A PROOF OF THE ABIAN-BROWN FIXED POINT THEOREM

P. H. Doyle

In [1] the following generalization of the Brouwer Fixed Point Theorem is proved.

THEOREM 1. If C^n is an n-cell in euclidean n-space E^n , and if f is a map of C^n into E^n such that $Bd \ C^n$, the boundary of C^n , is carried by f into C^n , then f has a fixed point.

We shall present a new proof of Theorem 1 which establishes an equivalence between Theorem 1 and the Brouwer Fixed Point Theorem.

LEMMA. Let C^n be an n-cell in a T_2 -space M (so that C^n - Bd C^n = int C^n is a component of M - Bd C^n). Then, if f is a map of C^n into M while f(Bd $C^n) \subset C^n$ and $f(C^n) \cap Bd$ $C^n \neq Bd$ C^n , f has a fixed point.

Proof. We observe that under the assumptions of the lemma, $f(C^n)$ is a compact metric space. Since $P = f(C^n) \cap Bd C^n \neq Bd C^n$, $P \subset C^{n-1}$, where C^{n-1} is an (n-1)-cell in $Bd C^n$. Let r be the identity map on P. The (n-1)-cell C^{n-1} is an absolute retract, and therefore the map r can be extended to a map defined on $f(C^n) - C^n$ as well. Denote by \tilde{r} the map r so extended, with its domain enlarged by the condition that $\tilde{r} \mid [f(C^n) \cap C^n]$ is the identity map. The map \tilde{r} carries C^n into C^n and has a fixed point if and only if f has a fixed point. By the Brouwer Fixed Point Theorem, \tilde{r} does have a fixed point, and thus f has a fixed point. This completes the proof of the lemma.

We proceed to the direct proof of Theorem 1. Let us assume that the map f of this theorem has no fixed point and that $E^n \subset E^{n+1}$. We consider the single suspension

$$C^{n+1} = \omega_1 \wedge C^n \cup \omega_2 \wedge C^n$$

of C^n in E^{n+1} . The map f is to be extended to a map \widetilde{f} of C^{n+1} into E^{n+1} by the following definition. Let E_1^n be a hyperplane in E^{n+1} which is parallel to E^n ; we observe that $E_1^n \cap C^{n+1}$ is the empty set, an n-cell, or a point. If

$$E_1^n \cap C^{n+1} \subset \omega_1 \wedge C^n$$
,

let x be any point in C^n , and let $x' = (\omega_1 \wedge x) \cap E_1^n$. Then

$$\mathbf{\tilde{f}}(\mathbf{x}^{\iota}) = \left[\boldsymbol{\omega}_{1} \, \wedge \, \mathbf{f}(\mathbf{x})\right] \cap \mathbf{E}_{1}^{n}$$
 .

We extend f in a similar manner to $\omega_2 \wedge C^n$. One can see that f is a map of C^{n+1} into E^{n+1} , $\tilde{f}(Bd\ C^{n+1}) \subset C^{n+1}$, and \tilde{f} has exactly two fixed points, ω_1 and ω_2 .

We imagine that the image $\widetilde{f}(C^{n+1})$ is symmetrically cut by E^n . It is then possible to follow \widetilde{f} by a reflection f through f which interchanges the two pieces of $\widetilde{f}(C^{n+1})$. Let $g = h\widetilde{f}$. The map f has no fixed point and f and f by f constant f constant f by f and f by f are f by f and f are f and f by f are f by f and f are f and f are f and f are f are f and f are f and f are f and f are f and f are f are f and f are f are f are f are f and f are f are f are f and f are f are f are f are f and f are f are f are f are f and f are f are f are f and f are f are f are f are f are f are f and f are f and f are f and f are f and f are f a

Let E_2^n be a plane which is parallel to E^n and which intersects $\omega_1 \wedge C^n$ in an n-cell C_2^n . There is in E_2^n an n-cell P which contains both C_2^n and $B=g(C^{n+1})\cap E_2^n$

Received May 27, 1961.

in its interior. Define a map r on $\omega_1 \wedge C_2^n \cup B$ as follows. The map r is pointwise fixed on $C_2^n \cup B$ and carries $\omega_1 \wedge C_2^n$ onto C_2^n . Since P is in an absolute retract, r may be extended to a map \tilde{r} into P of the closure of those parts of C^{n+1} and $g(C^{n+1})$ which lie on the same side of E_2^n as ω_1 . Defining \tilde{r} to be the identity map on the rest of $C^{n+1} \cup g(C^{n+1})$, we note that $\tilde{r}g$ is a map of C^{n+1} meeting the conditions $\tilde{r}g(Bd\ C^{n+1}) \subset C^{n+1}$, and $\tilde{r}g$ has no fixed point, $\tilde{r}g(Bd\ C^{n+1}) \cap C^{n+1} \neq Bd\ C^{n+1}$. But this contradicts the lemma. Hence, the map f of Theorem 1 has a fixed point.

REFERENCE

1. S. Abian and A. B. Brown, A new fixed point theorem for continuous maps of the closed n-cell (to appear).

Michigan State University