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THE EQUATION aM =bNcP IN A FREE GROUP

R. C. Lyndon and M. P. Schutzenberger

1. INTRODUCTION

The question of finding all solutions for the equation aM = pN¢P in a free group
is of interest only if none of the exponents is 0 or 1; we assume, then, that
M, N, P> 2. The equation possesses obvious solutions for which a, b, and ¢ are
all powers of a common element; it will be shown that these are all solutions.

R. Vaught conjectured that a? = b%c¢? had only these obvious solutions, and R. C.
Lyndon [3] verified this conjecture by a combinatorial argument. His result car-
ries with it the case that all three exponents are even. That there are only the ob-
vious solutions in the case where the three exponents have a common prime divisor
was established independently by G. Baumslag [1], E. Schenkman [4], and J. Stallings
[6], all of whom employed more characteristically group theoretic methods. The
proof here, for general M, N, P > 2, is of a combinatorial nature.

In Section 2 we record some properties of the free monoid F of words repre-
senting elements in a free group G. In Section 3 we reduce the problem of finding
all the solutions of the equation aM = bN¢® in G to that of finding all solutions of
each of two equations in F. In Sections 4 and 5 we show in turn that each of these
equations has only the obvious solutions.

The greater part of the argument deals with the case that one of the exponents is
2 or 3. This suggests that arbitrary equations in powers of elements from a free
group have only more or less obvious solutions when the exponents are sufficiently
large. More generally, one may expect that in some sense more complicated equa-
tions have fewer solutions, with only rather special equations possessing genuinely
nondegenerate solutions. Thus the equation aM = bNe¢Pd®Q, which possesses a
wealth of nontrivial solutions when all four exponents are 2, appears to have only
obvious solutions when all exponents are large.

2. COMBINATORIAL LEMMAS

Let G be a group freely generated by a set X of generators x. Let F be the
monoid freely generated by the set X U X, where X is a set, disjoint from X, of
elements x in one-to-one correspondence with the elements x of X. The elements
of ¥ are worvds. A word a represents the group element ¢a, where ¢ is the epi-
morphism from F onto G carrying x into x and x into x-!. The length lal of a
word a is the number of factors in its expression as a product of the leffers x and
x. The formal inverse a of a word a is its image under the involutory antiauto-
morphism of F that interchanges x and x. Clearly ¢a = (¢a)~ L.

Received May 18, 1962,

The work of the first author was done in part under NSF Grant G-24333. That of
the second author was done in part at the University of Poitiers and in part at the
University of North Carolina under Contract AF 49(638)-213 with the Air Force of-
fice of Scientific Research.

289



290 R. C. LYNDON and M. P. SCHUTZENBERGER

A word is reduced if it contains no factor aa for a # 1. Each element of G is
represented by a unique reduced word.

A word is cyclically veduced if it is reduced and is not of the form aba for
a # 1. Each reduced word is uniquely representable in the form aba for b cylically
reduced.

A word is primitive if it is not of the form a™ for any m > 1.

Two words are cyclically conjugate if they are of the forms ab and ba, respec-
tively. I one is cyclically reduced or primitive, then so is the other.

The first of the following more or less obvious and familiar properties of F is
due to F. W. Levi [2]. ‘

LEMMA 1. If ab = cd and |a| < lcl, then ¢ = ae and b = ed for some e.
The proof is immediate.

LEMMA 2. If ab=bc and a # 1, then a =uv, b= (w)u, and c = vu for some
u,veF and k> 0.

Proof. If |b|< |al, then by Lemma 1, a = bv and ¢ = vb for some v, and the
conclusion holds with u=b and k= 0. If [a| < [bl, then again by Lemma 1,
b = ab' for some b', whence a?b'=ab'c. Thus ab'=b'c. Since a+ 1, |b'|< |b|,
and the desired conclusion follows by induction on |b|, the initial case being
trivial.

LEMMA 3. If ab = ba, then a and b arve powers of a common element.

Proof. If a =1, the conclusion is immediate. Otherwise, applying Lemma 2,
from the relation a = uv = vu we conclude by induction that u and v are powers of a
common element.

LEMMA 4. If a and b have powers a™ and b™ with a common initial segment
of length lal + lbl, then a and b arve powers of a common element.

Proof. The hypothesis implies that ba™ and b™"! have a common initial seg-
ment of length |a|+ 2|b|, whence ba™ and b™ have a common initial segment of
length |a| + Ibl Similarly, ab™ and a™ have a common initial segment of length

al + |b|. It follows that ab™ and ba™ have a common initial segment of length

Ial + |b[, and hence that ab = ba. The conclusion now follows by Lemma 3.

COROLLARY 4.1. Ifa™ =b" and m > 1, then a and b ave powers of a com-
mon element.

Proof. If m=1 or n< 1 the conclusion is immediate; otherwise
|a™] = [p7] > |a] + |p]

and the conclusion follows by Lemma 4.

COROLLARY 4.2, If a # 1, then there exists a unique primitive b and an inte-
ger k > 1 such that a = bk,

LEMMA 5. If a and b arve primitive and have powers a™ and b™ with a com-
mon initial segment of length |a| + |b|, then a = b.

Proof. The conclusion immediately follows from Lemma 4 and Corollary 4.2.

LEMMA 6. If a is a reduced wovd and a divides ac in the sense that ac = uav
fov some u and v, then a divides c.
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Proof. Assume that ac = uav and that a does not divide c. By Lemma 1 it fol-
lows, first, that |c| < |av| whence |ul < |a| and, second, that a = uw and wc = av
for some w # 1. Now wc = av = wuv implies that w = w, which is impossible for
w # 1 and w reduced.

COROLLARY 6.1. If a is reduced and a divides a powev of a wovd of the form
a™b, then a divides b.

COROLLARY 6.2. If a is a veduced word and a divides a power of a, then
a=1.

LEMMA 7. If a is a veduced wovd and both a and a divide some power of a
cyclically reduced wovd b, then b is cyclically conjugate to a word of the form avau.

Proof. Since a begins some cyclic conjugate of a power of b, and thus a begins
some power of a cyclic conjugate b' of b, a =b'"b;, where b' = b b, and k > 0.
Since a is a factor of a power of b and hence of a power of b'k*l = abz, it follows
by Corollary 6.1 that a divides b,. Thus b, has the form b, = vau. Since a = b'kbl
with |a| < rb | < |bt], it follows that k = 0 and a = b,. Consequently,

b' = b; b, = avau.

3. REDUCTION OF THE PROBLEM

We consider now elements ¢a, ¢b, and ¢c of the free group G that satisfy an
equation

(3.1) @M = (¢b)N (¢c)F,

where M, N, P > 2, and we shall show that ¢a, ¢b, and ¢c are powers of a common
element of G. Our aim in this section is to replace the hypothesis (3.1) by hypotheses
on the elements a, b, and ¢ of the monoid F. Clearly, we may suppose that a, b, and
c are reduced and primitive. Under this assumption, it will suffice to show that one
of a, b, and c¢ is equal or inverse to another.

It is also clear that we may replace ¢a, ¢b, and ¢c by their conjugates under any
element of G, and thus replace a, b, and ¢, by the corresponding reduced primitive
words a', b', and c¢'. If b =ub'u, where b' is cyclically reduced, then conjugation by
¢u replaces b by b', thereby justifying the assumption that

(3.2) b is cyclically reduced.

We next justify the additional assumption that

(3.3) be is reduced.

If b = c, the desired conclusion holds. Otherwise, by Lemma 5, there is a bound on
the length of an initial segment common to powers of b and c. Therefore, for some
m and n, neither b™ nor c™ is an initial segment of the other. It follows that there
exist factorizations b = b,b, and ¢ = ¢, ¢c,, with b, # 1, ¢, # 1, such that, bzbm‘1
and c-1 c; are formal inverses and that b, c, is reduced. Conjugation by

sc®lc)) = pd,p™ )
now replaces b by b'=b,b; and ¢ by c¢'=c,c,. Now b' is cyclically reduced,

since b is reduced. In addition, b'c' is reduced, since b, ¢, is reduced and
b,, c, # 1.
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We now show that we may assume further that one of the following two conditions
holds: either

(Case I) a is cyclically veduced,
or
(Case II) c is cyclically reduced.

We argue by induction on Ial. The initial case that ]al = 1 falls under Case I. Sup-
pose then that (3.2) and (3.3) hold, but that neither a nor ¢ is cyclically reduced.
Then a has the form a = ua'u for some letter u € X U X, and therefore the reduced
word ua'™Mu representing (¢a)M begins with u and ends with u. Since bc is re-
duced, it follows that the reduced word for (¢b)N (¢c)P begins with the same letter
as b and ends with the same letter as c¢. In view of (3.1), we see that b begins with
u and that ¢ ends with u. Thus b = ub, for some b,, and c, since it is not cyclically
reduced, has the form c¢ = uc'u. Conjugation by ¢u now replaces a, b, and ¢ by

a', b' = byu, and c¢'. Here b' is cyclically reduced since b is cyclically reduced.
Further, b'c' is reduced, since b' = byu with u # 1, and, since ¢ = uc'u is reduced,
uc' is reduced. Thus (3.2) and (3.3) remain true, while a is replaced by a' with

|a' | = Ial - 2. The desired conclusion therefore follows by induction.

In the remaining sections we treat Cases I and II in turn. We emphasize that the
two cases are not disjoint; in fact, we treat Case II by reducing it to its intersection
with Case I. For this common case, where both a and ¢ are cyclically reduced, the
argument of Section 4 could, of course, be substantially simplified.

4. CASE I

Write ¢ = gc'g, where c' is cyclically reduced and g is possibly 1. Since a
and b are cyclically reduced and bc is reduced,

aM = pN éclpg,

where both members are reduced, and thus represent the same word. Dropping
primes, we show that if

(4.1) aM = pNzcPg

in the monoid F, where the word represented by the two members is reduced and
a, b, and ¢ are primitive, then g =1 and a = b = ¢c. We proceed by induction on
|a], the initial case ]al = 1 being vacuous.

The equation (4.1) implies the analogous equation
(4.1") aM = PNz,
where a' is a cyclic conjugate of a. If |bN|> |a|+ |b]|, then aM and bN have a
common initial segment of length ]al + [b[, and it follows by Lemma 5 that a = b.

Thus we may assume that

(4.2) [N < al
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and, symmetrically, in view of (4.1'), that

P-
(4.3) lc 1|< la].
By Lemma 7, from the occurrences of the factors g and g in aM
clude that a has the form a = ugvg and that

we may con-

m

(4.4) pNg = amlué, ch = vga 2,

where m, + m, + 1= M. Thus |a" *| < |bN|. On the other hand (4.2) implies that
|bN| < |a?|, and we conclude that m, < 1. Similarly, m, < 1, whence M < 3; that is,
M=2 or M= 3.

If M =2, we may suppose by symmetry that m, = 1 and m, = 0. Now (4.4) im-
plies that bN = au = ugvgu and cf = v, whence bN = uchgu. Therefore there exists
a cyclic conjugate b' of b for which p'N = uzgc g. Since

o' = bl < BN < Taf,
we conclude by induction that g = 1 and b' = u = ¢, and therefore that b =b' = c.
If M= 3, then m; = m, = 1, and (4.4) implies that

bN = au = ugvgu and cF = vgugv.

By symmetry we may suppose that |CP| < |bN|, and therefore iv| < Iul By (4.2),
IbN'1 | < ]ai: and therefore bN = au implies that lul < ]bl It follows from
plN = ugvgu that b both begins and ends with u. From Lemma 2 it follows that u
and b have the forms u = (pg) p and b = (pg)k+lp where, since b is primitive,
q# 1. Now b = ugp = pqu, whence b = ugvgu implies that

gvg = qpbN%pq.

If |q| < [g| then g ends with both g and q, which is impossible for q # 1. There-
fore |g < fq , 4 =gq,g for some q,, and

v = q, gpb™"?pgq, .
Because lv[ < [u[ < |b|, this implies that N = 2 and v = q, gp?gq,. It follows that
2lp| + la] < [v| < Ju] = @+ D]p|+x|q],

and therefore that k > 2.

The relation

= - 2 - k+2 2 -
cP = vgugv = q;ep%ga;2(a)* pga; ep” g1 = a) gp(pa)* ~ p® gy

implies that

P kt2 2 - 2
c' = (pa) " p gq; 8P

where c¢' is a cyclic conjugate of c. Now the inequality k > 2 implies that
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lap®gaZep| < 4]p|+ 3lal < | (o) p].

Therefore

| P = | 2" p| + |ap® ga® gp| < 2|(pa)™ p]

and Ic'l < |(pq)k+1p]. Thus c'* has an initial segment (pq)k+2 p of length greater

than |c'}+ |pq in common with (pq)¥*3, and it follows by Lemma 5 and Corollary
4.1, since c! is primitive, that pq is a power of c¢'. From the fact that (pq)xt2 and
(pa)x*t2p2gqégp are both powers of c' it follows that p? gq2 gp is a power of c',
and therefore p® gq% g is a power of a cyclic conjugate c¢" of c¢'. From the relation

len| = Je] < |pal < |paciel
it follows that ¢"2= p3éq%g for some integer Q > 2. Finally, since
let] = Jel < |eP-1] < al,

we may conclude by induction that g =1 and that p and q, = q are powers of a com-
mon element, which contradicts the hypothesis that b = (pq)k*! p is primitive.

5. CASE II

Write a = ga'g, where a' is cyclically reduced and possibly g = 1. Dropping
primes, we obtain an equation

(5.1) gaMg = pNcP

in the monoid F. Here the word represented by the two members is reduced, and
a, b, and ¢ are primitive. We shall show that g=1 and a =b = c¢. In view of
Case I, it will suffice to show that g = 1.

If |cP|< |g|, then g = heP for some h; and after cancelling a factor ¢ from
each member, we see that cFhaMh = bN, This equation falls under Case I and has
a solution only if ¢ = b, which is contrary to the hypothesis that bNcP is reduced.
Thus we may assume that Igl < 'cP[, and, symmetrically, that lgl < |bN|. It fol-
lows by Lemma 1 that

n1
g=">b b, =c,c 3
n
(5.2) a la; = byb 2,
P, -
c'le, = a,a ®,

where a =a,a,, b=Db,b,, and ¢ = ¢, c,, and where m, + my, + 1 =M, n, + n, + 1 = N,
and p, + p, + 1 = P. We remark that (5.2) implies (5.1).

The system (5.2) leads to systems

— — - n m - — n_ _ P
(5.2) g'=a"ta; =b,(6;B,) 2 clcy=aa 2 (Bib) 'k =cpc?,
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and

D - _ _n _m_ _ - -P _n__ - .m
(5.3") g" = Cchz =b;b? a;%a,=rcyct, b?by=a2aja .

Thus the hypothesis on the six exponents that there exist an element g and factori-
zations of three primitive words a, b, and ¢ such that (5.2) holds is symmetric
under cyclic permutation of the pairs (n,, n,), (m,, m,), (p,, p,), and also under in-
terchange of (n,, n,) with (p,, p,) coupled with reversal of all three pairs.

We exploit this symmetry to reduce the discussion of (5.2) to three cases as
follows. First, we choose Case A to be that where the two exponents in some one of
the equations (5.2) both vanish. We choose Case B to be that where all of m,, n,,
and p,, or else all of m,, n,, and p,, are positive. For Case C we may, in view of
Case B, assume that some exponent vanishes, say n, = 0. Then n, # 0 in view of
the equation n, + n, + 1 = N, while we may assume that p, # 0 in view of Case A. In
view of Case B, we may now assume that m, = 0, while, in view of Case A, we may
take p, # 0. We now treat these three cases in turn.

Case A. Here we suppose that the two exponents in the first of equations (5.2)
vanish. This equation becomes g = b, = ¢c,. Thus b = gb,, ¢ = c, g, and substituting
these right-hand members in (5.1) and cancelling the initial g and the final g, we
obtain the equation

M - N-1 P-1
(5.3) a’ = (b,g) b, ¢, (gcy) .

_If |(b28)N-1b2| > |b2g| + |a], it follows by Lemma 5 that a = b, g, and since
gag is reduced, that g = 1, as required. Thus we may assume that

020 2 b2| < |al.

Also |(b, @)N-!{= |a| would imply that a = (bz g)N-1, and, since gag is reduced, g
would equal 1; therefore we may assume that a # (b, Q)N'i . We show that the in-
equality |a| < |(b, g@N-!| is impossible. This inequality implies that the first fac-
tor a in the product (5.1) begins with b, and that the second begins with h,b,, for
some factorization g = h;h, with h;, h, # 1. By Lemma 2, there exist u, v, and k
such that b, = (uv)Xu divides a power of h, = uv. From (5.3), there exists a cyclic
conjugate a' of a for which

= N- P-1
a™ = (@b,)" 1 b, ci(ge))” 7 by,
By Lemma 7, a' has the form a' = gpgq; and from the relations
- N-1 - N-1
lat] = |a] < [, | = |@&b2) |
we conclude that g divides b,. Moreover, h, divides g = h,h,. It follows that h,

divides a power of h,, which, by Corollary 6.2, contradicts the fact that h, # 1. Thus
we may assume, symmetrically, that

(5.4) |, N1 < lal, |eepT ' < |al.

In view of (5.4), cancelling the first and last factors a from (5.3) shows that
aM-2 divides b,c,. The inequalities (5.4) imply that |b,|, |c,| < |a|; hence
|b,c,| < 2|al. It follows that M - 2 < 2, that is, M =2 or M = 3.

If M= 2, we may suppose by symmetry that
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[ @M1z | > Jergen) 7M.

)P—l

It follows that (b, é)N’lbz =ajaza] and az = cj(gey , whence

- - N -1 P-1
b, @N = ajer(ge;)Ptajg and b = (a1 g8)" a; cy(gcy) ,

where b' is a cyclic conjugate of b. Since this equation is of the form (5.3) with
|b'| = |b,g| < |a], we may conclude by induction on |a| that g = 1.

If M= 3, then not both N and P can exceed 2, since then (5.4) would imply that
2|b2|, 2|cl| < |al|, and that

|b2|+ lcll < |a|§ |b201|-
By symmetry, we assume that N = 2. Equation (5.3) now becomes
3 P-1
a” = b, gb, c;(gc;) .

It follows that there exist factorizations b, = bgb, and ¢, = cgc, with b, # 1 and
cs # 1 such that

a = bygbs = bges = cylgey) ™ .
Since a begins both with b, = b;b, and with b,, it follows by Lemma 2 that b; = uv
and b4_= (uv)ku for some u, v and some k. Now b,gb, = b,c, implies that
cg = vuguv, while by cz = cq(ge;)® ! implies that

l)p'1 and c:l(gcl)P'1 = vué(uv)k+2uéuv.

cabycs = cylge
Since |cll > lc3I = vuguv, there exist an h> 1 and a factorization uv = w, w, with
w,; # 1 such that the initial occurrence of c, in this expression for c;(gc;)F-!
has the form cj = vug(uv)?w;. Now c, ends both with w, w,w, and with guv. Since
]w2 Wll = luv], it follows that unless g = 1, g ends with the same letter as w,, and
hence as c¢,, which is contrary to the hypothesis that ¢, g is reduced. Therefore
g = 1, as required.

Case B. Here we may assume that m,, n,, p; # 0 and, using cyclic symmetry,
that |c! < |a|. From the equality

Py

clecy = a.za.m2 (p1 #0),

+1
we conclude that c¢ begins (azal)m2 and since |c| < Ia[ = Ia2 a,|, that ¢ begins,
and therefore divides, a,a,;. From the equality

amlal = bzbnz (mj # 0)

1 +1
we conclude that a,a, divides bt , and hence that c divides b2 . It follows
from the relation

bib = &25, (@ +#0)

that b begins ¢& s+ . Thus b, and with it b]rlerl is a product of initial segments of
- n b
c. Now the factor ¢ of b2 must end with a part of some initial segment d # 1 of
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¢ = de, and since |d| < |¢|= |c|, c must end with all of d, thatis, ¢ = fd. But then
c = fd = ed and d = d, which is impossible for a part d # 1 of the reduced word c.
This shows that Case B is impossible.

Case C. Here n; = m, = 0 with the remaining exponents positive. The equations
(5.2) now take the form

(5.5) a 'a, =Db,b?,

If a, divided b,, then c, which divides a,, would divide b,; and hence ¢ would divide
a power of c. By Corollary 6.2, this would imply that ¢ = 1. We conclude, symme-
trically, that neither of a, and b, divides the other. Now the inequality

la™a,| > |a| + |b]

would imply by Lemma 5 that a,a, = b, b,, whence one of a, -and b, would divide the
other. We conclude that |am1 a | < |a| + |b| By symmetry, we assume that

|b|§ |al, whence !amlal < 2|a| and m; = 1. We now see that |a132a1| < Ial + ]bl,
whence |a1[ < |bl. If n, = 1, it follows from the relation a,a,a, = b, b, b, that either
a, divides b, or b, divides a,. If n, > 2, from the equality aj a; a; = b, b"2, we see
by cancelling the factors a, that (b, by )nz—z bz divides a,, and therefore b,; divides
a,. We conclude that n, = 2.

The second of the equations (5.2) now takes the form
(5.6) a,a,a, = byb;b,b,b,.

Since it was established that |a,| < |b| = |b,b,], it follows from (5.6) that

|a2! > lbzl. Consequently b, is in the middle of a,, that is, there exist u and v,
with |u|= |v|, such that a, = ub,v. It follows from (5.6) that a,u = b, b, and

va, = b,b,. Since b, does not divide a, = ub,v, b, does not divide u, and, from
a,u = b,b;, we see that |u| < |by|. From the relations iv‘ = |u| < |b1| and

va, = b, b, it follows that v divides by = cP2cz. If |c| were no greater than |v]|,
then v would contain a cyclic conjugate of c¢, which, since v divides a, = cP1 C1,
would contradict Corollary 6.2. We conclude that lul = [v] < |c| But now

a, = ub, v, and therefore also ub,b,, begins with ¢, while

vb,b, = va,u = b;b,u
begins with c. Since [u[ = |v| < |c_|_ there exists a d # 1 for which ¢ = ud and

¢ = vd. This implies that ¢ = ud = dv, which contradicts the hypothesis that ¢ is
cyclically reduced.
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