp, X1, X, ..} €p and x= 27 aphy,
k=1

then each a, (1 < r < n) is determined by x3, x2, -**, X;- and is independent of
Xpt+ls °°°, Xn. We shall use this fact.

H has a strong separation property; namely, for each x € H, the distance from x
to the linear span of H\{x} is 1, since no two members of H have the same num-
ber of 0’s before their first 1. This implies that each element of q has at most one
expression as an infinite linear combination of elements in H. Indeed, the Hahn-
Banach Theorem supplies a biorthogonal set of functionals.

Thus, finally, H will be shown to be a Schauder basis for q when we have proved
that every x € q is an infinite linear combination of elements in H.

Let x € q be given, and let the sequence {ak} be defined by the requirement that
for each n the jtBterm of 211;1 a hy is xj; for j=1, 2, -*-, n. Since, as remarked
above, each aj depends only on x, X, ***, X}, this requirement well-defines {ak}.
Observe that the period of Zﬂﬂ a; h, is not in general equal to n. Indeed, if
(p-1)!<n<pl, then p! is a period, and possibly the smallest period.

We now show that lim Zj=) ayhy = x. Let € > 0 be given. By definition, there

n-—oo

exists a sequence s of period r (hence of period rk for each positive integer k)
such that ||s - x| < e.

First consider the case n = p!, where r divides p!. Here

n
Z: a’khk = {xl’ X2y "t Xy X1 Xp, 777, X "'} ’
k=1

since x has period p! (recall that for k < p!, h, has period p!) and the first p!
terms are completely determined by {a} EL "
Since s has period p! and ||s - x” < €, we see that

n
Is- 2 an<e.
k=1
Hence [[Zi_;a hy - x| < 2¢.
Next we consider the case n=p! + q, where 0 < qg< (p+ 1)! - p!. We have
already established that
p! (p+1)!
|x- 20 a h|[<2 and |x- kZ)l ai hy || < 2¢.
k=1
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Observe that for i # j and p! <1i, j < (p + 1)1, the relation (h;)x = 1 implies that
(hj)k = 0 for each k; in other words, for such i, j, the two rows h; and hj never
have 1’s in the same column. Hence, for p! <k < (p + 1)1, we have |a,] < 2¢, and
therefore

n
2 a; hy || < 4e for p! <n<(p+1!.
k=pl+1
Thus
n
lx - & a | < 6e
k=1
(p+1)!

for p! <n<(p+1)! and |x- 3.7 aph.] < 2e.

But p! is any factorial such that r (the period of s) divides p!. Hence
”x - Z}E:l ay hy H < 6¢ for all n> p!. We have thus proved the following result.

THEOREM 2. H is a Schauder basis for. q.

5. NORMING SUBSPACES

Let B be a normed space, and S a total subset of B¥. Then S is a set of con-
tinuous linear functions on B such that x = 0 whenever f(x) = 0 for all £ € S. A new
norm for B is defined by

Ixllg = sup { [t} |/[I£]l: e, £+0}.

If this new norm is equivalent to the original norm for B, S is called norming. An
example of a non-norming (total) subspace of { = c¥ is given in [3] (see the 13 lines
beginning with the last line on p. 1067).

THEOREM 3. q is a norming subspace of {* = m. Indeed, ”y”qz Iyl for
y €{.

Let y € { and ||y]l= Z |yx|= 1. Let n be a positive integer, and x a sequence
of period n such that xy; = sgn yy for 1 < k< n. Then x € p, hence x € m; also,
”x” = sup ]xk] < 1, and we may consider x € f{* by writing x(y) = Zxyy}. Then
x(y) = Z-1 lyk| + R, where

IR|= 2 X V| < 22yl —o0
k=n+1 k=n+1

as n— . Thus |]y||q > 1 and therefore ||y||q =1= "y"

COROLLARY 1. The setl S of bounded sequences summed by the (C, 1) method
has the property that S~C, is norming over {.

We ask whether every regular matrix that sums a bounded divergent sequence
has this property. A result in this direction is that of Agnew [1], which asserts that
such a matrix must sum a non-separable subset of m. We also conjecture that
every co-null matrix has this property.
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COROLLARY 2. If a sequence a has the property that Z an xn converges for all
X € q, then a € {. This vesult is false if q is veplaced by p.

For each positive integer n, define a functional f; on q by fu(x) = eri:lak X
We may identify f,, with {ajy, ap, *+, an, 0,0, ---} € {. By Theorem 3, it follows
that ” fn” = Zk=1 [akl, the latter being the norm of f,, as a function on m. Since

lim f (x) exists for each x, and since q is complete, it follows from the uniform
n—c0

boundedness principle that ” fn” is bounded.

That the result is false for p follows from the existence (see [7]) of annihilators
of p. If Za,x, were 0 for all x € p, and if a were in [, it would follow that Z a, x,
vanishes on all of q, since it is continuous. By Theorem 3, this implies that a = 0.

We make the usual remark that in Corollary 2 it suffices to assume that the
series is bounded rather than convergent.

COROLLARY 3. q has no annihilators.

As just mentioned, p has annihilators.

6. THE CONJUGATE SPACE OF q

The space g* contains functions not expressible as Z a, x,; for example, lim X
is defined on q but is not of that form. Thus qg* % /.

Since q is a separable subspace of m, it is known that each member of g* is
expressible in terms of a matrix. See [2, pp. 68-72] and [4] for an alternative proof.

We have an explicit construction that gives a canonical matrix for a given mem-
ber of g*. In elegance, it leaves something to be desired, and we shall not present
it here.

7. MATRICES SUMMING g

A corollary of Theorem 3 is the standard boundedness condition for matrices,
namely,

THEOREM 4. If a matrvix A sums all the members of q, it must satisfy
Al <, where |A] = sup, Zy Janl

Since q is complete, we can apply standard techniques of functional analysis. In
the first place, Ax exists for each x € q. Thus, for each n, 2 a_; x; is convergent,
hence by Corollary 2, Z, lank] < o for each n.

For n=1, 2, +--, define a functional g, on q by g,(x) = Zra,Xx. By Theorem
3, || gn” =2 Iank]. Finally, since lim g,(x) exists for all x € g, the result follows
by the uniform boundedness principle.

Since ¢ is disjoint from c,, it is not surprising that matrices summing q need
not be conservative. An example is the matrix (a,x) with

a ;= (-1)7, an ni+1 = (-1)n+1, a,k = 0 otherwise,

This matrix sums all members of q to 0; that is, lim Z7_;a ;x, =0 for all x € q.

n— oo
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